JPH0790362B2 - Joining method for cemented carbide and steel - Google Patents

Joining method for cemented carbide and steel

Info

Publication number
JPH0790362B2
JPH0790362B2 JP33645490A JP33645490A JPH0790362B2 JP H0790362 B2 JPH0790362 B2 JP H0790362B2 JP 33645490 A JP33645490 A JP 33645490A JP 33645490 A JP33645490 A JP 33645490A JP H0790362 B2 JPH0790362 B2 JP H0790362B2
Authority
JP
Japan
Prior art keywords
cemented carbide
steel
stress relaxation
joining
hammer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP33645490A
Other languages
Japanese (ja)
Other versions
JPH04210869A (en
Inventor
陽一郎 米田
善恒 要
英司 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP33645490A priority Critical patent/JPH0790362B2/en
Publication of JPH04210869A publication Critical patent/JPH04210869A/en
Publication of JPH0790362B2 publication Critical patent/JPH0790362B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Pressure Welding/Diffusion-Bonding (AREA)
  • Ceramic Products (AREA)

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は超硬合金と鋼の接合方法に関する。TECHNICAL FIELD The present invention relates to a method for joining cemented carbide and steel.

(従来の技術) 一般的な衝撃式破砕機(インパクトクラッシャ)は第1
図に示す概略断面図のように構成されている。例えば、
衝撃式破砕機1の側部上方に設置された原料供給口2よ
り破砕室3内に投入された原石は、主軸4のまわりに回
転する回転ロータ5の外周に固設されたホルダ10にボル
ト締めされた超硬合金−鋼接合ハンマ6によって衝撃破
砕される。このハンマ6に当たって跳ね飛ばされた原石
は、破砕室3の上部に設けられた第1反発板7に取付け
られたライナ7aに衝突して破砕され、跳ね返ってくる原
石は、更に回転してくる次のハンマ6によって打撃破砕
される。そして、跳ね飛ばされた原石は、破砕室3の上
部に設けられた第2反発板8に設けられたライナ8aによ
ってより一層細かく破砕される。
(Prior Art) A general impact type crusher (impact crusher) is the first
It is configured as in the schematic cross-sectional view shown in the figure. For example,
The rough stone put into the crushing chamber 3 through the raw material supply port 2 installed above the side of the impact type crusher 1 is bolted to a holder 10 fixed on the outer periphery of a rotary rotor 5 rotating around a main shaft 4. Impact crushing is performed by the cemented carbide-steel joint hammer 6 that has been tightened. The rough stones hit by the hammer 6 collide with the liner 7a attached to the first repulsion plate 7 provided at the upper part of the crushing chamber 3 to be crushed, and the rough stones rebounding further rotate. The hammer 6 hits and crushes it. Then, the bounced rough stones are further finely crushed by the liner 8a provided on the second repulsion plate 8 provided at the upper portion of the crushing chamber 3.

衝撃式破砕機ハンマ6の超硬合金チップと鋼製合金を接
合する場合には、従来、銅を応力緩和材として用い、銀
ろうをインサートしたフラックスろう付が行われてき
た。この場合、加熱は高周波該導加熱一般的で、大気中
で接合が行われるのが一般的である。
In the case of joining the cemented carbide tip of the hammer 6 of the impact type crusher and the steel alloy, flux brazing in which silver braze is inserted and copper is used as a stress relaxation material has been conventionally performed. In this case, heating is generally conducted by high frequency induction heating, and joining is generally performed in the atmosphere.

また、超硬合金と鋼の接合に関しては、「溶接学会論文
集」第6巻(1988)第4号p.499〜504には、銅を応力緩
和材として銅ろうをインサートし、ろう付する方法が報
告されており、「溶接学会論文集」第3巻(1985)第4
号p.105〜109には、ニッケル基合金を応力緩和材として
用い、固相拡散接合する方法が報告されている。
Regarding joining of cemented carbide and steel, copper brazing is used as a stress relaxation material and copper brazing is inserted and brazed in "Welding Society Papers" Vol. 6 (1988) No. 4 p.499-504. A method has been reported, "Welding Society Papers," Vol. 3, (1985), No. 4.
Nos. P.105 to 109 report a method of solid phase diffusion bonding using a nickel-based alloy as a stress relaxation material.

(発明が解決しようとする課題) 前述のような応力緩和材を用いて熱膨張差に起因する熱
応力を緩和する方法においては、超硬合金と応力緩和材
との接合界面、鋼と応力緩和材との接合界面がいずれも
健全でなければならない。
(Problems to be Solved by the Invention) In the method for relaxing the thermal stress caused by the difference in thermal expansion using the stress relaxation material as described above, the bonding interface between the cemented carbide and the stress relaxation material, the steel and the stress relaxation material are used. All joint interfaces with the material must be sound.

この点、衝撃式破砕機のハンマでは、上述のように、応
力緩和材として銅を用い、銀基ろう材をインサートし、
フラックスを用いた大気中でのトーチろう付法や高周波
ろう付法が行われており、この場合、BAg−4(40%Ag
−30%Cu−28%Zn−2%Ni)などの銀ろうがよく用いら
れる。
In this respect, in the hammer of the impact type crusher, as described above, copper is used as the stress relaxation material, and the silver-based brazing material is inserted,
Torch brazing method and high frequency brazing method in the atmosphere using flux are used. In this case, BAg-4 (40% Ag
Silver solder such as -30% Cu-28% Zn-2% Ni) is often used.

しかしながら、このような銀ろうは超硬合金に対する濡
れ性が悪く、かつ接合部が比較的大きくなるとフラック
スが残留し易く、健全な接合体が得られない。また、ト
ーチろう付や高周波ろう付では接合時の接合部の温度が
不均一になり易く、接合は人手に頼っているため、接合
部の品質にバラツキが生じ易く、これもまた健全な接合
体が得られない要因となっている。また、超硬合金の一
成分であるCo中に銀ろうの成分のCuが拡散するとその部
分が脆くなり易く、接合強度が低くなり、更にバラツキ
も大きくなる。
However, such a silver solder has poor wettability with a cemented carbide, and when the joint is relatively large, the flux is likely to remain and a sound joint cannot be obtained. In addition, in torch brazing and high frequency brazing, the temperature of the joint during welding tends to be non-uniform, and since the welding relies on humans, the quality of the joint tends to vary, which also results in a sound welded body. Is a factor that cannot be obtained. Further, if Cu, which is a component of the silver braze, diffuses into Co, which is one of the components of the cemented carbide, that portion easily becomes brittle, the joint strength becomes low, and the variation becomes large.

このため、従来方法で接合した超硬合金−鋼接合ハンマ
は、使用中に超硬合金が大きく剥離したり、大きく剥離
しないまでも未接合部に起因する超硬合金の微小剥離の
ため、寿命が短いという問題点が発生している。またこ
のハンマは消耗品であるが、このようなハンマでは寿命
予測がつかないという問題点もある。
Therefore, the cemented carbide-steel joining hammer joined by the conventional method has a long service life because the cemented carbide is largely separated during use, or even if it is not largely separated, the cemented carbide is minutely separated due to the unbonded portion. There is a problem that is short. Further, although this hammer is a consumable item, there is a problem in that such a hammer cannot predict the service life.

また、銅を応力緩和材として銅ろう付する場合、ニッケ
ル基合金を応力緩和材として用い、固相拡散により接合
する方法は、接合温度が高いため、熱応力が大きく、実
用規模の超硬合金−鋼接合ハンマを得ることができない
という問題点がある。
When copper brazing is used as a stress relaxation material, a nickel-based alloy is used as the stress relaxation material, and the method of joining by solid phase diffusion is a cemented carbide with a large thermal stress and a large scale due to the high joining temperature. There is a problem that a steel joining hammer cannot be obtained.

本発明は、上記従来技術の欠点を解消して、超硬合金−
鋼接合体の接合界面が健全であると共に接合強度が高
く、剥離などがない接合体が得られる方法を提供するこ
とを目的とするものである。
The present invention eliminates the above-mentioned drawbacks of the prior art, and
It is an object of the present invention to provide a method for obtaining a joined body in which the joining interface of a steel joined body is sound and the joining strength is high and peeling does not occur.

(課題を解決するための手段) 前記目的を達成するため、本発明者は、応力緩和材とし
て銅を用いて超硬合金と鋼を接合する方法において、健
全な接合界面が得られるインサート材及び接合条件につ
いて鋭意研究を重ねた結果、ここに本発明をなしたもの
である。
(Means for Solving the Problems) In order to achieve the above-mentioned object, the present inventor uses a copper alloy as a stress relaxation material in a method of joining a cemented carbide and steel, and an insert material by which a sound joining interface can be obtained. The present invention has been made here as a result of intensive research on joining conditions.

すなわち、本発明は、超硬合金と鋼を、インサート材と
して応力緩和材と銀基ろう材を用いて接合する方法にお
いて、上記超硬合金と銅からなる応力緩和材との間にTi
を含有する銀基ろう材をインサートすると共に、上記応
力緩和材と上記鋼との間に銀基ろう材をインサートした
後、上記超硬合金、鋼及びインサート材からなる被接合
体を炉中に置き、次いで、この炉を5×10-2Torr以下の
真空下或いは不活性ガス雰囲気下に保ちながら780〜950
℃の温度に加熱することにより、上記インサート材を溶
融して上記超硬合金と上記鋼を接合することを特徴とす
る超硬合金と鋼の接合方法を要旨とするものである。
That is, the present invention is a method of joining a cemented carbide and steel using a stress relaxation material and a silver-based brazing filler metal as an insert material, in which Ti between the cemented carbide and the stress relaxation material made of copper is used.
While inserting a silver-based brazing material containing, and after inserting the silver-based brazing material between the stress relaxation material and the steel, the cemented carbide, steel and the joined body consisting of the insert material in the furnace Then, place the furnace in a vacuum of 5 × 10 -2 Torr or less or in an inert gas atmosphere at 780-950.
A gist of a method for joining a cemented carbide and a steel is to melt the insert material to join the cemented carbide and the steel by heating to a temperature of ° C.

以下に本発明を更に詳述する。The present invention will be described in more detail below.

(作用) まず、本発明では、前述のように、超硬合金と銅からな
る応力緩和材との間にTiを含有する銀基ろう材をインサ
ートし、また該応力緩和材と鋼との間に銀基ろう材をイ
ンサートする。
(Operation) First, in the present invention, as described above, a silver-based brazing material containing Ti is inserted between the cemented carbide and the stress relaxation material made of copper, and the stress relaxation material and the steel are separated from each other. Insert the silver-based brazing material into.

ここで、接合すべき一方の被接合材である超硬合金とし
ては、WC炭化物とCoの複合材料などの種々のものが可能
であり、また他方の被接合材である鋼としても炭素鋼、
合金鋼又は工具鋼等々の種々のものか可能であることは
言うまでもない。また応力緩和材としての銅の材質、厚
さ等は特に制限されるものではない。また超硬合金、鋼
の形状も制限されるものではない。
Here, as the cemented carbide which is one of the materials to be joined, various things such as a composite material of WC carbide and Co are possible, and also carbon steel as the steel which is the other material to be joined,
It goes without saying that a variety of alloy steels or tool steels are possible. The material and thickness of copper as the stress relaxation material are not particularly limited. Further, the shapes of cemented carbide and steel are not limited.

インサート材としては、銀基ろう材を用いるが、少なく
とも、超硬合金と銅からなる応力緩和材との間にインサ
ートする銀基ろう材はTiを含有している銀基ろう材であ
ることが必要である。これは超硬合金と鋼の接合率を高
め、剥離を防止するためである。銀基ろう材及びTiを含
有する銀基ろう材の成分組成は特に制限されない。
As the insert material, a silver-based brazing material is used, but at least the silver-based brazing material to be inserted between the cemented carbide and the stress relaxation material made of copper is a silver-containing brazing material containing Ti. is necessary. This is to increase the bonding rate between the cemented carbide and steel and prevent peeling. The component composition of the silver-based brazing material and the silver-containing brazing material containing Ti is not particularly limited.

そして、この超硬合金−鋼−インサート材の積層構造を
有する被接合体を特定条件の雰囲気(真空又は不活性ガ
ス雰囲気)の炉中で特定の温度に加熱することにより、
該インサート材を溶融し、超硬合金と鋼を接合するので
ある。
Then, by heating the cemented carbide-steel-bonded object having a laminated structure of insert material to a specific temperature in a furnace under an atmosphere (vacuum or inert gas atmosphere) of specific conditions,
The insert material is melted and the cemented carbide and steel are joined together.

ここで、雰囲気が真空の場合は、真空度は5×10-2Torr
以下の高真空である必要がある。望ましくは1×10-3To
rr以下である。真空度が5×10-2Torrを超えるとインサ
ート材に含まれるTiが酸化され、健全な接合が困難にな
る。
Here, when the atmosphere is vacuum, the degree of vacuum is 5 × 10 -2 Torr
The following high vacuum is required. Desirably 1 × 10 -3 To
It is less than or equal to rr. If the degree of vacuum exceeds 5 × 10 -2 Torr, Ti contained in the insert material will be oxidized, making it difficult to perform sound joining.

雰囲気が不活性ガス雰囲気の場合は、不活性ガス圧力は
1500Torr以下であることが望ましい。これは、ガス圧力
がそれ以上に高くなると不活性ガスが接合界面に流入
し、接合部にボイドが増えて望ましくないためである。
更に、不活性ガス圧を760Torr以下に保つ場合にはロー
タリーポンプで対応でき、設備面で安価である。
If the atmosphere is an inert gas atmosphere, the inert gas pressure is
It is preferably 1500 Torr or less. This is because when the gas pressure becomes higher than that, the inert gas flows into the bonding interface, and voids increase in the bonding portion, which is not desirable.
Further, when the inert gas pressure is maintained at 760 Torr or less, a rotary pump can be used, which is inexpensive in terms of equipment.

上記真空中又は不活性ガス雰囲気中での加熱温度(接合
温度)は780〜950℃の範囲とする必要がある。望ましく
は800℃以上900℃以下である。加熱温度が780℃未満の
場合は超硬合金に対するインサート材の濡れ性が悪くな
り、また950℃を超えると超硬合金とインサート材の反
応が過剰となり、健全な接合が困難となる。
The heating temperature (bonding temperature) in the vacuum or in the inert gas atmosphere needs to be in the range of 780 to 950 ° C. Desirably, the temperature is 800 ° C or higher and 900 ° C or lower. If the heating temperature is lower than 780 ° C, the wettability of the insert material with respect to the cemented carbide is deteriorated, and if the heating temperature is higher than 950 ° C, the reaction between the cemented carbide and the insert material becomes excessive and sound bonding becomes difficult.

一例として、本発明法で接合した超硬合金−鋼接合ハン
マを衝撃式破砕機に取付け、砕石試験を行ったところ、
接合率{(超音波探傷試験で欠陥エコーが観察されない
面積)/(全接合面積)×100}がほぼ100%であり、第
3図に示すように超硬合金製チップが摩耗してきても、
接合部端は常に接合されているため、超硬合金が割れる
こともなく、長時間の使用が可能であった。
As an example, when a cemented carbide-steel joining hammer joined by the method of the present invention was attached to an impact crusher and a crushed stone test was conducted,
The bonding rate {(area where no defect echo is observed in ultrasonic flaw detection test) / (total bonding area) x 100} is almost 100%, and even if the cemented carbide tip is worn as shown in Fig. 3,
Since the edges of the joint were always joined, the cemented carbide did not crack and could be used for a long time.

このことからしても、本発明法で得られる接合体が優れ
た性能を有するのは以下の理由によるものと考えられ
る。
Even from this, it is considered that the joined body obtained by the method of the present invention has excellent performance for the following reason.

まず、本発明による接合では、超硬合金と応力緩和材と
の間にTiを含む銀基ろう材を使用しているため、該接合
界面にはTiCが生成している。このTiCが拡散バリヤとな
り、超硬合金の一成分であるCo中に銀ろう成分のCuが拡
散することを防ぎ、結果的に脆い部分を作らないため、
安定的な接合が可能である。
First, in the joining according to the present invention, since the silver-based brazing material containing Ti is used between the cemented carbide and the stress relaxation material, TiC is generated at the joining interface. This TiC acts as a diffusion barrier, preventing Cu, which is a silver brazing component, from diffusing into Co, which is a component of cemented carbide, and as a result does not create a brittle portion,
Stable joining is possible.

更に本発明による接合は、真空中又は不活性ガス雰囲気
中で炉中ろう付で行われるので、ボイド等が殆ど発生し
ない。これらの良い性能が総合されるため、接合部の品
質が安定しており、不良率はほぼ0%であり、歩留りは
非常に高い。
Furthermore, since the joining according to the present invention is performed by brazing in a furnace in a vacuum or in an inert gas atmosphere, almost no voids are generated. Since these good performances are combined, the quality of the joint is stable, the defective rate is almost 0%, and the yield is very high.

一方、従来法(フラックス使用の高周波ろう付)により
接合したハンマの接合率は通常50〜60%であるため、第
4図に示すように、超硬合金製チップが摩耗してくる
と、接合部端に未接合部が現れるため、この部分に石が
当たると、超硬合金に大きな曲げ応力がかかり、超硬合
金が微小剥離(欠ける)してしまう。そのため、ハンマ
の寿命が短い。また、このような未接合部は様々な部分
に生じるため、寿命予測も難しい。更にフラックス使用
の高周波ろう付は手作業であるので、時には接合率が10
〜30%程度のものもできることがある。このような低接
合率のハンマを使用して砕石すると、使用開始直後に超
硬合金チップが台金より剥離してしまい、大問題が発生
する。それを避けるため超音波探傷試験により全数検査
が行なわれているが、不良率が10%程度あり、超音波探
傷のコストも付加され、高価なものになってしまう。
On the other hand, since the welding rate of the hammer joined by the conventional method (high-frequency brazing using flux) is usually 50 to 60%, as shown in Fig. 4, when the cemented carbide tip wears, Since a non-bonded part appears at the end of the part, if a stone hits this part, a large bending stress will be applied to the cemented carbide, and the cemented carbide will be minutely peeled (broken). Therefore, the life of the hammer is short. Further, since such unbonded portions occur in various portions, it is difficult to predict the life. Furthermore, since high-frequency brazing using flux is a manual process, the joining rate is sometimes 10%.
It may be possible to make something up to 30%. When a hammer with such a low bonding rate is used to crush stones, the cemented carbide chip will peel off from the base metal immediately after the start of use, causing a serious problem. In order to avoid this, 100% inspection is performed by the ultrasonic flaw detection test, but the defect rate is about 10%, and the cost of ultrasonic flaw detection is added, which makes it expensive.

なお、本発明による超硬合金と鋼の接合方法は衝撃式破
砕機ハンマ用超硬合金チップと鋼製台金の接合に適用で
きるが、これのみに制限されず、他の用途における同様
の接合体の製造にも適用できることは言うまでもない。
The method for joining cemented carbide and steel according to the present invention can be applied to joining cemented carbide chips for impact crusher hammers and steel base metal, but is not limited to this and similar joining in other applications is possible. It goes without saying that it can also be applied to body manufacturing.

(実施例) 次に本発明の実施例を示す。(Example) Next, the Example of this invention is shown.

実施例1 48mm×48mmの超硬合金(G2)チップと台金の間に、応力
緩和材として銅を用い、超硬合金と応力緩和材の間に72
%Ag−27%Cu−1%Tiろう材をインサートし、並びに鋼
と応力緩和材の間に72%Ag−27%Cu−1%Tiろう材又は
72%Ag−28%Cuろう材をインサートして、第2図に示す
積層構造とし、第1表に示す条件で真空炉中にて10分間
加熱し、接合した。
Example 1 Copper was used as a stress relaxation material between a 48 mm × 48 mm cemented carbide (G2) chip and a base metal, and 72 was used between the cemented carbide and the stress relaxation material.
% Ag-27% Cu-1% Ti brazing material is inserted, as well as 72% Ag-27% Cu-1% Ti brazing material or between the steel and the stress relaxation material.
72% Ag-28% Cu brazing material was inserted into the laminated structure shown in FIG. 2, and the layers were heated in a vacuum furnace for 10 minutes under the conditions shown in Table 1 and joined.

真空炉の作業手順は以下のとおりである。The working procedure of the vacuum furnace is as follows.

被接合体を炉中にセッティングする。The object to be joined is set in the furnace.

ロータリーポンプで10-3Torr台まで真空引きする。Evacuate to the level of 10 -3 Torr with a rotary pump.

ディフュジョンポンプで10-5Torr台まで真空引きす
る。
Evacuate to 10 -5 Torr level with a diffusion pump.

加熱を開始する。Start heating.

(注)表中の真空度は接合温度に達したときの真空度で
ある。炉によっては加熱により金属蒸気やCにより真空
度が悪くなる場合があるが、このときは分圧が酸素でな
いためTiは酸化されない。
(Note) The degree of vacuum in the table is the degree of vacuum when the joining temperature is reached. Depending on the furnace, the degree of vacuum may be deteriorated by heating with metal vapor or C, but Ti is not oxidized at this time because the partial pressure is not oxygen.

得られた超硬合金−鋼ハンマ接合体について、超音波探
傷試験を行い、その後衝撃式破砕機に接合ハンマを取付
け、砕石試験を行った。使用した石は硬砂岩である。
An ultrasonic flaw detection test was performed on the obtained cemented carbide-steel hammer bonded body, and then the bonded hammer was attached to an impact type crusher, and a crushed stone test was performed. The stone used is hard sandstone.

試験結果を第1表に示すが、本発明例の場合、超音波探
傷試験での接合率はいずれも92%以上であり、健全な接
合がなされていることがわかる。また砕石試験の結果で
は、超硬合金と鋼が剥離したものは1個もなく、すべて
超硬合金の摩耗により使用できなくなったものであっ
た。寿命は1500時間から2500時間で、後述する比較例1
に比らべて3倍以上の超寿命化が図られた。
The test results are shown in Table 1, and in the case of the example of the present invention, the bonding rate in the ultrasonic flaw detection test is 92% or more, and it can be seen that sound bonding is achieved. Further, in the result of the crushed stone test, there was no one in which the cemented carbide and the steel were separated from each other, and all were unusable due to the wear of the cemented carbide. Life is 1500 hours to 2500 hours, and Comparative Example 1 described later
Compared to the above, the life was extended to more than 3 times.

なお、第1表中で真空度或いは加熱温度が本発明範囲外
の比較例では、超硬合金が剥離し、寿命が極めて短い。
In addition, in the comparative example in which the degree of vacuum or the heating temperature is outside the range of the present invention in Table 1, the cemented carbide is peeled off and the life is extremely short.

実施例2 48mm×48mmの超硬合金(G2)チップと台金の間に、応力
緩和材として銅を用い、超硬合金と応力緩和材との間に
72%Ag−27%Cu−1%Tiろう材をインサートし、鋼と応
力緩和材との間に72%Ag−27%Cu−1%Tiろう材又は72
%Ag−28%Cuろう材をインサートして、第2図に示す積
層構造とし、第2表に示す条件で不活性雰囲気中にて20
分間加熱し、接合した。
Example 2 Copper was used as a stress relaxation material between the 48 mm × 48 mm cemented carbide (G2) chip and the base metal, and between the cemented carbide and the stress relaxation material.
72% Ag-27% Cu-1% Ti brazing filler metal or 72% Ag-27% Cu-1% Ti brazing filler metal is inserted between the steel and the stress relaxation material.
% Ag-28% Cu brazing filler metal is inserted to obtain the laminated structure shown in Fig. 2 and under the conditions shown in Table 2 in an inert atmosphere.
Heated for minutes and joined.

不活性雰囲気炉の作業手順は以下のとおりである。The working procedure of the inert atmosphere furnace is as follows.

(1)Ar雰囲気炉(760Torr以上の場合): 被接合体を炉中にセッティングする。(1) Ar atmosphere furnace (for 760 Torr or more): Set the objects to be bonded in the furnace.

ロータリーポンプで10-3Torr台まで真空引きする。Evacuate to the level of 10 -3 Torr with a rotary pump.

炉を締めきる。Turn off the furnace.

Arガスを炉中に入れる。Ar gas is put into the furnace.

炉内が設定値以上の圧力になった時点でArガスを外へ
たれ流す。
Ar gas is spilled outside when the pressure in the furnace reaches the set value or higher.

加熱を開始する。Start heating.

(2)Ar雰囲気炉(760Torr未満の場合;キャリアガス
法): 被接合体を炉中にセッティングする。
(2) Ar atmosphere furnace (when less than 760 Torr; carrier gas method): The object to be bonded is set in the furnace.

ロータリーポンプで10-3Torr台まで真空引きする。Evacuate to the level of 10 -3 Torr with a rotary pump.

ロータリーポンプで炉を引きながら、Arガスを炉内に
入れる。
Ar gas is introduced into the furnace while pulling the furnace with a rotary pump.

Arガス量、真空引の能力を調節することにより、10To
rr、10-2Torrで平衡状態を保つようにする。
By adjusting the amount of Ar gas and the ability of vacuuming, 10To
Try to maintain equilibrium at rr, 10 -2 Torr.

加熱を開始する。Start heating.

得られた超硬合金−鋼ハンマ接合体について、超音波探
傷試験を行い、その後衝撃式破砕機に接合ハンマを取付
け、砕石試験を行った。使用した石は安山岩と硬砂岩で
ある。
An ultrasonic flaw detection test was performed on the obtained cemented carbide-steel hammer bonded body, and then the bonded hammer was attached to an impact type crusher, and a crushed stone test was performed. The stones used are andesite and hard sandstone.

試験結果を第2表に示すが、本発明例の場合、超音波探
傷試験での接合率はいずれも95%以上(安山岩)又は92
%以上(硬砂岩)であり、健全な接合がなされているこ
とがわかる。また砕石試験の結果では、超硬合金と鋼が
剥離したものは1個もなく、すべて超硬合金の摩耗によ
り使用できなくなったものであった。寿命は2400〜3000
時間(安山岩)又は1600〜1800時間(硬砂岩)で、後述
する比較例2に比らべて倍以上の長寿命化が図られた。
The test results are shown in Table 2. In the case of the present invention example, the bonding rate in the ultrasonic flaw detection test is 95% or more (andesite) or 92%.
% Or more (hard sandstone), it can be seen that a healthy joint is made. Further, in the result of the crushed stone test, there was no one in which the cemented carbide and the steel were separated from each other, and all were unusable due to wear of the cemented carbide. Life is 2400-3000
By the time (andesite) or 1600 to 1800 hours (hard sandstone), the life was extended more than twice as compared with Comparative Example 2 described later.

比較例1 48mm×48mmの超硬合金(G2)チップと台金の間に、応力
緩和材として銅を用い、超硬合金と応力緩和材の間、並
びに鋼と応力緩和材の間にそれぞれ40%Ag−30%Cu−28
%Zn−2%Niろう材をインサートして、第2図に示す積
層構造として、フラックスを用いて大気中にて高周波ろ
う付した。
Comparative Example 1 Copper was used as a stress relaxation material between a 48 mm × 48 mm cemented carbide (G2) chip and a base metal, and 40 times between the cemented carbide and the stress relaxation material and between the steel and the stress relaxation material. % Ag-30% Cu-28
% Zn-2% Ni brazing material was inserted, and high-frequency brazing was performed in the atmosphere using flux as a laminated structure shown in FIG.

得られた超硬合金−鋼ハンマ接合体について、超音波探
傷試験を行い、その後衝撃式破砕機に接合ハンマを取付
け、砕石試験を行った。使用した石は硬砂岩である。
An ultrasonic flaw detection test was performed on the obtained cemented carbide-steel hammer bonded body, and then the bonded hammer was attached to an impact type crusher, and a crushed stone test was performed. The stone used is hard sandstone.

試験結果を第3表に示すが、超音波探傷試験での接合率
は最低20%で、40〜50%のものが多かった。また砕石試
験の結果では、接合率が20%のハンマは使用開始後、僅
か10時間で超硬合金と鋼が剥離し、使用不可能となっ
た。残りのハンマは200時間程度から超硬合金の微小剥
離が始まり、200〜600時間で超硬合金が殆どなくなり使
用できなくなり、前述の実施例1の本発明例に比較して
1/3以下の寿命しかなかった。
The test results are shown in Table 3, and the bonding rate in the ultrasonic flaw detection test was at least 20%, and most were 40 to 50%. Also, according to the results of the crushed stone test, the hammer having a bonding rate of 20% became unusable because the cemented carbide and the steel were separated from each other within 10 hours after the start of use. With respect to the remaining hammer, the micro-peeling of the cemented carbide starts from about 200 hours, and the cemented carbide almost disappears in 200 to 600 hours, so that the hammer cannot be used.
The life was less than 1/3.

比較例2 48mm×48mmの超硬合金(G2)チップと台金の間に、応力
緩和材として銅を用い、超硬合金と応力緩和材の間、並
びに鋼と応力緩和材の間にそれぞれ50%Ag−15%Cu−16
%Zn−16%Cd−3%Niろう材をインサートして、第2図
に示す積層構造として、フラックスを用いて大気中にて
高周波ろう付した。
Comparative Example 2 Copper was used as a stress relaxation material between a 48 mm × 48 mm cemented carbide (G2) chip and a base metal, and 50 was used between the cemented carbide and the stress relaxation material and between the steel and the stress relaxation material. % Ag-15% Cu-16
% Zn-16% Cd-3% Ni brazing material was inserted, and high-frequency brazing was performed in the atmosphere using flux as a laminated structure shown in FIG.

得られた超硬合金−鋼ハンマ接合体について、超音波探
傷試験を行い、その後衝撃式破砕機に接合ハンマを取付
け、砕石試験を行った。使用した石は硬砂岩である。
An ultrasonic flaw detection test was performed on the obtained cemented carbide-steel hammer bonded body, and then the bonded hammer was attached to an impact type crusher, and a crushed stone test was performed. The stone used is hard sandstone.

試験結果を第3表に示すが、超音波探傷試験での接合率
は最低15%で、40〜50%のものが多かった。また砕石試
験の結果では、接合率が15%のハンマは使用開始後、僅
か2時間で超硬合金と鋼が剥離し、使用不可能となっ
た。残りのハンマは200時間程度から超硬合金の微小剥
離が始まり、200〜600時間で超硬合金が殆どなくなって
使用できなくなり、前述の実施例2の本発明例に比較し
て1/4以下の寿命しかなかった。
The test results are shown in Table 3, and the bonding rate in the ultrasonic flaw detection test was at least 15%, and most of them were 40 to 50%. Further, according to the result of the crushed stone test, the hammer having the bonding rate of 15% became unusable because the cemented carbide and the steel were separated from each other within 2 hours after the start of use. In the remaining hammer, the micro-delamination of the cemented carbide starts from about 200 hours, and the cemented carbide almost disappears in 200 to 600 hours, so that it cannot be used, and it is 1/4 or less as compared with the example of the present invention of Example 2 described above. Had only a lifetime.

(発明の効果) 以上詳述したように、本発明によれば、超硬合金と鋼を
応力緩和材を介して接合するに際し、応力緩和材として
銅を用い、特定のインサート材を用いると共に接合条件
を規制したので、接合面が健全であり、接合強度が高
く、使用時に剥離などがない接合体が得られる。したが
って、特に衝撃式破砕機用ハンマに適用した場合、長寿
命で、安定的な超硬合金−鋼製ハンマが得られる。
(Effects of the Invention) As described in detail above, according to the present invention, when joining a cemented carbide and steel via a stress relaxation material, copper is used as the stress relaxation material, and a specific insert material is used and bonded. Since the conditions are regulated, it is possible to obtain a bonded body in which the bonding surface is sound, the bonding strength is high, and there is no peeling during use. Therefore, particularly when applied to a hammer for an impact type crusher, a stable cemented carbide-steel hammer having a long life can be obtained.

【図面の簡単な説明】[Brief description of drawings]

第1図は衝撃式破砕機の一例を示す側断面図、 第2図は被接合体の構造を示す断面図、 第3図は本発明の方法で接合した接合ハンマの接合部の
摩耗状態を示す説明図、 第4図は従来方法で接合した接合ハンマの接合部の摩耗
状態を示す説明図である。 1……衝撃式破砕機、2……原料投入口、3……破砕
室、4……主軸、5……回転ロータ、6……ハンマ、7
……第1反発板、7a……ライナ、8……第2反発板、8a
……ライナ、10……ホルダ、21……超硬合金製チップ、
22……超硬合金−応力緩和材間ろう材、23……応力緩和
材、24……応力緩和材−鋼間ろう材、25……鋼製台金、
26……未接合部、27……岩石。
FIG. 1 is a side sectional view showing an example of an impact type crusher, FIG. 2 is a sectional view showing a structure of an article to be joined, and FIG. 3 is a wear state of a joining portion of a joining hammer joined by the method of the present invention. FIG. 4 is an explanatory view showing the worn state of the joint portion of the joint hammer joined by the conventional method. 1 ... Impact type crusher, 2 ... Raw material inlet, 3 ... Crushing chamber, 4 ... Main shaft, 5 ... Rotating rotor, 6 ... Hammer, 7
...... First repulsion plate, 7a …… Liner, 8 …… Second repulsion plate, 8a
...... Liner, 10 …… Holder, 21 …… Cemented carbide insert,
22 …… Brazed material between cemented carbide and stress relaxation material, 23 …… Stress relaxation material, 24 …… Stress relaxation material-steel brazing material, 25 …… Steel base metal,
26 …… Unjoined part, 27 …… Rock.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】超硬合金と鋼を、インサート材として応力
緩和材と銀基ろう材を用いて接合する方法において、上
記超硬合金と銅からなる応力緩和材との間にTiを含有す
る銀基ろう材をインサートすると共に、上記応力緩和材
と上記鋼との間に銀基ろう材をインサートした後、上記
超硬合金、鋼及びインサート材からなる被接合体を炉中
に置き、次いで、この炉を5×10-2Torr以下の真空下或
いは不活性ガス雰囲気下に保ちながら780〜950℃の温度
に加熱することにより、上記インサート材を溶融して上
記超硬合金と上記鋼を接合することを特徴とする超硬合
金と鋼の接合方法。
1. A method of joining a cemented carbide and a steel by using a stress relaxation material and a silver-based brazing material as an insert material, wherein Ti is contained between the cemented carbide and the stress relaxation material made of copper. While inserting the silver-based brazing material, after inserting the silver-based brazing material between the stress relaxation material and the steel, the cemented carbide, the steel and the joined object consisting of the insert material is placed in a furnace, then By heating this furnace to a temperature of 780 to 950 ° C. while keeping the furnace under a vacuum of 5 × 10 -2 Torr or less or in an inert gas atmosphere, the insert material is melted to form the cemented carbide and the steel. A method for joining cemented carbide and steel, characterized by joining.
JP33645490A 1990-11-30 1990-11-30 Joining method for cemented carbide and steel Expired - Fee Related JPH0790362B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP33645490A JPH0790362B2 (en) 1990-11-30 1990-11-30 Joining method for cemented carbide and steel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP33645490A JPH0790362B2 (en) 1990-11-30 1990-11-30 Joining method for cemented carbide and steel

Publications (2)

Publication Number Publication Date
JPH04210869A JPH04210869A (en) 1992-07-31
JPH0790362B2 true JPH0790362B2 (en) 1995-10-04

Family

ID=18299308

Family Applications (1)

Application Number Title Priority Date Filing Date
JP33645490A Expired - Fee Related JPH0790362B2 (en) 1990-11-30 1990-11-30 Joining method for cemented carbide and steel

Country Status (1)

Country Link
JP (1) JPH0790362B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100330025B1 (en) * 1999-08-26 2002-03-27 한중석 Copper based filler metal &joining process for brazing WC/SM45C

Also Published As

Publication number Publication date
JPH04210869A (en) 1992-07-31

Similar Documents

Publication Publication Date Title
US4686080A (en) Composite compact having a base of a hard-centered alloy in which the base is joined to a substrate through a joint layer and process for producing the same
EP0166379B1 (en) Brazed composite compact implement
US4340650A (en) Multi-layer composite brazing alloy
EP0418078B1 (en) Composite abrasive compacts
US8757472B2 (en) Method for joining SiC-diamond
US20080035707A1 (en) Transient-liquid-phase joining of ceramics at low temperatures
CA2646752A1 (en) Ultra-hard and metallic constructions comprising improved braze joint
US4772294A (en) Brazed composite compact implements
WO2008062505A1 (en) Superhard tip and process for producing the same
WO1999029465A1 (en) Microwave brazing process and brazing composition for tsp diamond
JPH04228480A (en) Composite being stable at high temperature and preparation thereof
JP3549424B2 (en) Hard sintered body tool and manufacturing method thereof
EP0555083A1 (en) Brazed X-ray tube anode manufacturing method
EP0213300B1 (en) Brazed composite compact implements
US6183378B1 (en) Golf clubs with brazed ceramic and cermet compounds
EP0299740B1 (en) Method of brazing
JPH0790362B2 (en) Joining method for cemented carbide and steel
JPH0228428B2 (en)
JP2609328B2 (en) Method of joining cemented carbide and steel and joined body
JP4851029B2 (en) Super abrasive tool with sintered super abrasive tip
JP2009241236A (en) Joined body
EP0299737B1 (en) Tool component
JP2512145B2 (en) Method of joining cemented carbide and steel and joined body
JPH0244638B2 (en)
JPS5938491A (en) Composite sintered tool and production thereof

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees