JP3343665B2 - Exhaust gas heat exchanger - Google Patents

Exhaust gas heat exchanger

Info

Publication number
JP3343665B2
JP3343665B2 JP25508293A JP25508293A JP3343665B2 JP 3343665 B2 JP3343665 B2 JP 3343665B2 JP 25508293 A JP25508293 A JP 25508293A JP 25508293 A JP25508293 A JP 25508293A JP 3343665 B2 JP3343665 B2 JP 3343665B2
Authority
JP
Japan
Prior art keywords
exhaust gas
exhaust
heat exchange
passage
cooling water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP25508293A
Other languages
Japanese (ja)
Other versions
JPH0791775A (en
Inventor
久 数田
稔 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yamaha Motor Co Ltd
Original Assignee
Yamaha Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yamaha Motor Co Ltd filed Critical Yamaha Motor Co Ltd
Priority to JP25508293A priority Critical patent/JP3343665B2/en
Publication of JPH0791775A publication Critical patent/JPH0791775A/en
Application granted granted Critical
Publication of JP3343665B2 publication Critical patent/JP3343665B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D7/00Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D7/0066Multi-circuit heat-exchangers, e.g. integrating different heat exchange sections in the same unit or heat-exchangers for more than two fluids
    • F28D7/0075Multi-circuit heat-exchangers, e.g. integrating different heat exchange sections in the same unit or heat-exchangers for more than two fluids with particular circuits for the same heat exchange medium, e.g. with the same heat exchange medium flowing through sections having different heat exchange capacities or for heating or cooling the same heat exchange medium at different temperatures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D21/00Heat-exchange apparatus not covered by any of the groups F28D1/00 - F28D20/00
    • F28D21/0001Recuperative heat exchangers
    • F28D21/0003Recuperative heat exchangers the heat being recuperated from exhaust gases
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/02Tubular elements of cross-section which is non-circular
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D7/00Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D7/00Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D7/16Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being arranged in parallel spaced relation

Abstract

PURPOSE:To reduce in size by obtaining a high heat exchanging efficiency, to improve an exhaust efficiency without decreasing engine performance, to improve a silencing effect and to integrate it with an engine. CONSTITUTION:An exhaust gas heat exchanger 4 heat exchanges exhaust gas flowing in an exhaust passage with other fluid flowing out of the passage, and comprises an upstream side heat exchanging unit 10 having an uneven part at an expansion chamber 12 of the passage, wherein the unit 10 is connected directly to an exhaust side of the engine.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】この発明は、例えばガスエンジン
によって駆動されるガスヒートポンプ装置に用いられる
排気ガス熱交換装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an exhaust gas heat exchange device used for a gas heat pump device driven by a gas engine, for example.

【0002】[0002]

【従来の技術】例えば、ガスエンジンによって駆動され
るガスヒートポンプ装置においては、ガスエンジンから
排出される高温、高圧の排気ガスを排気ガス熱交換装置
に導き、この排気ガスと共に素通りして逃げる廃熱を冷
却水と熱交換させて廃熱回収を図ったり、冷却によって
排気ガスの圧力を下げて消音し、或いは排気効率の向上
を図ることが行なわれる。
2. Description of the Related Art For example, in a gas heat pump device driven by a gas engine, high-temperature, high-pressure exhaust gas discharged from the gas engine is led to an exhaust gas heat exchange device, and the waste heat that escapes along with the exhaust gas is released. To exchange waste heat with cooling water to recover waste heat, reduce the pressure of exhaust gas by cooling to mute noise, or improve exhaust efficiency.

【0003】ところで、従来の排気ガス熱交換装置にお
いては、排気ガスが流れる排気通路はスパイラル状に巻
回された細いパイプ、または内壁に乱流生成板を取り付
けた直管等で構成されていた。
In the conventional exhaust gas heat exchange apparatus, the exhaust passage through which the exhaust gas flows is constituted by a thin pipe wound in a spiral shape, or a straight pipe having a turbulence generating plate attached to the inner wall. .

【0004】[0004]

【発明が解決しようとする課題】しかしながら、排気ガ
ス熱交換装置の排気通路をスパイラル状に巻回された細
いパイプで構成した場合には、パイプの内面に排気ガス
中に含まれるカーボンが付着してパイプが詰まり易い
他、パイプの単位長さ当りの表面積が小さくなり、熱交
換効率が悪くなるという問題がある。
However, when the exhaust passage of the exhaust gas heat exchange device is constituted by a thin pipe wound in a spiral shape, carbon contained in the exhaust gas adheres to the inner surface of the pipe. Pipes are easily clogged, the surface area per unit length of the pipe is reduced, and the heat exchange efficiency is deteriorated.

【0005】また、内壁に乱流生成板を取り付けた直管
で排気通路を構成した場合も、直管の単位長さ当りの表
面積が小さいために高い熱交換効率を得ることができな
いという問題がある。
Also, when the exhaust passage is formed by a straight pipe having a turbulence generating plate attached to the inner wall, a problem that high heat exchange efficiency cannot be obtained because the surface area per unit length of the straight pipe is small. is there.

【0006】さらに、このような排気通路をスパイラル
状に巻回された細いパイプ、または内壁に乱流生成板を
取り付けた直管等で構成したものを、ガスエンジンに直
接接続すると、排気抵抗が大きくて排気効率が悪く、ま
た排気圧力が大きくて消音効果も充分でなく、さらにエ
ンジン性能が低下するという問題があり、ガスエンジン
と一体に直接組み付けることが困難であった。
Further, when such an exhaust passage is constituted by a thin pipe wound spirally or a straight pipe having a turbulence generating plate attached to an inner wall thereof, the exhaust resistance is reduced by directly connecting the exhaust passage to a gas engine. There is a problem that the exhaust efficiency is large and the exhaust efficiency is low, and the exhaust pressure is large and the noise reduction effect is not sufficient. Further, there is a problem that the engine performance is deteriorated, and it has been difficult to directly assemble the gas engine directly.

【0007】この発明は、前記問題に鑑みてなされたも
ので、高い熱交換効率を得ることができて小型化が可能
で、しかもエンジン性能が低下することなく、排気効率
を向上すると共に、消音効果を向上することができ、エ
ンジンと一体化可能な排気ガス熱交換装置を提供するこ
とを目的としている。
SUMMARY OF THE INVENTION The present invention has been made in view of the above-mentioned problems, and it is possible to obtain high heat exchange efficiency and reduce the size of the engine. It is an object of the present invention to provide an exhaust gas heat exchange device that can improve the effect and can be integrated with an engine.

【0008】[0008]

【課題を解決するための手段】前記課題を解決するため
に、請求項1記載の発明は、排気通路内を流れる排気ガ
スと、排気通路外を流れる他の流体との間で熱交換を行
なう排気ガス熱交換装置において、前記排気通路の排気
ガス入口部に直接設けられた膨張室内面には、フィンと
突起を多数設ける一方、冷却水通路側となる膨張室外面
は、平滑な形状としたことを特徴としている。
According to a first aspect of the present invention, heat exchange is performed between exhaust gas flowing in an exhaust passage and another fluid flowing outside the exhaust passage. in the exhaust gas heat exchanger, the exhaust of the exhaust passage
Fins are provided on the surface of the expansion chamber provided directly at the gas inlet.
The outer surface of the expansion chamber on the side of the cooling water passage while providing many projections
Is characterized by having a smooth shape .

【0009】また、請求項2記載の発明は、前記膨張室
内面に設けた多数のフィンと突起を、排気ガス流れに対
して、千鳥状に配置することを特徴としている。
The invention according to claim 2 is characterized in that the expansion chamber is provided.
A large number of fins and projections provided on the inner surface
And are arranged in a zigzag pattern .

【0010】[0010]

【作用】請求項1記載の発明では、排気ガス入口部に直
ちに膨張室を設けた構成であるので、排気ガスの排気抵
抗が小さくなって排気効率が向上するとともに、排気圧
力が小さくなって消音効果が向上し、さらに膨張室の表
面積が大きくなっているので高い熱交換効率を得られ
る。 また、排気通路によって温度低下する前に膨張室を
設け内側に多数のフィンと突起があるので、排気ガス温
度が高い状態で、熱交換でき、かつ熱交換のための表面
積を大きく確保できる。 一方、冷却水通路側となる膨張
室外面は、平滑な形状とし、膨張室外部が平滑な形状と
して冷却水の通路となっているので、冷却水中へのエア
ー溜まりが生じ難くなり、冷却部側トラブルを未然防止
できるとともに、冷却水側の熱交換はガス側の熱交換よ
り熱伝達が格段に勝るので、表面積を確保するための複
雑な形状を施す必要はない。逆に、冷却水通路側での複
雑な形状は冷却水中へエアー溜まりを生じさせる原因と
なる。
According to the first aspect of the present invention, the exhaust gas inlet is directly connected to the exhaust gas inlet.
Since the expansion chamber is provided, the exhaust gas exhaust resistance
The resistance is reduced and the exhaust efficiency is improved.
The force is reduced and the noise reduction effect is improved.
High heat exchange efficiency can be obtained due to the large area
You. Also, before the temperature is reduced by the exhaust passage, the expansion chamber is closed.
Since there are many fins and projections inside the installation, exhaust gas temperature
High degree of heat exchange and surface for heat exchange
A large product can be secured. On the other hand, expansion on the cooling water passage side
The outdoor surface has a smooth shape, and the outside of the expansion chamber has a smooth shape.
The cooling water passage,
-Accumulation is less likely to occur, preventing problems on the cooling unit side
Heat exchange on the cooling water side is better than heat exchange on the gas side.
Heat transfer is much better, so multiple
There is no need to apply rough shapes. Conversely, the cooling water passage side
The rough shape may cause air accumulation in the cooling water.
Become.

【0011】請求項2記載の発明では、フィンと突起の
配置を排気ガスの流れに対し千鳥状に配置されているの
で、熱交換効率が高くなる。
According to the second aspect of the present invention, the fin and the projection
The arrangement is staggered with respect to the exhaust gas flow
Thus, the heat exchange efficiency increases.

【0012】[0012]

【0013】[0013]

【実施例】以下、この発明の排気ガス熱交換装置の実施
例を図面に基づいて説明する。図1は排気ガス熱交換装
置を組み付けたガスエンジンの側面図、図2は排気ガス
熱交換装置の断面図、図3は排気ガス熱交換装置の側面
図、図4は図2のIV-IV線に沿う断面図、図5は図2の
V−V線に沿う断面図、図6は図2のVI-VI線に沿う断
面図、図7はスクリューパイプの断面図である。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of an exhaust gas heat exchanger according to the present invention will be described below with reference to the drawings. 1 is a side view of a gas engine to which an exhaust gas heat exchange device is assembled, FIG. 2 is a cross-sectional view of the exhaust gas heat exchange device, FIG. 3 is a side view of the exhaust gas heat exchange device, and FIG. 4 is IV-IV in FIG. 5 is a sectional view taken along line VV of FIG. 2, FIG. 6 is a sectional view taken along line VI-VI of FIG. 2, and FIG. 7 is a sectional view of a screw pipe.

【0014】ガスエンジン1は、ガスヒートポンプ装置
の駆動源であり、このガスエンジン1はガスを燃料とし
て作動するものであって、このガスエンジン1によって
図示しないコンプレッサが駆動され、このコンプレッサ
によって冷媒が圧縮されて冷房または暖房に供される。
The gas engine 1 is a drive source of a gas heat pump device. The gas engine 1 operates using gas as fuel. A compressor (not shown) is driven by the gas engine 1, and the compressor generates a refrigerant. It is compressed and provided for cooling or heating.

【0015】ガスエンジン1はシリンダ2が傾斜して配
置され、このエンジン1の排気側3の側部には排気ガス
熱交換装置4が組み付けられ、ガスエンジン1と排気ガ
ス熱交換装置4が一体化されている。この排気ガス熱交
換装置4の組み付けは、ガスエンジン1の下部にボルト
5で固定した取付ステー6に排気ガス熱交換装置4のケ
ーシング7に形成した下取付部7aをボルト8で締め付
け固定し、排気ガス熱交換装置4のケーシング7に形成
した上取付部7bは取付ボルト9でガスエンジン1に直
接締め付け固定している。
The gas engine 1 has a cylinder 2 arranged at an angle, and an exhaust gas heat exchange device 4 is mounted on the side of the exhaust side 3 of the engine 1. The gas engine 1 and the exhaust gas heat exchange device 4 are integrated. Has been To assemble the exhaust gas heat exchange device 4, a lower mounting portion 7a formed on a casing 7 of the exhaust gas heat exchange device 4 is fastened and fixed to a mounting stay 6 fixed to a lower portion of the gas engine 1 with bolts 5 with bolts 8, The upper mounting portion 7b formed on the casing 7 of the exhaust gas heat exchange device 4 is directly fastened and fixed to the gas engine 1 with mounting bolts 9.

【0016】排気ガス熱交換装置4には排気通路の膨張
室に凹凸を有する上流側熱交換部10と、排気通路を断
面が非円形なスクリューパイプで構成した下流側熱交換
部11とが備えられている。
The exhaust gas heat exchanging device 4 includes an upstream heat exchanging section 10 having projections and depressions in the expansion chamber of the exhaust passage, and a downstream heat exchanging section 11 having the exhaust passage formed by a screw pipe having a non-circular cross section. Have been.

【0017】上流側熱交換部10はケーシング7内に排
気通路の膨張室12が形成され、この膨張室12内には
フィン13や突起14で凹凸が形成されている。この膨
張室12内には一方の側部7cから区画壁7dが他方の
側部7eに近接して伸び、この側部7e側で連通した上
膨張室12aと下膨張室12bが形成されている。
In the upstream heat exchange section 10, an expansion chamber 12 of an exhaust passage is formed in a casing 7, and fins 13 and projections 14 form irregularities in the expansion chamber 12. In the expansion chamber 12, a partition wall 7d extends from one side 7c in proximity to the other side 7e, and an upper expansion chamber 12a and a lower expansion chamber 12b communicating with the side 7e are formed. .

【0018】上流側熱交換部10の排気通路の上膨張室
12aの周囲には、上冷却水通路15aが形成され、こ
の上冷却水通路15aは区画壁7dにまで伸びている。
また、下膨張室12bの周囲には下冷却水通路15bが
形成され、この下冷却水通路15bには下流側熱交換部
11から冷却水が導かれ、この下冷却水通路15bから
上冷却水通路15aを通ってケーシング7の上側部に形
成された冷却水出口15cから排出され、冷却水はガス
エンジン1の冷却水通路に供給される。このように、
却水通路側となる膨張室外面は、平滑な形状とし、膨張
室外部が平滑な形状として上冷却水通路15a、下冷却
水通路15bとなっているので、冷却水中へのエアー溜
まりが生じ難くなり、冷却部側トラブルを未然防止でき
るとともに、冷却水側の熱交換はガス側の熱交換より熱
伝達が格段に勝るので、表面積を確保するための複雑な
形状を施す必要はなく、逆に、冷却水通路側での複雑な
形状は冷却水中へエアー溜まりを生じさせる原因とな
る。
An upper cooling water passage 15a is formed around the upper expansion chamber 12a of the exhaust passage of the upstream heat exchange section 10, and the upper cooling water passage 15a extends to the partition wall 7d.
A lower cooling water passage 15b is formed around the lower expansion chamber 12b. Cooling water is guided from the downstream heat exchange unit 11 to the lower cooling water passage 15b. The cooling water is discharged from a cooling water outlet 15c formed in the upper part of the casing 7 through the passage 15a, and the cooling water is supplied to the cooling water passage of the gas engine 1. Thus, cold
The outer surface of the expansion chamber on the side of the recirculating water passage has a smooth
The upper cooling water passage 15a has a smooth shape outside the room, and the lower cooling
The water passage 15b allows air to accumulate in the cooling water.
Disturbance is less likely to occur, and trouble on the cooling unit side can be prevented before it occurs.
In addition, heat exchange on the cooling water side is more heat than heat exchange on the gas side.
Transmission is much better, so complex
It is not necessary to apply a shape, and conversely, complicated
The shape may cause air accumulation in the cooling water.
You.

【0019】上流側熱交換部10はケーシング7に接続
部7fが形成され、この接続部7fをガスエンジン1の
排気側3に直接接続可能になっている。ガスエンジン1
の排気側3から排気ガスがケーシング7の4箇所に形成
された排気ガス入口16から上膨張室12aに導入さ
れ、この排気ガスは下膨張室12bに導かれて、さらに
下流側熱交換部11に導かれる。
The upstream heat exchange section 10 has a connection 7 f formed in the casing 7, and this connection 7 f can be directly connected to the exhaust side 3 of the gas engine 1. Gas engine 1
Exhaust gas is introduced into the upper expansion chamber 12a from the exhaust gas inlet 16 formed at four places of the casing 7 from the exhaust side 3 of the casing 7, and this exhaust gas is guided to the lower expansion chamber 12b, and further, the downstream heat exchanger 11 It is led to.

【0020】このように、ガスエンジン1の燃焼室での
混合気の燃焼によって生じた高温、高圧の排気ガスは、
排気ガス熱交換器4の上流側熱交換部10に導入され、
ここで冷却水との間で熱交換して冷却される。
As described above, the high-temperature, high-pressure exhaust gas generated by the combustion of the air-fuel mixture in the combustion chamber of the gas engine 1
Introduced into the upstream heat exchange section 10 of the exhaust gas heat exchanger 4,
Here, heat is exchanged with the cooling water to be cooled.

【0021】この上流側熱交換部10の排気通路の膨張
室12により、ガスエンジン1の排気側3からの排気ガ
スの排気抵抗が小さくなり、排気効率が向上すると共
に、また排気圧力が小さくなり消音効果も向上する。し
かも、上流側熱交換部10の膨張室12にはフィン13
や突起14で凹凸が形成されており、この凹凸によって
表面積が増加して、高い熱交換効率を得ることができ
る。また、フィン13や突起14の配置は、排気ガスの
流れに対し千鳥状に配置されているので、熱交換効率が
高くなる。
The expansion chamber 12 in the exhaust passage of the upstream heat exchange section 10 reduces the exhaust resistance of the exhaust gas from the exhaust side 3 of the gas engine 1, thereby improving the exhaust efficiency and reducing the exhaust pressure. The silencing effect is also improved. In addition, the fin 13 is provided in the expansion chamber 12 of the upstream heat exchange section 10.
The protrusions and projections 14 form irregularities, and the irregularities increase the surface area, so that high heat exchange efficiency can be obtained. The arrangement of the fins 13 and the projections 14 is
Since they are arranged in a zigzag pattern with respect to the flow, the heat exchange efficiency
Get higher.

【0022】下流側熱交換部11の排気ガス通路は断面
が非円形なスクリューパイプ20で構成しており、この
複数のスクリューパイプ20の一端部に閉塞プレート2
1を設け、他方にガスケット22を設け、さらに中間部
にガイドプレート23を設けてパイプユニット24にし
ている。このスクリューパイプ20は、図7に示すよう
に、十字形断面を有し、その外周に放射状に突出する4
つの凸部20aはスクリューパイプ20の外周を長さ方
向に沿ってスパイラルを描いている。
The exhaust gas passage of the downstream heat exchange section 11 is constituted by a screw pipe 20 having a non-circular cross section.
1 is provided, a gasket 22 is provided on the other side, and a guide plate 23 is provided on an intermediate portion to form a pipe unit 24. As shown in FIG. 7, the screw pipe 20 has a cruciform cross section, and radially protrudes from its outer periphery.
The two projections 20a draw a spiral along the length direction on the outer circumference of the screw pipe 20.

【0023】パイプユニット24はケーシング7に形成
された冷却水室25に配置され、この冷却水室25の下
側に冷却水入口26が形成され、上側に冷却水出口27
が形成されている。ガスエンジン1から冷却水が冷却水
入口26から冷却水室25に供給され、この冷却水室2
5を循環して冷却水出口27から上流側熱交換部10の
下冷却水通路15bに供給される。
The pipe unit 24 is disposed in a cooling water chamber 25 formed in the casing 7. A cooling water inlet 26 is formed below the cooling water chamber 25, and a cooling water outlet 27 is formed above the cooling water chamber 25.
Is formed. Cooling water is supplied from the gas engine 1 to a cooling water chamber 25 from a cooling water inlet 26, and the cooling water chamber 2
5 and is supplied from the cooling water outlet 27 to the lower cooling water passage 15b of the upstream heat exchange unit 10.

【0024】パイプユニット24の閉塞プレート21は
Oリング28でシールされ、さらにガスケット29を介
してカバー30がボルト31でケーシング7の側部7e
に締め付け固定されている。このカバー30で集合排気
室32が形成され、このカバー30の中央部に排気ガス
出口33が設けられ、またカバー30の下側にはドレン
水出口34が設けられている。
The closing plate 21 of the pipe unit 24 is sealed with an O-ring 28, and the cover 30 is further bolted to the side 7 e of the casing 7 via a gasket 29.
Is fixed. A collective exhaust chamber 32 is formed by the cover 30, an exhaust gas outlet 33 is provided at the center of the cover 30, and a drain water outlet 34 is provided below the cover 30.

【0025】パイプユニット24の他方はガスケット2
2がボルト35でケーシング7の側部7cに締め付け、
さらにガスケット22を介してカバー36がボルト37
でケーシング7の側部7cに締め付け固定されている。
このカバー36で連通集合排気室38が形成され、この
連通集合排気室38に上流側熱交換部10の下膨張室部
12bから排気ガスが導入される。この排気ガスは連通
集合排気室38からパイプユニット24のスクリューパ
イプ20を通って集合排気室32に導かれ、この集合排
気室32から排気ガス出口33より排出される。
The other of the pipe unit 24 is the gasket 2
2 is fastened to the side 7c of the casing 7 with the bolt 35,
Further, the cover 37 is connected to the bolt 37 via the gasket 22.
At the side 7c of the casing 7.
A communication collective exhaust chamber 38 is formed by the cover 36, and exhaust gas is introduced into the communication collective exhaust chamber 38 from the lower expansion chamber 12 b of the upstream heat exchange unit 10. The exhaust gas is led from the communicating collective exhaust chamber 38 to the collective exhaust chamber 32 through the screw pipe 20 of the pipe unit 24, and is discharged from the collective exhaust chamber 32 from the exhaust gas outlet 33.

【0026】このように、下流側熱交換部11の排気通
路がスクリューパイプ20で構成されているため、排気
ガスはスクリューパイプ20内を旋回流となって流れ、
排気ガスの乱流効果によって排気ガスの冷却水への熱伝
達率が高められ、高い熱交換効率が得られる。
As described above, since the exhaust passage of the downstream heat exchange section 11 is constituted by the screw pipe 20, the exhaust gas flows in the screw pipe 20 as a swirling flow.
The heat transfer rate of the exhaust gas to the cooling water is increased by the turbulence effect of the exhaust gas, and high heat exchange efficiency is obtained.

【0027】この排気ガス熱交換器4において、上流側
熱交換部10と、下流側熱交換部11とで、排気ガスが
冷却水との間で熱交換してこれが有する熱が有効に回収
されると同時に、その温度及び圧力が下げられて排気騒
音が低減される。この冷却水との間で熱交換を終えた排
気ガスは、図示しない排気サイレンサに導入され、ここ
で消音された後、最終的に大気中に放出される。
In the exhaust gas heat exchanger 4, the exhaust gas exchanges heat with the cooling water in the upstream heat exchange section 10 and the downstream heat exchange section 11 to effectively recover the heat of the exhaust gas. At the same time, the temperature and pressure are reduced, and exhaust noise is reduced. Exhaust gas that has completed heat exchange with the cooling water is introduced into an exhaust silencer (not shown), where it is silenced, and finally released into the atmosphere.

【0028】[0028]

【発明の効果】以上の説明で明らかな如く、請求項1記
載の発明は、排気ガス入口部に直ちに膨張室を設けた構
成であるので、排気ガスの排気抵抗が小さくなって排気
効率が向上するとともに、排気圧力が小さくなって消音
効果が向上し、さらに膨張室の表面積が大きくなってい
るので高い熱交換効率を得られる。 また、排気通路によ
って温度低下する前に膨張室を設け内側に多数のフィン
と突起があるので、排気ガス温度が高い状態で熱交換で
き、かつ熱交換のための表面積を大きく確保できる。
方、冷却水通路側となる膨張室外面は、平滑な形状と
し、膨張室外部が平滑な形状として冷却水の通路となっ
ているので、冷却水中へのエアー溜まりが生じ難くな
り、冷却部側トラブルを未然防止できるとともに、冷却
水側の熱交換はガス側の熱交換より熱伝達が格段に勝る
ので、表面積を確保するための複雑な形状を施す必要は
ない。
As is apparent from the above description, the invention according to claim 1 has a structure in which an expansion chamber is provided immediately at the exhaust gas inlet.
The exhaust resistance of the exhaust gas is reduced
Improves efficiency and reduces exhaust pressure to reduce noise
The effect is improved and the surface area of the expansion chamber is increased.
Therefore, high heat exchange efficiency can be obtained. Also, the exhaust passage
Before the temperature drops, provide an expansion chamber and a large number of fins inside.
And projections, so that heat
And a large surface area for heat exchange can be secured. one
On the other hand, the outer surface of the expansion chamber on the side of the cooling water passage has a smooth shape.
The outside of the expansion chamber becomes a smooth shape and becomes a passage for cooling water.
Air is hardly generated in the cooling water.
To prevent troubles on the cooling unit side,
Water side heat exchange is much better than gas side heat exchange
So it is not necessary to apply complicated shapes to secure the surface area
Absent.

【0029】また、請求項2記載の発明は、フィンと突
起の配置を排気ガスの流れに対し千鳥状に配置されてい
るので、熱交換効率が高くなる。
Further, the invention according to claim 2 is characterized in that
The stirrer is arranged in a zigzag pattern with respect to the exhaust gas flow.
Therefore, the heat exchange efficiency increases.

【0030】[0030]

【0031】[0031]

【図面の簡単な説明】[Brief description of the drawings]

【図1】排気ガス熱交換装置を組み付けたガスエンジン
の側面図である。
FIG. 1 is a side view of a gas engine to which an exhaust gas heat exchange device is assembled.

【図2】排気ガス熱交換装置の断面図である。FIG. 2 is a sectional view of an exhaust gas heat exchange device.

【図3】排気ガス熱交換装置の側面図である。FIG. 3 is a side view of the exhaust gas heat exchange device.

【図4】図2のIV-IV線に沿う断面図である。FIG. 4 is a sectional view taken along the line IV-IV in FIG. 2;

【図5】図2のV−V線に沿う断面図である。FIG. 5 is a sectional view taken along line VV in FIG. 2;

【図6】図2のVI-VI線に沿う断面図である。FIG. 6 is a sectional view taken along the line VI-VI of FIG. 2;

【図7】スクリューパイプの断面図である。FIG. 7 is a sectional view of a screw pipe.

【符号の説明】[Explanation of symbols]

4 排気ガス熱交換装置 10 上流側熱交換部 11 下流側熱交換部 12 膨張室 20 スクリューパイプ 4 Exhaust Gas Heat Exchanger 10 Upstream Heat Exchanger 11 Downstream Heat Exchanger 12 Expansion Chamber 20 Screw Pipe

フロントページの続き (56)参考文献 特開 平1−193014(JP,A) 特開 平5−39990(JP,A) 特開 平5−137944(JP,A) 実開 昭62−38411(JP,U) 実開 昭62−67916(JP,U) (58)調査した分野(Int.Cl.7,DB名) F28D 7/10 F01N 5/02 F25B 27/02 F28F 1/02 F28F 1/40 Continuation of the front page (56) References JP-A-1-193014 (JP, A) JP-A-5-39990 (JP, A) JP-A-5-137944 (JP, A) Jpn. , U) Shokai Sho 62-67916 (JP, U) (58) Fields investigated (Int. Cl. 7 , DB name) F28D 7/10 F01N 5/02 F25B 27/02 F28F 1/02 F28F 1/40

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】排気通路内を流れる排気ガスと、排気通路
外を流れる他の流体との間で熱交換を行なう排気ガス熱
交換装置において、 前記排気通路の排気ガス入口部に直接設けられた膨張室
内面には、フィンと突起を多数設ける一方、冷却水通路
側となる膨張室外面は、平滑な形状としたことを特徴と
する排気ガス熱交換装置。
1. An exhaust gas heat exchange device for exchanging heat between exhaust gas flowing in an exhaust passage and another fluid flowing outside the exhaust passage, wherein the heat exchanger is provided directly at an exhaust gas inlet of the exhaust passage . Expansion chamber
A large number of fins and projections are provided on the inner surface, while the cooling water passage
An exhaust gas heat exchange device characterized in that the outer surface of the expansion chamber on the side has a smooth shape .
【請求項2】前記膨張室内面に設けた多数のフィンと突
起を、排気ガス流れに対して、千鳥状に配置することを
特徴とする請求項1に記載の排気ガス熱交換装置。
And a plurality of fins provided on the inner surface of the expansion chamber.
To stagger the exhaust gas flow.
The exhaust gas heat exchange device according to claim 1, wherein:
JP25508293A 1993-09-17 1993-09-17 Exhaust gas heat exchanger Expired - Lifetime JP3343665B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25508293A JP3343665B2 (en) 1993-09-17 1993-09-17 Exhaust gas heat exchanger

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25508293A JP3343665B2 (en) 1993-09-17 1993-09-17 Exhaust gas heat exchanger

Publications (2)

Publication Number Publication Date
JPH0791775A JPH0791775A (en) 1995-04-04
JP3343665B2 true JP3343665B2 (en) 2002-11-11

Family

ID=17273886

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25508293A Expired - Lifetime JP3343665B2 (en) 1993-09-17 1993-09-17 Exhaust gas heat exchanger

Country Status (1)

Country Link
JP (1) JP3343665B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102008036222B3 (en) 2008-08-02 2009-08-06 Pierburg Gmbh Heat transfer unit for an internal combustion engine
US20100170666A1 (en) * 2009-01-07 2010-07-08 Zess Inc. Heat Exchanger and Method of Making and Using the Same
JP6094534B2 (en) * 2014-06-10 2017-03-15 トヨタ自動車株式会社 EGR passage

Also Published As

Publication number Publication date
JPH0791775A (en) 1995-04-04

Similar Documents

Publication Publication Date Title
JP4756585B2 (en) Heat exchanger tube for heat exchanger
US4694894A (en) Heat exchangers
FR2827372B1 (en) HEAT EXCHANGER OF EXHAUST GAS
US7866305B2 (en) Flow channel, heat exchanger, exhaust gas recirculation system, charge air supply system, use of a heat exchanger
JP3781386B2 (en) EGR gas cooling device
US3884297A (en) Annular flow heat exchanger
JP2004028535A (en) Exhaust heat exchanger
JP2006118436A (en) Bonnet for egr gas cooling device
JP2003222488A (en) Waste gas heat exchanging device
JP3343665B2 (en) Exhaust gas heat exchanger
JP3048188B2 (en) Air-cooled oil-free rotary compressor
JPH01501081A (en) Heat exchanger for fuel cooling
JPH1113549A (en) Egr cooler
JPH11193992A (en) Multitubular egr gas cooling device
JPH1113550A (en) Egr cooler
JPH11303688A (en) Egr cooler
RU2069779C1 (en) Gas-turbine engine
JP4631216B2 (en) Exhaust gas heat exchanger
JPH11287588A (en) Egr cooler
JP2511497Y2 (en) Waste heat recovery type exhaust muffler
JP2001073874A (en) Exhaust heat recovery device of gas engine
JPH11193993A (en) Multitubular egr gas-cooling device
JP2004077024A (en) Exhaust heat exchanger device
JP7038773B1 (en) Waste heat recovery adapter
JPH09250844A (en) Freezing cycle

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110830

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120830

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120830

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130830

Year of fee payment: 11

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250