JPH079084B2 - Runway fog removal method - Google Patents

Runway fog removal method

Info

Publication number
JPH079084B2
JPH079084B2 JP2372589A JP2372589A JPH079084B2 JP H079084 B2 JPH079084 B2 JP H079084B2 JP 2372589 A JP2372589 A JP 2372589A JP 2372589 A JP2372589 A JP 2372589A JP H079084 B2 JPH079084 B2 JP H079084B2
Authority
JP
Japan
Prior art keywords
fog
runway
advancing
equipment
local
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2372589A
Other languages
Japanese (ja)
Other versions
JPH02204513A (en
Inventor
勝行 筧
祥 金沢
浩 中林
義夫 土田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kawasaki Motors Ltd
Original Assignee
Kawasaki Jukogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Jukogyo KK filed Critical Kawasaki Jukogyo KK
Priority to JP2372589A priority Critical patent/JPH079084B2/en
Publication of JPH02204513A publication Critical patent/JPH02204513A/en
Publication of JPH079084B2 publication Critical patent/JPH079084B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Road Paving Structures (AREA)
  • Traffic Control Systems (AREA)

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、黒潮上の高温多湿の空気が親潮上を通過する
際に発生する海霧等の移流霧が連続的に流入する空港の
滑走路等において、滑走路上の霧の濃度を低減して航空
機の安全な離着陸を可能ならしめる滑走路の霧除去方法
に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial field of application] The present invention relates to the gliding of an airport in which advective fog such as sea fog generated when hot and humid air over the Kuroshio flows over Oyashio continuously. The present invention relates to a method for removing fog on a runway that reduces the concentration of fog on the runway and enables safe takeoff and landing of an aircraft.

[従来の技術] 第11図は従来技術の例で、J.AIRCRAFT誌VOL.8,No.2に記
載されたCO2レーザーを利用した空港の霧除去方法の一
部破断斜視外観図である。第11図において、51は滑走
路、52はCO2レーザー発振部、53は分配トンネル、54はC
O2レーザービーム、55は反射鏡である。滑走路51の両側
部に滑走路51に沿って平行に分配トンネル53が開設され
ており、該分配トンネル53内にはそれぞれCO2レーザー
発振部52が配設されている。分配トンネル53の上部には
滑走路51の平面と同一レベルにグレーチングが敷設され
ており、航空機の離着陸に支障を来さないようにしてい
る。それぞれの分配トンネル53内には反射鏡55が複数個
ずつ取設されている。航空機が離着陸を行なう際、必要
な視程と範囲を定め、該範囲内のCO2レーザー発振部を
稼動してCO2レーザービーム54を発振させる。発振され
たCO2レーザービーム54は反射鏡55によって滑走路51上
の霧に対して必要な照射面積が得られるように拡散され
るとともに、CO2レーザービーム54が分配トンネル53の
上部に敷設されたグレーチングを通じて霧中に照射され
る際に、グレーチングが損傷されない強さのレベルまで
弱められる。このようにして滑走路51上の霧中に照射さ
れたCO2レーザービーム54は霧を形成している微細水粒
子中に吸収され、熱運動を励起して微細水粒子を蒸発さ
せる。これによってCO2レーザービーム54照射部の霧は
消散し良好な視程が得られる。
[Prior Art] FIG. 11 is an example of the prior art, and is a partially cutaway perspective view of a method of removing fog at an airport using a CO 2 laser described in J.AIRCRAFT magazine VOL.8, No.2. . In FIG. 11, 51 is a runway, 52 is a CO 2 laser oscillator, 53 is a distribution tunnel, and 54 is C.
O 2 laser beam, 55 is a reflecting mirror. Distribution tunnels 53 are provided in parallel on both sides of the runway 51 along the runway 51, and CO 2 laser oscillators 52 are arranged in the distribution tunnels 53, respectively. A grating is laid on the distribution tunnel 53 at the same level as the plane of the runway 51 so as not to interfere with the takeoff and landing of the aircraft. A plurality of reflecting mirrors 55 are installed in each distribution tunnel 53. When the aircraft takes off and landing, the necessary visibility and range are defined, and the CO 2 laser oscillating unit within the range is activated to oscillate the CO 2 laser beam 54. The oscillated CO 2 laser beam 54 is diffused by the reflecting mirror 55 so as to obtain a necessary irradiation area for the fog on the runway 51, and the CO 2 laser beam 54 is laid on the distribution tunnel 53. When illuminated in the fog through the grating, the grating is weakened to a level where it is not damaged. In this way, the CO 2 laser beam 54 radiated in the mist on the runway 51 is absorbed in the fine water particles forming the mist and excites thermal motion to evaporate the fine water particles. As a result, the fog at the irradiation portion of the CO 2 laser beam 54 is dissipated and good visibility can be obtained.

[発明が解決しようとする課題] このように上記従来の技術においても、一応は滑走路上
の霧を局部的に消散させ、航空機の目視による離着陸を
行なわしめる可能性を有するものであったと見做され
る。
[Problems to be Solved by the Invention] As described above, even in the above-described conventional technology, it is considered that there is a possibility that the fog on the runway may be locally dissipated to allow the aircraft to take off and land visually. To be done.

しかしながら上記従来の技術においては、滑走路上の霧
に直接CO2レーザービームを照射し、該レーザービーム
のエネルギーのみによって微細水粒子の蒸発を行なって
いる。従って滑走路上の霧が輻射霧等ほぼ静止状態にあ
る霧に対しては短時間の照射によって消散させることが
可能であり、それに消費するエネルギーの値も小さい
が、海霧等の移流霧に対しては航空機の離着陸に必要な
期間を通じて、連続的に照射を行なう必要があることか
ら、それに消費するエネルギーが非常に大きく不経済で
あるという不具合を有していた。
However, in the above conventional technique, the mist on the runway is directly irradiated with the CO 2 laser beam, and the fine water particles are evaporated only by the energy of the laser beam. Therefore, it is possible to dissipate the mist on the runway that is almost stationary, such as the radiant mist, by irradiating it for a short time. However, since it is necessary to continuously irradiate the aircraft for the period required for takeoff and landing, the energy consumed by it has to be extremely large and uneconomical.

[課題を解決するための手段] 本発明は、このような不具合点に関し、従来よりも少な
い設備投資で、かつ従来よりも著しく低い設備稼動費に
よって連続的に流入して来る移流霧に対して効率的にこ
れを消散し、航空機の目視による離着陸を安全に行なわ
しめ得る滑走路の霧除去方法を抵抗するものである。そ
の手段は前期特許請求の範囲に記載した滑走路の霧除去
方法によって達成される。
[Means for Solving the Problems] The present invention relates to such a problem, with respect to advancing fog that continuously flows in with a smaller capital investment than the conventional one and a significantly lower facility operating cost than the conventional one. It dissipates this efficiently and resists the runway de-fog method that allows safe visual takeoff and landing of aircraft. The means is achieved by the runway mist removal method described in the previous claims.

すなわち、 1.移流霧が流入する空港において、航空機滑走路の端部
に霧局部消散設備と黒色吸熱体とを配設した滑走路の霧
除去方法。
That is, 1. At the airport where advancing fog flows in, a method of removing fog from a runway in which a local fog dissipating facility and a black heat absorber are arranged at the end of the aircraft runway.

2.霧局部消散設備がCO2レーザー設備である請求項1.記
載の滑走路の霧除去方法。
2. The method for removing fog from a runway according to claim 1, wherein the local fog dispersal equipment is a CO 2 laser equipment.

3.霧局部消散設備が圧縮空気噴出設備である請求項1.記
載の滑走路の霧除去方法。
3. The method for removing mist from a runway according to claim 1, wherein the local fog dispersal equipment is compressed air jetting equipment.

4.霧局部消散設備が遠赤外線放射設備である請求項1.記
載の滑走路の霧除去方法。
4. The method for removing fog from a runway according to claim 1, wherein the local fog dispersal equipment is far infrared radiation equipment.

5.霧局部消散設備が水粒子散布設備である請求項1.記載
の滑走路の霧除去方法。
5. The method for removing fog from a runway according to claim 1, wherein the local fog dispersal equipment is water particle spray equipment.

である。以下本発明の作用等について実施例に基づいて
説明する。
Is. Hereinafter, the operation and the like of the present invention will be described based on Examples.

[実施例] 第1〜8図は本発明に基づく実施例を示す図、第9〜10
図は本発明に基づく作用効果の概念を説明する図で、第
1図は移流霧の局部消散手段にCO2レーザービームを利
用した場合の滑走路の一部破断側面図、第2図は第1図
の一部破断斜視図、第3図は移流霧の局部消散手段に圧
縮空気を利用した場合の滑走路の一部破断側面図、第4
図は第3図の一部破断斜視図、第5図は移流霧の局部消
散手段に遠赤外線放射素子を利用した場合の滑走路の一
部破断側面図、第6図は第5図の一部破断斜視図、第7
図は移流霧の局部消散手段に水粒子散布を利用した場合
の滑走路の一部破断側面図、第8図は第7図の一部破断
斜視図、第9図は本発明に基づく霧除去方法を実施した
場合の滑走路上の移流霧の低減状態を示す平面図、第10
図は第9図の一部破断側面図である。
[Embodiment] FIGS. 1 to 8 are views showing an embodiment based on the present invention, and FIGS.
FIG. 1 is a diagram for explaining the concept of action and effect based on the present invention. FIG. 1 is a partially cutaway side view of a runway when a CO 2 laser beam is used as a local extinguishing fog dissipating means, and FIG. 1 is a partially cutaway perspective view, and FIG. 3 is a partially cutaway side view of a runway when compressed air is used as a local dispersal means for advancing fog, FIG.
FIG. 5 is a partially cutaway perspective view of FIG. 3, FIG. 5 is a partially cutaway side view of a runway in the case of using a far infrared radiation element as a local extinguishing fog dissipating means, and FIG. Part broken perspective view, 7th
The figure shows a partially broken side view of the runway in the case of using water particle spraying for the local dispersal means of advancing fog, FIG. 8 is a partially broken perspective view of FIG. 7, and FIG. Fig. 10 is a plan view showing a reduced state of advancing fog on the runway when the method is carried out.
The figure is a partially cutaway side view of FIG.

第1〜10図において、1は滑走路、2は移流霧、3は移
流霧流れ方向、4は黒色吸熱体、5は太陽光、6はCO2
レーザービーム、7はCO2レーザー電源部、8はCO2レー
ザー発振部、9は圧縮空気、10は空気噴出ノズル、11は
空気圧縮機、12は吸気ダクト、13は吸気口、14は遠赤外
線放射パネル、15は遠赤外線、16は電源部、17は散布
水、18は水散布ノズル、19は水ポンプ、20は貯水槽、21
は散布水回収溝、22は霧局部消散設備である。北日本太
平洋沿岸地方等において見られる移流霧は、黒潮上の高
温多湿の空気が気流に乗って移流し、低い水温の親潮上
を通過する際に冷却され水分が凝縮して生ずる海霧が5m
/s以下の速度の南風に乗って流入して来る場合が多く通
常特定の方向性を有している。本発明は移流霧の上記の
ごとき特性を利用し、特に空港内滑走路上の移流霧を対
象として、従来よりも経済的な設備と効率の良い稼動方
法によって航空機の離着陸に必要な視程を得るものであ
る。
1 to 10, 1 is a runway, 2 is an advancing fog, 3 is an advancing fog flow direction, 4 is a black heat absorber, 5 is sunlight, 6 is CO 2
Laser beam, 7 CO 2 laser power supply part, 8 CO 2 laser oscillation part, 9 compressed air, 10 air jet nozzle, 11 air compressor, 12 intake duct, 13 intake port, 14 far infrared Radiant panel, 15 far infrared rays, 16 power source, 17 spray water, 18 water spray nozzle, 19 water pump, 20 water tank, 21
Is a spray water recovery ditch, and 22 is a fog local dissipation facility. The advective fog seen in the Pacific coastal region of northern Japan is 5 m of sea fog that is generated when hot and humid air over the Kuroshio flows along with the air current and is cooled as it passes over Oyashio, which has a low water temperature.
In many cases, a south wind is introduced at a speed of less than / s, and it usually has a specific direction. The present invention utilizes the above-mentioned characteristics of advection fog to obtain the visibility required for takeoff and landing of an aircraft by using economical equipment and a more efficient operation method than before, especially for advection fog on an airport runway. Is.

まず第1〜2図は第1の実施例を示すもので、滑走路1
の移流霧2流入側端部に移流霧2にCO2レーザービーム
6を照射する設備を配設するとともに前期CO2レーザー
ビーム6照射設備の下流側に黒色吸熱体4を敷設した場
合の一部破断側面図および一部破断斜視図である。滑走
路1上に移流霧2が移流霧流れ方向3に流入している気
象下で航空機を目視によって離着陸させる際、まずCO2
レーザー電源部7およびCO2レーザー発振部8等によっ
て構成されているCO2レーザーシステムを稼動して、CO2
レーザービーム6を移流霧2中に放射する。CO2レーザ
ーは波長10.6μmの赤外線で霧を形成する微細水粒子中
に吸収されて熱運動を励起し、水粒子の温度を上昇させ
て蒸発させる。それに伴ってCO2レーザーシステムの上
方には移流霧2の切れ目が形成され、該切れ目の上方か
ら太陽光5が滑走路1上に照射される。CO2レーザーシ
ステムの下流側地表面には黒色吸熱体4が敷設されてお
り、前記切れ目はCO2レーザービーム6の放射部に近い
程明瞭であるからその部分では照射される太陽光も強
く、黒色アルマイト加工を施したアルミ板等を表面材料
として構成される黒色吸熱体4は太陽光5を吸収して昇
温、蓄熱する。一定時間CO2レーザービーム6を放射
し、移流霧2を消散させるとともに太陽光5の照射によ
って黒色吸熱体4に吸熱を行なわせた状態でCO2レーザ
ービーム6の照射を停止する。移流霧2は気流に乗って
常に風下側に移流していることにより人為的に作られた
移流霧2の切れ目もそれに伴って下流側に移動し、CO2
レーザーシステムおよび黒色吸熱体4の上部は新たに流
入した移流霧2によって覆われる。この時点で黒色吸熱
体4は十分吸熱した状態にあるから該黒色吸熱体4から
上部の移流霧2に対して接触あるいは輻射によって熱が
伝達される。移流霧は雰囲気温度が数度(2〜3℃)上
昇することによって消散する性状を有することから、黒
色吸熱体4の上方の移流霧の内地表面に近い部分は昇温
し消散する。この状態を持続して黒色吸熱体4からの放
熱による移流霧2の消散効果が低下した時点で再びCO2
レーザーシステムを稼動して移流霧2中にCO2レーザー
ビーム6を照射し、移流霧2に切れ目を発生させる。発
生した移流霧2の切れ目は気流に従って風下側に移動す
るが、その間にも切れ目上方から照射される太陽光5が
移流霧2の切れ目の側断面を加熱することにより移流霧
の昇温、蒸発が継続され、遂には分断された移流霧2は
消滅するか、あるいは滑走路1上の濃度が航空機の目視
による離着陸が可能な程度にまで低減される。
First, FIGS. 1 and 2 show the first embodiment.
Part of the case where the equipment for irradiating the advancing fog 2 with the CO 2 laser beam 6 is installed at the end of the inflow side fog 2 and the black endothermic body 4 is laid downstream of the CO 2 laser beam 6 irradiating equipment in the previous term. It is a broken side view and a partially broken perspective view. When the aircraft visually takes off and landes under the weather where advective fog 2 is flowing in advective fog flow direction 3 on runway 1, first CO 2
Running a CO 2 laser system configured by a laser power supply unit 7 and the CO 2 laser oscillator unit 8 or the like, CO 2
A laser beam 6 is emitted into the advancing fog 2. The CO 2 laser is absorbed by fine water particles forming a mist with infrared rays having a wavelength of 10.6 μm, excites thermal motion, raises the temperature of the water particles and evaporates. Along with this, a cut of the advancing fog 2 is formed above the CO 2 laser system, and sunlight 5 is irradiated onto the runway 1 from above the cut. A black endothermic body 4 is laid on the ground surface on the downstream side of the CO 2 laser system, and the cuts are clearer as they are closer to the emission part of the CO 2 laser beam 6, so that the sunlight that is irradiated at that part is also strong, The black heat absorbing body 4, which is composed of an aluminum plate or the like subjected to black alumite processing as a surface material, absorbs the sunlight 5 to heat up and store heat. The CO 2 laser beam 6 is emitted for a certain period of time, the advancing fog 2 is dissipated, and the irradiation of the CO 2 laser beam 6 is stopped while the black heat absorbing body 4 is absorbing heat by the irradiation of the sunlight 5. Since the advective fog 2 is always advancing to the leeward side along with the airflow, the break of the advective fog 2 artificially created also moves to the downstream side accordingly, and CO 2
The upper part of the laser system and the black heat sink 4 is covered by the newly advancing advancing mist 2. At this point, the black heat absorbing body 4 is in a state of sufficiently absorbing heat, so that heat is transferred from the black heat absorbing body 4 to the upper advancing mist 2 by contact or radiation. Since the advancing fog has a property of being dissipated when the ambient temperature rises by several degrees (2 to 3 ° C.), the portion of the advancing fog above the black heat absorbing body 4 near the inner ground surface is heated and dissipated. When this state is maintained and the effect of dissipating the advancing fog 2 due to heat radiation from the black heat absorber 4 decreases, CO 2
The laser system is operated to irradiate the advancing fog 2 with the CO 2 laser beam 6 to generate a break in the advancing fog 2. The break of the generated advection fog 2 moves to the leeward side according to the air flow, but during that time, the sunlight 5 irradiated from above the break heats the side cross section of the break of the advection fog 2 to raise the temperature and evaporate the advection fog. Then, the separated advancing fog 2 disappears, or the concentration on the runway 1 is reduced to such an extent that the aircraft can visually take off and land.

第3〜4図は第2の実施例を示すもので、滑走路1の移
流霧2流入側端部に配設する移流霧2中に太陽光5導入
用切れ目を形成させる手段として、圧縮空気を噴霧させ
る方法を採用した例である。滑走路1上に移流霧流れ方
向3から流入して来る移流霧2に太陽光5導入のための
切れ目を形成させる際まず空気圧縮機11を稼動して吸気
口13から大気を吸引し、吸引ダクト12を通じて空気圧縮
機11に導いて加圧した後空気噴出ノズル10から移流霧2
中に圧縮空気9を噴出させる。噴出された圧縮空気9は
霧を形成する水滴を飛散させるとともに、噴出に伴う上
昇流の発生によって乱流を生じさせ、移流霧2の気層の
上層部高温乾燥空気と下層部の低温湿潤空気とを混合さ
せることによって下層部の低温湿潤空気温度を上昇さ
せ、霧を形成する微細水粒子を蒸発させて消散し、移流
霧2中に太陽光5導入のための切れ目を形成させるもの
である。圧縮空気噴出ノズルの下流側地表面上に敷設さ
れた黒色吸熱体4の太陽光5の吸収および移流霧2に及
ぼす作用と、圧縮空気の稼動手順については前記の第1
の実施例の場合と同様である。
FIGS. 3 to 4 show the second embodiment, in which compressed air is used as a means for forming a break for introducing the sunlight 5 in the advection fog 2 arranged at the end of the advection fog 2 inflow side of the runway 1. This is an example of adopting the method of spraying. When forming a break for introducing the sunlight 5 in the advancing fog 2 flowing in from the advancing fog flow direction 3 on the runway 1, first, the air compressor 11 is operated to suck the air from the intake port 13 and suck it. After being guided to the air compressor 11 through the duct 12 and pressurized, the advancing mist 2 from the air jet nozzle 10
Compressed air 9 is ejected into the inside. The jetted compressed air 9 scatters water droplets forming a mist, and also causes a turbulent flow due to the generation of an upward flow due to the jetting, and the high-temperature dry air in the upper layer of the advection mist 2 and the low-temperature wet air in the lower layer. The temperature of the low temperature moist air in the lower layer is increased by mixing with and to evaporate and dissipate the fine water particles forming the mist to form a break for introducing the sunlight 5 in the advancing mist 2. . Regarding the action of the black heat absorbing body 4 laid on the ground surface on the downstream side of the compressed air jet nozzle on the absorption of the sunlight 5 and the advancing fog 2 and the operating procedure of the compressed air, refer to the first section.
This is the same as the case of the embodiment.

第5〜6図は第3の実施例を示すもので、滑走路1の移
流霧2流入側端部に配設する移流霧2中に太陽光5導入
用切れ目を形成させる手段として、遠赤外線を照射させ
る方法を採用した例である。滑走路1の移流霧2流入側
端部に、遠赤外線領域において高い放射率を有する例え
ばセラミックスあるいは塗料等を表面にコーティングし
たパネル内にニクロム線を取設した構造等を有する遠赤
外線放射システムを配設し、電源部16を起動して前記ニ
クロム線に通電すること等によって発生した熱エネルギ
はセラミックスあるいは塗料等に伝えられ、該セラミッ
クスの表面から遠赤外線が上部の移流霧2中に照射され
る。遠赤外線の照射を受けた移流霧2は、昇温、蒸発し
消散するため移流霧2中に切れ目が生ずる。該切れ目か
ら照射される太陽光5によって遠赤外線放射システムの
風下側地表面上に配設された黒色吸熱体4の吸熱、昇温
が行なわれるほか、前記切れ目から広い断面に太陽光5
の照射を受ける移流霧5は、気流に乗って風下側に移流
しながら昇温、蒸発し、その濃度を著しく低減する。黒
色吸熱体4の作用と遠赤外線放射システムの稼動手順に
ついては前記の第1の実施例の場合と同様である。
FIGS. 5 to 6 show the third embodiment, in which far infrared rays are used as a means for forming a break for introducing the sunlight 5 in the advection fog 2 arranged at the end of the advection fog 2 inflow side of the runway 1. This is an example of adopting a method of irradiating with. A far-infrared radiation system having a structure in which a nichrome wire is installed in a panel whose surface has been coated with, for example, ceramics or paint having a high emissivity in the far-infrared region, is provided at the end of the runway 1 on the inflow side mist 2 inflow side. The thermal energy generated by arranging and activating the power supply unit 16 to energize the nichrome wire is transferred to the ceramics or paint, and far infrared rays are radiated from the surface of the ceramics into the upper advancing mist 2. It The advection fog 2 that has been irradiated with far-infrared rays rises in temperature, evaporates, and dissipates, so that a break occurs in the advection fog 2. The sunlight 5 radiated from the cuts absorbs heat and raises the temperature of the black heat absorber 4 arranged on the leeward ground surface of the far-infrared radiation system.
The advection fog 5 that is irradiated with the temperature rises and evaporates while advancing to the leeward side of the air stream, and the concentration thereof is significantly reduced. The operation of the black heat absorber 4 and the operating procedure of the far infrared radiation system are the same as in the case of the first embodiment.

第7〜8図は第4の実施例を示すもので、滑走路1の移
流霧2流入側端部に配設する移流霧2中に太陽光5導入
用切れ目を形成させる手段として、水を散布させる方法
を採用した例である。滑走路1の移流霧2流入側端部
に、水散布ノズル18、水ポンプ19、貯水槽20および散布
水回収溝21等によって構成される水散布システムを配設
する。該水散布システムの風下側地表面上には黒色アル
マイト加工を施したアルミ板等を表面材料として構成さ
れた黒色吸熱体4が敷設されている。滑走路1内に移流
霧流れ方向3から移流霧2が流入して来た際、まず水ポ
ンプ19を稼動して貯水槽20内の水を加圧し、上部の水散
布ノズル18から上方の移流霧2中に噴出させる。噴出さ
れた水の微細粒子は移流霧2中を落下する際に霧流を併
合して落下することにより移流霧2の濃度は著しく低減
される。水散布ノズル18の風上側の地表面には散布水回
収溝21が敷設されており、水散布ノズル18から噴出され
た散布水17および散布水17に併合されて落下した霧粒を
地表面上で集合して貯水槽20に回収する。これによって
水散布システム周辺に水滞留部が生じるのを防止すると
ともに、散布水を循環使用することにより節水および経
費低減を行ない得る。散布水回収溝の上面は第8図に示
す如く開放状態のままでも良いが安全確保の目的で地表
面と同一レベルを維持し得るよう鉄格子状蓋等を敷設し
てもよい。
FIGS. 7 to 8 show the fourth embodiment, in which water is used as a means for forming a break for introducing the sunlight 5 in the advection fog 2 arranged at the end of the advection fog 2 inflow side of the runway 1. This is an example of adopting a method of spraying. At the end of the runway 1 on the advancing mist 2 inflow side, a water spraying system constituted by a water spraying nozzle 18, a water pump 19, a water storage tank 20, a sprayed water recovery groove 21 and the like is arranged. On the leeward side ground surface of the water spraying system, a black heat absorber 4 constituted by using a black alumite-treated aluminum plate or the like as a surface material is laid. When the advancing fog 2 flows into the runway 1 from the advancing fog flow direction 3, first the water pump 19 is operated to pressurize the water in the water storage tank 20, and the advection from the upper water spray nozzle 18 to the upper part. Eject into fog 2. When the fine particles of water ejected fall in the advancing mist 2, they merge with the fog flow and fall, whereby the concentration of the advancing mist 2 is significantly reduced. A spray water recovery groove 21 is laid on the ground surface on the windward side of the water spray nozzle 18, and spray water 17 ejected from the water spray nozzle 18 and fog particles that have been merged with the spray water 17 and dropped on the ground surface. And collect in the water tank 20. As a result, it is possible to prevent water from accumulating around the water spraying system, and to save water and reduce costs by circulating the sprayed water. The upper surface of the spray water collecting groove may be left open as shown in FIG. 8, but an iron grid-like lid may be laid so as to maintain the same level as the ground surface for the purpose of ensuring safety.

第9〜10図は前記の第1〜4の実施例において説明した
ごとき本発明に基づく霧除去方法を実施した場合の滑走
路1上の移流霧2の低減状態を示す図である。第9〜10
図において滑走路1上に移流霧2が移流霧流れ方向3か
ら流入して来た際、まず前記各実施例において説明した
CO2レーザービーム、圧縮空気、遠赤外線放射素子、水
粒子等を利用した霧局部消散設備22を稼動して該霧局部
消散設備22上の移流霧2を消散して移流霧2中に太陽光
5導入用の切れ目を形成させる。霧局部消散設備22の風
下側には黒色吸熱体4が敷設されているから形成された
前記太陽光5導入用切れ目から照射された太陽光5によ
って黒色吸熱体4は昇温、蓄熱する。霧局部消散設備22
を一定時間稼動して十分な巾の移流霧2の切れ目と、黒
色吸熱体4の十分な蓄熱を行なったのち霧局部消散設備
22の稼動を停止する。移流霧2は常に気流に乗って風下
側に移流していることにより人為的に形成された移流霧
2の切れ目もそれに伴って下流側に移動し、霧局部消散
設備22および黒色吸熱体4の上部は新たに流入した移流
霧2によって覆われる。この時点で黒色吸熱体4は十分
吸熱した状態にあるから該黒色吸熱体4から上部の移流
霧2に対して接触あるいは輻射によって熱が伝達され
る。移流霧を含む全ての霧は発生原因の如何に係わらず
雰囲気温度が数度(2〜3℃)上昇することによって消
散する性状を有することから、黒色吸熱体4の上方の移
流霧の内地表面に近い部分は昇温し消散する。この状態
を持続して黒色吸熱体4からの放熱による移流霧2の消
散効果が低下した時点で再び霧局部消散設備を稼動して
移流霧2中に切れ目を発生させる。発生した移流霧2の
切め目は気流に従って風下側に移動するがその間にも切
れ目上方から照射される太陽光5が移流霧2の切れ目の
側断面を加熱することにより移流霧の昇温、蒸発が継続
され、遂には分断された移流霧2は消滅するか、あるい
は滑走路1上の濃度が航空機の目視による離着陸が可能
な程度にまで低減される。
FIGS. 9 to 10 are views showing a reduced state of the advancing fog 2 on the runway 1 when the fog removing method according to the present invention as described in the first to fourth embodiments is carried out. 9th-10th
In the figure, when the advancing fog 2 flows into the runway 1 from the advancing fog flow direction 3, first, the above-mentioned embodiments are described.
Operate the fog local extinction equipment 22 using CO 2 laser beam, compressed air, far infrared radiation element, water particles, etc. to extinguish the advection fog 2 on the fog local extinction equipment 22 and sunlight in the advection fog 2 5 Form a slit for introduction. The black heat absorber 4 is laid on the leeward side of the fog local heat dissipation facility 22, and the black heat absorber 4 is heated and stores heat by the sunlight 5 emitted from the cut for introducing the sunlight 5. Local fog dispersal equipment 22
After operating for a certain period of time, the gap of the advancing fog 2 of sufficient width and the sufficient heat storage of the black heat absorber 4 are stored, and then the fog local dissipation facility
Stop 22 operations. The advancing fog 2 is always advancing to the leeward side along with the air current, so that the break of the advancing fog 2 artificially formed also moves to the downstream side, and the fog local extinguishing equipment 22 and the black heat absorber 4 The upper part is covered by the newly advancing advancing mist 2. At this point, the black heat absorbing body 4 is in a state of sufficiently absorbing heat, so that heat is transferred from the black heat absorbing body 4 to the upper advancing mist 2 by contact or radiation. All fog, including advection fog, has the property of being dissipated when the ambient temperature rises by several degrees (2 to 3 ° C) regardless of the cause of occurrence, so the inner surface of the advection fog above the black heat absorber 4 The part near the temperature rises and dissipates. When this state is maintained and the effect of dissipating the advancing fog 2 due to the heat radiation from the black heat absorber 4 is reduced, the fog local extinction equipment is operated again to generate a break in the advancing fog 2. The notch of the generated advective fog 2 moves to the leeward side according to the air flow, but during that time, the sunlight 5 irradiated from above the break heats the side cross section of the break of the advective fog 2 to raise the temperature of the advective fog, Evaporation continues, and finally the separated advective fog 2 disappears, or the concentration on the runway 1 is reduced to such an extent that the aircraft can visually take off and land.

[発明の効果] 本発明は上記実施例において説明したように、移流霧が
流入する空港において、滑走路の移流霧流入側端部に霧
局部消散設備と黒色吸熱体とを配設することにより、従
来技術におけるがごとく滑走路に沿って多数の霧消散設
備を配設して、しかも該霧消散設備を航空機の離着陸の
期間中連続的に稼動するという多額の設備費と稼動費を
必要とすることなく、1組の霧消散設備と間歇的な稼動
を行ない、太陽光のエネルギーを有効に活用することに
よって簡潔な構成と低廉な稼動費によって滑走路の移流
霧を消散あるいは低減し、目視による安全な航空機の離
着陸を可能にし得るという効果を奏する。
[Effects of the Invention] As described in the above embodiments, the present invention provides a fog local dissipation facility and a black heat absorber at the advancing fog inflow side end of a runway at an airport where advancing fog flows in. , A large amount of equipment cost and operating cost of arranging a large number of fog dispersal equipment along the runway as in the prior art and operating the fog dispersive equipment continuously during the takeoff and landing of the aircraft are required. Without using a single set of fog dispersal equipment and intermittent operation, the energy of sunlight is effectively used to dissipate or reduce the advancing fog on the runway with a simple structure and low operating costs. This has the effect of enabling safe takeoff and landing of aircraft.

【図面の簡単な説明】[Brief description of drawings]

第1図は移流霧の局部消散手段にCO2レーザービームを
利用した場合の滑走路の一部破断側面図、第2図は第1
図の一部破断斜視図、第3図は移流霧の局部消散手段に
圧縮空気を利用した場合の滑走路の一部破断側面図、第
4図は第3図の一部破断斜視図、第5図は移流霧の局部
消散手段に遠赤外線放射素子を利用した場合の滑走路の
一部破断側面図、第6図は第5図の一部破断斜視図、第
7図は移流霧の局部消散手段に水粒子散布を利用した場
合の滑走路の一部破断側面図、第8図は第7図の一部破
断斜視図、第9図は本発明に基づく霧除去方法を実施し
た場合の滑走路上の移流霧の低減状態を示す平面図、第
10図は第9図の一部破断側面図である。 第11図は従来技術の例である。 1……滑走路、2……移流霧、3……移流霧流れ方向、
4……黒色吸熱体、5……太陽光、6……CO2レーザー
ビーム、7……CO2レーザー電源部、8……CO2レーザー
発振部、9……圧縮空気、10……空気噴出ノズル、11…
…空気圧縮機、12……吸気ダクト、13……吸気口、14…
…遠赤外線放射パネル、15……遠赤外線、16……電源
部、17……散布水、18……水散布ノズル、19……水ポン
プ、20……貯水槽、21……散布水回収溝、22……霧局部
消散設備、51……滑走路、52……CO2レーザー発振部、5
3……分配トンネル、54……CO2レーザービーム、55……
反射鏡。
Fig. 1 is a partially cutaway side view of the runway when a CO 2 laser beam is used as a means for locally dissipating advective fog, and Fig. 2 is
FIG. 3 is a partially cutaway perspective view of the drawing, FIG. 3 is a partially cutaway side view of the runway when compressed air is used as a local dispersal means for advancing fog, and FIG. 4 is a partially cutaway perspective view of FIG. Fig. 5 is a partially cutaway side view of the runway in the case where a far infrared radiation element is used as a local extinguishing fog dispersal means, Fig. 6 is a partially broken perspective view of Fig. 5, and Fig. 7 is a local part of advection fog. FIG. 8 is a partially cutaway side view of the runway in the case of using water particle spraying for the extinguishing means, FIG. 8 is a partially cutaway perspective view of FIG. 7, and FIG. 9 is a case where the fog removing method according to the present invention is carried out. Plan view showing the reduced state of advancing fog on the runway,
FIG. 10 is a partially cutaway side view of FIG. FIG. 11 is an example of the prior art. 1 ... runway, 2 ... advection fog, 3 ... advection fog flow direction,
4 ...... black heat absorbers, 5 ...... sunlight, 6 ...... CO 2 laser beam, 7 ...... CO 2 laser power supply unit, 8 ...... CO 2 laser oscillator unit, 9 ...... compressed air, 10 ...... air ejection Nozzle, 11 ...
… Air compressor, 12 …… Intake duct, 13 …… Intake port, 14…
Far-infrared radiation panel, 15-far-infrared radiation, 16-power supply, 17-spray water, 18-spray nozzle, 19-water pump, 20-water tank, 21-spray water collection groove , 22 …… local fog dissipating equipment, 51 …… runway, 52 …… CO 2 laser oscillator, 5
3 …… Distribution tunnel, 54 …… CO 2 laser beam, 55 ……
Reflector.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 土田 義夫 千葉県野田市二ツ塚118番地 川崎重工業 株式会社野田工場内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Yoshio Tsuchida 118 Futatsuka, Noda City, Chiba Prefecture Kawasaki Heavy Industries Ltd. Noda Factory

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】移流霧が流入する空港において、航空機滑
走路の端部に霧局部消散設備と黒色吸熱体とを配設した
ことを特徴とする滑走路の霧除去方法。
1. A method of removing fog from a runway, characterized by disposing a local fog dissipating facility and a black heat absorber at an end of an aircraft runway at an airport into which advancing fog flows.
【請求項2】霧局部消散設備がCO2レーザー設備である
請求項1.記載の滑走路の霧除去方法。
2. The runway fog removal method according to claim 1, wherein the local fog dispersal equipment is a CO 2 laser equipment.
【請求項3】霧局部消散設備が圧縮空気噴出設備である
請求項1.記載の滑走路の霧除去方法。
3. The method for removing fog from a runway according to claim 1, wherein the local fog dissipating equipment is compressed air jetting equipment.
【請求項4】霧局部消散設備が遠赤外線放射設備である
請求項1.記載の滑走路の霧除去方法。
4. The method of removing fog from a runway according to claim 1, wherein the local fog dispersal equipment is far infrared radiation equipment.
【請求項5】霧局部消散設備が水粒子散布設備である請
求項1.記載の滑走路の霧除去方法。
5. The method for removing fog from a runway according to claim 1, wherein the local fog dispersal equipment is water particle spray equipment.
JP2372589A 1989-02-03 1989-02-03 Runway fog removal method Expired - Lifetime JPH079084B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2372589A JPH079084B2 (en) 1989-02-03 1989-02-03 Runway fog removal method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2372589A JPH079084B2 (en) 1989-02-03 1989-02-03 Runway fog removal method

Publications (2)

Publication Number Publication Date
JPH02204513A JPH02204513A (en) 1990-08-14
JPH079084B2 true JPH079084B2 (en) 1995-02-01

Family

ID=12118294

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2372589A Expired - Lifetime JPH079084B2 (en) 1989-02-03 1989-02-03 Runway fog removal method

Country Status (1)

Country Link
JP (1) JPH079084B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101217797B1 (en) * 2010-03-15 2013-01-02 방부현 fog removal device for runway

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2043493B1 (en) * 1991-05-13 1995-11-01 Fernandez Marcelino Fernandez OPTICAL METHOD FOR METEOROLOGICAL CONTROL
US5556029A (en) * 1994-09-12 1996-09-17 Griese; Gary B. Method of hydrometeor dissipation
JP2003055927A (en) * 2001-08-13 2003-02-26 Yuji Abe Sprinkled runway reducing landing cost
KR20040097100A (en) * 2004-10-27 2004-11-17 최은성 a dence fog removal system and method of the runway and road

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101217797B1 (en) * 2010-03-15 2013-01-02 방부현 fog removal device for runway

Also Published As

Publication number Publication date
JPH02204513A (en) 1990-08-14

Similar Documents

Publication Publication Date Title
CA1327997C (en) Laser ice removal system
US6206325B1 (en) Onboard aircraft de-icing using lasers
US5823474A (en) Aircraft ice detection and de-icing using lasers
US5459771A (en) Water laser plasma x-ray point source and apparatus
US20140113797A1 (en) Device and method for cutting brittle member and cut-out brittle member
US3584412A (en) Stable mist generation method and apparatus, the products and uses thereof
US5323861A (en) Method for protecting an area, in particular against fire, and equipment for the implementation thereof
JP4512747B2 (en) Method for generating radiation light from laser plasma, and laser plasma radiation light generating apparatus using the method
JPH079084B2 (en) Runway fog removal method
EP2145149A1 (en) A delivery head system for optimizing heat transfer to a contaminated surface
CA3107501A1 (en) Preventing radio and light signal transmission loss through a transmission surface due to weather, environmental and operational conditions using active flow control actuators
JPH05506289A (en) How to disperse fog, cut ice and melt snow
DE102011102804A1 (en) Aircraft has defrosting device for defrosting aerodynamic surfaces of aircraft, where defrosting device has ice detection unit arranged at fuselage of aircraft
US20100000977A1 (en) Method for removal of content-based stripe and the like on a substrate and equipment thereof
JPH079085B2 (en) Runway fog removal method
JP4283417B2 (en) Fog elimination method
JPS6131514A (en) Method and apparatus for dispersing fog
RU2825497C1 (en) Windmill blade with anti-icing system
Reilly High flux propagation through the atmosphere
US6053479A (en) Self-aligning vortex snow fence
JPH02204512A (en) Fog removing method from runway and its vicinity
Boĭko et al. Observation of supersonic radiation waves in gases generated by CO2 laser radiation
DE102005025854B4 (en) mowing machine
RU2827527C1 (en) Method for preventing and control of icing of wind turbine blades
RU2671069C1 (en) Method for preventing acing of aircraft wings with the use of laser anti-icing system