JPH0790265A - Infrared rays-emitting fluorescent material - Google Patents

Infrared rays-emitting fluorescent material

Info

Publication number
JPH0790265A
JPH0790265A JP26163593A JP26163593A JPH0790265A JP H0790265 A JPH0790265 A JP H0790265A JP 26163593 A JP26163593 A JP 26163593A JP 26163593 A JP26163593 A JP 26163593A JP H0790265 A JPH0790265 A JP H0790265A
Authority
JP
Japan
Prior art keywords
phosphor
infrared
fluorescent material
afterglow
particle size
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP26163593A
Other languages
Japanese (ja)
Other versions
JP3336572B2 (en
Inventor
Toshio Kanzaki
壽夫 神崎
Ryuzo Fukao
隆三 深尾
Yoji Takeuchi
要二 竹内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Maxell Holdings Ltd
Original Assignee
Hitachi Maxell Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Maxell Ltd filed Critical Hitachi Maxell Ltd
Priority to JP26163593A priority Critical patent/JP3336572B2/en
Priority to US08/238,068 priority patent/US5611958A/en
Priority to CA002123274A priority patent/CA2123274C/en
Priority to EP94303355A priority patent/EP0624636B1/en
Publication of JPH0790265A publication Critical patent/JPH0790265A/en
Application granted granted Critical
Publication of JP3336572B2 publication Critical patent/JP3336572B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To provide an IR light-emitting fluorescent material having a specific chemical structure, high in luminous strength, long in an afterglow-persisting time, improved in a security property, and useful for offset printing, etc. CONSTITUTION:This IR light-emitting fluorescent material comprises a compound of the formula (A is Y, Lu, La; x,y are 0-0.5; x+y=0-1) such as Nd0.1Yb0.1 Y0.8PO4, has a particle diameter of 0.1-3mum, and has an afterglow-persisting time of >=100mus. One kind or more of elements selected from Pr and Tb as a luminous sensitizer is preferably added to the fluorescent material.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は赤外発光蛍光体に関す
る。更に詳細には、本発明は、赤外線によって励起さ
れ、赤外波長領域の発光スペクトルを有する赤外発光蛍
光体の微粒子化とその構造と組成の変更に関する。
FIELD OF THE INVENTION The present invention relates to an infrared emitting phosphor. More specifically, the present invention relates to microparticulation of an infrared-emitting phosphor having an emission spectrum in the infrared wavelength region, which is excited by infrared rays, and modification of its structure and composition.

【0002】[0002]

【従来の技術】近年、流通産業界を中心に、各産業界で
バーコードによる商品管理などが盛んに行われている。
また、各種プリベートカードあるいは通行カードなどに
もバーコードが印刷されており、スキャナーなどの光学
読取装置を用いてこのバーコードを読取ることが行われ
ている。また、これらのカードに加えて、クレジットカ
ードなどでは、これらのカードに偽造防止手段を施した
り、あるいは、カードが偽造されたものであるか否かを
判定する方法が種々提案されている。その一つとして、
バーコードなどのマークを蛍光体含有インクにより印刷
して潜像マークを形成し、その潜像マークに半導体レー
ザを照射して蛍光体を励起せしめ、蛍光体から発する光
を受光してバーコード情報を読み取る光学読取装置が提
案されている。
2. Description of the Related Art In recent years, mainly in the distribution industry, product management by bar codes has been actively performed in each industry.
Bar codes are also printed on various prebate cards or pass cards, and the bar codes are read using an optical reading device such as a scanner. In addition to these cards, for credit cards and the like, various methods have been proposed in which these cards are provided with anti-counterfeiting means, or whether or not the cards are forged. As one of them,
Marks such as barcodes are printed with phosphor-containing ink to form latent image marks, and the latent image marks are irradiated with a semiconductor laser to excite the phosphors, and the light emitted from the phosphors is received to provide barcode information. An optical reader for reading is proposed.

【0003】この方式によれば、記録されたマークがあ
る場合にのみ蛍光信号を検出するために、偽造あるいは
変造されたカードを確実に発見することができる。ま
た、潜像マークの内容は真正なカード製造者にしか分か
らないので、カードを偽造あるいは変造すること自体、
極めて困難である。
According to this method, since the fluorescence signal is detected only when there is a recorded mark, a forged or altered card can be surely found. Also, since the content of the latent image mark is only known to the authentic card manufacturer, it is possible to falsify or alter the card itself.
It's extremely difficult.

【0004】このような蛍光体として、例えば、下記の
一般式、 QD1-x-y Ndx Yby412 (式中、QはLi,Na,K,RbおよびCsからなる
群から選択される少なくとも1種の元素であり、DはS
c,Y,La,Ce,Gd,Lu,GaおよびInから
なる群から選択される少なくとも1種の元素であり、
0.05≦x≦0.999,0.001≦x≦0.95
0,x+y≦1.0である。)で表されるリン酸系蛍光
体が使用されている(例えば、特公昭53−40594
号公報参照)。
As such a phosphor, for example, the general formula, in QD 1-xy Nd x Yb y P 4 O 12 ( wherein, Q is selected from the group consisting of Li, Na, K, Rb and Cs At least one element, and D is S
at least one element selected from the group consisting of c, Y, La, Ce, Gd, Lu, Ga and In,
0.05 ≦ x ≦ 0.999, 0.001 ≦ x ≦ 0.95
0, x + y ≦ 1.0. ) Is used as the phosphoric acid-based phosphor (see, for example, JP-B-53-40594).
(See Japanese Patent Publication).

【0005】[0005]

【発明が解決しようとする課題】各種カードのセキュリ
ティー性を向上させるため、光学読取方法として、蛍光
体の残光を利用することも提案されており、これに用い
る蛍光体としては、長い残光持続時間を有する蛍光体が
必要とされている。
In order to improve the security of various cards, it has been proposed to use the afterglow of a phosphor as an optical reading method, and the phosphor used for this purpose has a long afterglow. What is needed is a phosphor with a duration.

【0006】ところが、この種の蛍光体は粒子サイズが
7μm以上と大きく、オフセット印刷やインクリボンに
使用する際、粉砕する必要があった。この粉砕により、
蛍光体の結晶性および組成が損なわれ、発光強度が大幅
に低下するという問題があった。また、発光強度が低下
するに伴い、残光持続時間も短くなった。
However, this type of phosphor has a large particle size of 7 μm or more, and it is necessary to pulverize it when it is used for offset printing or an ink ribbon. By this crushing,
There is a problem that the crystallinity and composition of the phosphor are impaired, and the emission intensity is significantly reduced. In addition, the persistence time also became shorter as the emission intensity decreased.

【0007】従って、本発明の目的は、上記従来製品が
持っていた、粒子サイズの問題を解決し、発光強度の高
い、しかも、残光持続時間が長い超微粒子状の赤外発光
蛍光体を提供することである。
Therefore, an object of the present invention is to solve the problem of particle size, which the above-mentioned conventional products have, and to provide an ultra-fine particle-shaped infrared-emitting phosphor having high emission intensity and long persistence. Is to provide.

【0008】[0008]

【課題を解決するための手段】前記目的を達成するため
に、本発明では、下記の一般式、 A1-x-y Ndx Yby PO4 (式中、AはY,LuおよびLaからなる群から選択さ
れる少なくとも1種以上の元素であり;0≦x≦0.
5;0≦y≦0.5および0<x+y<1である。)で
表され、100μs以上の残光持続時間を有することを
特徴とする赤外発光蛍光体を提供する。これらの蛍光体
は、PrおよびTbからなる群から選択される少なくと
も1種類の元素を発光増感剤として更に含有することも
できる。これらの蛍光体の粒径は0.1μm〜3μmの
範囲内である。
To SUMMARY OF THE INVENTION To achieve the above object, the present invention, the general formula, in A 1-xy Nd x Yb y PO 4 ( wherein, A is a group consisting of Y, Lu and La At least one element selected from the following: 0 ≦ x ≦ 0.
5; 0 ≦ y ≦ 0.5 and 0 <x + y <1. ), And an infrared-emitting phosphor having an afterglow duration of 100 μs or more. These phosphors may further contain at least one element selected from the group consisting of Pr and Tb as a luminescence sensitizer. The particle size of these phosphors is in the range of 0.1 μm to 3 μm.

【0009】[0009]

【作用】本発明の新規な赤外発光蛍光体は、超微粒子で
ありながら、赤外励起光に対して高い発光強度を示し、
しかも残光持続時間が非常に長いことが見いだされた。
本発明の新規な赤外発光蛍光体は100μs以上の残光
持続時間を有する。
The novel infrared-emitting phosphor of the present invention, which is ultrafine particles, exhibits high emission intensity with respect to infrared excitation light,
Moreover, the afterglow duration was found to be very long.
The novel infrared-emitting phosphor of the present invention has an afterglow duration of 100 μs or more.

【0010】本発明の赤外発光蛍光体を製造する場合、
原材料として、従来一般的に用いられているリン酸アン
モニウムの代わりに、オルトリン酸(H3 P04 )また
はリン酸塩(A3-xx PO4 、但し、Aはアルカリ金
属またはアルカリ土類金属のうちの少なくとも1種以上
の元素である)を用いることによって、焼成時にアンモ
ニアガスが発生することを防止し、このガスの無毒化処
理工程の不要化により製造工程全体を簡略化できるばか
りか、生産性を向上させると共に、得られる蛍光体の粒
径を一層小さくすることができる。
When manufacturing the infrared-emitting phosphor of the present invention,
As a raw material, instead of ammonium phosphate which is used in general conventionally, orthophosphoric acid (H 3 P0 4) or phosphate (A 3-x H x PO 4, where, A is an alkali metal or alkaline earth The use of at least one or more of the metals) prevents the generation of ammonia gas during firing, and simplifies the entire manufacturing process by eliminating the need for a detoxification treatment process for this gas. The productivity can be improved and the particle size of the obtained phosphor can be further reduced.

【0011】従来のリン酸アンモニウムを使用する方法
で得られた蛍光体の粒径はせいぜい7μm程度までしか
小さくすることができなかったが、本発明の方法によれ
ば、リン酸アンモニウムを用いた蛍光体の粒径の1/1
0以下にまで粒径を低下させることができる。特に、リ
ン酸塩を用いる方法によれば、蛍光体の粒径を3μm以
下、例えば、平均粒径で0.8μm以下にまで低下させ
ることができる。また、この方法によれば、0.1μm
の粒径を有する蛍光体を得ることもできる。
The particle size of the phosphor obtained by the conventional method using ammonium phosphate could be reduced to about 7 μm at most, but according to the method of the present invention, ammonium phosphate was used. 1/1 of the particle size of the phosphor
The particle size can be reduced to 0 or less. In particular, according to the method using phosphate, the particle size of the phosphor can be reduced to 3 μm or less, for example, 0.8 μm or less in average particle size. Further, according to this method, 0.1 μm
It is also possible to obtain a phosphor having a particle size of.

【0012】従って、本発明の方法により得られた蛍光
体は使用に際し、微粉砕などの二次加工処理を行うこと
なく直接使用することができる。従来のリン酸アンモニ
ウムを使用する方法で得られた蛍光体を微粉砕処理する
と発光強度が低下するが、本発明の赤外発光蛍光体は超
微粒子の状態で非常に高い発光強度を有し、残光持続時
間も長い。本発明の赤外発光蛍光体は超微粒子のため、
オフセット印刷やインクリボンに使用する際、塗料作製
が極めて容易になるばかりか、マイクロカプセル化する
ことも可能になる。
Therefore, the phosphor obtained by the method of the present invention can be directly used in use without secondary processing such as pulverization. Although the emission intensity is reduced when the phosphor obtained by the method using the conventional ammonium phosphate is finely pulverized, the infrared emission phosphor of the present invention has a very high emission intensity in the state of ultrafine particles, The afterglow duration is also long. Since the infrared-emitting phosphor of the present invention is ultrafine particles,
When it is used for offset printing or ink ribbon, not only the paint preparation becomes extremely easy, but also microencapsulation becomes possible.

【0013】本発明の方法によれば、オルトリン酸また
はリン酸塩を単独で、あるいは混合して使用することも
できる。また、高い発光強度を得るためには、リン酸塩
(A3-xx PO4 、但し、Aはアルカリ金属またはア
ルカリ土類金属のうちの少なくとも1種以上の元素であ
る)のなかでも、xの値の大きいほうが好ましい。
According to the method of the present invention, orthophosphoric acid or phosphate may be used alone or in combination. In order to obtain high emission intensity, among phosphates (A 3-x H x PO 4 , where A is at least one element selected from alkali metals and alkaline earth metals), , X are preferably large.

【0014】本発明の赤外発光蛍光体は、Nd,Ybの
4f電子の禁制遷移により発光するもので、超微粒子に
も拘らず発光強度が高い理由は、母体とするオルトリン
酸塩の結晶性が良いこと、および多くのNdおよびYb
を含有できることによるものと思われる。また、アルカ
リ金属またはアルカリ土類金属を少量加えることで更に
結晶性が良くなり、発光強度が向上するものと思われ
る。更に、残光持続時間が従来の蛍光体よりも長い理由
は、Nd+Ybの発光中心が少ないため、濃度消光を起
こし難いためと考えられる。
The infrared-emitting phosphor of the present invention emits light due to the forbidden transition of 4f electrons of Nd and Yb. The reason why the emission intensity is high in spite of the ultrafine particles is that the crystallinity of the orthophosphate as a base material is high. Is good, and a lot of Nd and Yb
It is thought that this is due to the fact that Further, it is considered that the crystallinity is further improved and the emission intensity is improved by adding a small amount of alkali metal or alkaline earth metal. Further, the reason why the afterglow persistence time is longer than that of the conventional phosphor is considered to be that it is difficult to cause concentration quenching because there are few emission centers of Nd + Yb.

【0015】本発明の蛍光体を製造する場合、ネオジウ
ム(Nd)およびイッテルビウム(Yb)のうちの少な
くとも1種の化合物と、Y,LuおよびLaからなる群
から選択される少なくとも1種以上の元素の化合物とか
らなる原料粉末に、オルトリン酸(H3 PO4 )または
3-xx PO4 (但し、Aはアルカリ金属またはアル
カリ土類金属のうちの少なくとも1種以上の元素であ
る)で示されるリン酸塩を加え、400〜1500℃の
範囲内の温度で焼成し、次いで空冷し、その後50℃以
上の水熱で処理することにより過剰のリン酸塩などの不
純物を除去する。
When producing the phosphor of the present invention, at least one compound selected from neodymium (Nd) and ytterbium (Yb) and at least one element selected from the group consisting of Y, Lu and La. Orthophosphoric acid (H 3 PO 4 ) or A 3-x H x PO 4 (wherein A is at least one element selected from alkali metals and alkaline earth metals) Is added, the mixture is baked at a temperature in the range of 400 to 1500 ° C., then air-cooled, and then hydrothermal treatment at 50 ° C. or higher is performed to remove impurities such as excess phosphate.

【0016】本発明の赤外発光蛍光体において、ネオジ
ウムおよびイッテルビウムの化合物としては例えば、こ
れらの酸化物、塩化物、炭酸塩、硝酸塩、酢酸塩などを
好適に使用することができる。同様に、Y,Luおよび
Laの元素の化合物としては例えば、これらの酸化物、
塩化物、炭酸塩、硝酸塩、酢酸塩などを好適に使用する
ことができる。これらの化合物は焼成前に希鉱酸(例え
ば、希硫酸、希塩酸、希硝酸など)に溶解させて使用す
ることもできる。
In the infrared emitting phosphor of the present invention, as the compounds of neodymium and ytterbium, for example, oxides, chlorides, carbonates, nitrates, acetates, etc. of these can be preferably used. Similarly, compounds of the elements Y, Lu and La include, for example, oxides of these,
Chlorides, carbonates, nitrates, acetates and the like can be preferably used. These compounds can also be used by dissolving them in a dilute mineral acid (eg dilute sulfuric acid, dilute hydrochloric acid, dilute nitric acid, etc.) before firing.

【0017】焼成は原材料をルツボに入れ、大気中で、
400〜1500℃、好ましくは、650℃〜1000
℃の温度で約2時間〜24時間程度加熱することにより
行われる。
For firing, the raw materials are put in a crucible, and in the air,
400-1500 ° C, preferably 650 ° C-1000
It is carried out by heating at a temperature of about 2 hours to 24 hours.

【0018】以下、実施例を挙げて本発明の赤外発光蛍
光体の製造を具体的に例証する。
Hereinafter, the production of the infrared light emitting phosphor of the present invention will be specifically illustrated with reference to Examples.

【0019】実施例1 Nd23 :3.5g,Yb23 :4.0g,Y2
3 :18.0gおよびH3 PO4 :60.0gからなる
原料を十分に混合し、アルミナ製の蓋付きルツボに充填
した後、電気炉に入れ、室温から700℃位まで、一定
昇温速度で2時間かけて昇温し、その後、700℃で6
時間焼成した。焼成終了後、直ちに電気炉から取り出
し、空気中で放冷した。次いで、ルツボに100℃の熱
湯を入れ、煮沸し、蛍光体をルツボから取り出し、1規
定の硝酸で洗浄し、水洗し、乾燥を行い、目的とする蛍
光体を得た。得られた蛍光体の組成は、Nd0.1 Yb
0.10.8 PO4 であった。
Example 1 Nd 2 O 3 : 3.5 g, Yb 2 O 3 : 4.0 g, Y 2 O
3: 18.0 g and H 3 PO 4: raw material were mixed thoroughly made of 60.0 g, it was filled in a covered crucible made of alumina, placed in an electric furnace, to 700 ° C. position from room constant heating rate At room temperature for 2 hours, then 700 ° C for 6
Burned for hours. Immediately after the firing was completed, it was taken out of the electric furnace and allowed to cool in air. Next, boiling water of 100 ° C. was put into the crucible, boiled, the phosphor was taken out from the crucible, washed with 1N nitric acid, washed with water, and dried to obtain a desired phosphor. The composition of the obtained phosphor is Nd 0.1 Yb
It was 0.1 Y 0.8 PO 4 .

【0020】実施例2 実施例1における原料組成を、Nd23 :3.5g,
Yb23 :4.0g,La23 :9.8g,Y2
3 :11.3gおよびH3 PO4 :60.0gに変更し
たこと以外は実施例1に述べた方法と同様な方法により
蛍光体を得た。得られた蛍光体の組成は、Nd0.1 Yb
0.1 La0.10.7 PO4 であった。
Example 2 The raw material composition in Example 1 was changed to Nd 2 O 3 : 3.5 g,
Yb 2 O 3 : 4.0 g, La 2 O 3 : 9.8 g, Y 2 O
A phosphor was obtained by the same method as that described in Example 1 except that the amount was changed to 3 : 11.3 g and H 3 PO 4 : 60.0 g. The composition of the obtained phosphor is Nd 0.1 Yb
It was 0.1 La 0.1 Y 0.7 PO 4 .

【0021】実施例3 実施例1における原料組成を、Nd23 :3.5g,
Yb23 :4.0g,La23 :3.3g,Y2
3 :15.3gおよびLiH2 PO4 :65.0gに変
更したこと以外は実施例1に述べた方法と同様な方法に
より蛍光体を得た。得られた蛍光体の組成は、Nd0.1
Yb0.1 La0.10.7 PO4 であった。
Example 3 The raw material composition of Example 1 was changed to Nd 2 O 3 : 3.5 g,
Yb 2 O 3 : 4.0 g, La 2 O 3 : 3.3 g, Y 2 O
A phosphor was obtained by the same method as described in Example 1 except that the amounts were changed to 3 : 15.3 g and LiH 2 PO 4 : 65.0 g. The composition of the obtained phosphor is Nd 0.1.
It was Yb 0.1 La 0.1 Y 0.7 PO 4 .

【0022】実施例4 実施例3において、焼成温度を900℃に変更したこと
以外は実施例3に述べた方法と同様な方法により蛍光体
を得た。得られた蛍光体の組成は、Nd0.1 Yb0.1
0.10.7 PO4 であった。
Example 4 A phosphor was obtained in the same manner as in Example 3 except that the firing temperature was changed to 900 ° C. The composition of the obtained phosphor is Nd 0.1 Yb 0.1 L
It was a 0.1 Y 0.7 PO 4 .

【0023】実施例5 実施例1における原料組成を、Nd23 :3.5g,
Yb23 :4.0g,Lu23 :31.8g,およ
びLiH2 PO4 :65.0gに変更したこと以外は実
施例1に述べた方法と同様な方法により蛍光体を得た。
得られた蛍光体の組成は、Nd0.1 Yb0.1 Lu0.8
4 であった。
Example 5 The raw material composition in Example 1 was changed to Nd 2 O 3 : 3.5 g,
A phosphor was obtained by the same method as described in Example 1 except that Yb 2 O 3 was 4.0 g, Lu 2 O 3 was 31.8 g, and LiH 2 PO 4 was 65.0 g. .
The composition of the obtained phosphor is Nd 0.1 Yb 0.1 Lu 0.8 P
It was O 4 .

【0024】比較例1 実施例1における原料組成を、Nd23 :30.0
g,Yb23 :4.0g,Li2 CO3 :11.0g
および(NH4 )H2 PO4 :140gに変更したこと
以外は実施例1に述べた方法と同様な方法により蛍光体
を得た。得られた蛍光体の組成は、LiNd0.9 Yb
0.1412であった。
Comparative Example 1 The raw material composition of Example 1 was changed to Nd 2 O 3 : 30.0.
g, Yb 2 O 3 : 4.0 g, Li 2 CO 3 : 11.0 g
And a phosphor similar to the method described in Example 1 except that the amount of (NH 4 ) H 2 PO 4 was changed to 140 g. The composition of the obtained phosphor was LiNd 0.9 Yb.
It was 0.1 P 4 O 12 .

【0025】比較例2 比較例1で得られた蛍光体をジルコニア製のボールミル
に入れ、水を媒体として湿式粉砕を行った。得られた蛍
光体の組成は比較例1のままであった。
Comparative Example 2 The phosphor obtained in Comparative Example 1 was placed in a zirconia ball mill and wet-ground using water as a medium. The composition of the obtained phosphor remained as in Comparative Example 1.

【0026】前記の実施例1〜5および比較例1〜2で
得られた各蛍光体の平均粒径と発光特性を下記の表1に
示す。蛍光体の平均粒径は遠心沈降粒度分布計を用いて
測定した。発光特性は波長810nmの光源で励起を行
い、980nmで発光をシリコン光検出器で受光するこ
とにより発光強度を測定した。発光強度は比較例1のサ
ンプルの値を100として表示した。また、消灯300
μs後、ピーク感度980nmのシリコン光検出器で残
光を受光することにより残光特性を測定した。
Table 1 below shows the average particle size and emission characteristics of the phosphors obtained in Examples 1-5 and Comparative Examples 1-2. The average particle size of the phosphor was measured using a centrifugal sedimentation particle size distribution meter. The emission characteristics were measured by exciting with a light source with a wavelength of 810 nm and receiving the emitted light with a silicon photodetector at 980 nm to measure the emission intensity. The luminescence intensity was displayed with the value of the sample of Comparative Example 1 being 100. Also, turn off 300
After μs, afterglow characteristics were measured by receiving afterglow with a silicon photodetector having a peak sensitivity of 980 nm.

【0027】[0027]

【表1】 表1 平均粒径 発光 残光 試 料 組 成 (μm) 特性 特性 実施例1 Nd0.1 Yb0.10.8 PO4 0.8 85 125 2 Nd0.1 Yb0.1 La0.10.7 PO4 1.0 90 130 3 Nd0.1 Yb0.1 La0.10.7 PO4 0.9 90 130 4 Nd0.1 Yb0.1 La0.10.7 PO4 2.8 115 150 5 Nd0.1 Yb0.1 Lu0.8 PO4 0.8 90 125 比較例1 LiNd0.9 Yb0.1412 7.5 100 100 2 LiNd0.9 Yb0.1412 0.6 15 2 [Table 1] Table 1 Average particle size Emission afterglow Sample composition (μm) Characteristics Characteristics Example 1 Nd 0.1 Yb 0.1 Y 0.8 PO 4 0.8 85 125 2 Nd 0.1 Yb 0.1 La 0.1 Y 0.7 PO 4 1. 0 90 130 3 Nd 0.1 Yb 0.1 La 0.1 Y 0.7 PO 4 0.9 90 130 4 Nd 0.1 Yb 0.1 La 0.1 Y 0.7 PO 4 2.8 115 150 5 Nd 0.1 Yb 0.1 Lu 0.8 PO 4 0.8 90 125 125 Comparison Example 1 LiNd 0.9 Yb 0.1 P 4 O 12 7.5 100 100 2 LiNd 0.9 Yb 0.1 P 4 O 12 0.6 15 2

【0028】前記の表1に示された結果から明らかなよ
うに、本発明によれば平均粒径が3.0μm以下で、発
光特性および残光特性に優れた赤外発光蛍光体をえるこ
とができる。
As is clear from the results shown in Table 1 above, according to the present invention, it is possible to obtain an infrared-emitting phosphor having an average particle size of 3.0 μm or less and excellent in emission characteristics and afterglow characteristics. You can

【0029】実施例1で得られた蛍光体と比較例1で得
られた蛍光体の発光スペクトルを図1に示す。図1
(a)は実施例1で得られた蛍光体の発光スペクトルで
あり、図1(b)は比較例1で得られた蛍光体の発光ス
ペクトルである。図1(a)および図1(b)に示され
た発光スペクトルを比較すれば明らかなように、本発明
の赤外発光蛍光体は比較例1の赤外発光蛍光体とは全く
異なる特性を有する赤外発光蛍光体であることが理解で
きる。
The emission spectra of the phosphor obtained in Example 1 and the phosphor obtained in Comparative Example 1 are shown in FIG. Figure 1
1A is the emission spectrum of the phosphor obtained in Example 1, and FIG. 1B is the emission spectrum of the phosphor obtained in Comparative Example 1. As is clear from a comparison of the emission spectra shown in FIGS. 1 (a) and 1 (b), the infrared light emitting phosphor of the present invention has characteristics which are completely different from those of the infrared light emitting phosphor of Comparative Example 1. It can be understood that it is an infrared-emitting phosphor having the same.

【0030】実施例1で得られた蛍光体と比較例1で得
られた蛍光体の粒子構造を示す走査型電子顕微鏡写真を
図2に示す。図2(a)は実施例1で得られた蛍光体の
粒子構造を示す走査型電子顕微鏡写真であり、図2
(b)は比較例1で得られた蛍光体の粒子構造を示す走
査型電子顕微鏡写真である。図2(a)および図2
(b)の写真を比較すれば明らかなように、本発明の蛍
光体は比較例1の蛍光体に比べて、粒子形状が全く異な
り、粒径が著しく小さい超微粒子であることが理解でき
る。
A scanning electron micrograph showing the particle structures of the phosphor obtained in Example 1 and the phosphor obtained in Comparative Example 1 is shown in FIG. 2 (a) is a scanning electron micrograph showing the particle structure of the phosphor obtained in Example 1, and FIG.
(B) is a scanning electron micrograph showing the particle structure of the phosphor obtained in Comparative Example 1. 2 (a) and 2
As is clear from comparison of the photographs of (b), it can be understood that the phosphor of the present invention is ultrafine particles having a completely different particle shape and a significantly smaller particle size than the phosphor of Comparative Example 1.

【0031】[0031]

【発明の効果】以上説明したように、本発明によれば超
微粒子で、発光強度が高、しかも残光持続時間の長い新
規な赤外発光蛍光体を得ることができる。
As described above, according to the present invention, it is possible to obtain a novel infrared-emitting phosphor which is ultrafine particles and has a high emission intensity and a long afterglow duration.

【図面の簡単な説明】[Brief description of drawings]

【図1】(a)は実施例1で得られた蛍光体の発光スペ
クトルを示す波形図であり、(b)は比較例1で得られ
た蛍光体の発光スペクトルを示す波形図である。
FIG. 1A is a waveform diagram showing an emission spectrum of a phosphor obtained in Example 1, and FIG. 1B is a waveform diagram showing an emission spectrum of a phosphor obtained in Comparative Example 1.

【図2】(a)は実施例1で得られた蛍光体の粒子構造
を示す走査型電子顕微鏡による写真図であり、(b)は
比較例1で得られた蛍光体の粒子構造を示す走査型電子
顕微鏡による写真図である。
FIG. 2 (a) is a scanning electron microscope photograph showing the particle structure of the phosphor obtained in Example 1, and FIG. 2 (b) shows the particle structure of the phosphor obtained in Comparative Example 1. It is a photograph figure by a scanning electron microscope.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 下記の一般式、 A1-x-y Ndx Yby PO4 (式中、AはY,LuおよびLaからなる群から選択さ
れる少なくとも1種以上の元素であり;0≦x≦0.
5;0≦y≦0.5および0<x+y<1である。)で
表され、100μs以上の残光持続時間を有することを
特徴とする赤外発光蛍光体。
1. A general formula, A 1-xy Nd x Yb y PO 4 ( wherein, A is Y, is at least one element selected from the group consisting of Lu and La; 0 ≦ x ≤0.
5; 0 ≦ y ≦ 0.5 and 0 <x + y <1. ) And having an afterglow duration of 100 μs or more.
【請求項2】 PrおよびTbからなる群から選択され
る少なくとも1種類の元素を発光増感剤として更に含有
する請求項1の赤外発光蛍光体。
2. The infrared-emitting phosphor according to claim 1, further containing at least one element selected from the group consisting of Pr and Tb as a luminescence sensitizer.
【請求項3】 粒径が0.1μm〜3μmの範囲内であ
る請求項1の赤外発光蛍光体。
3. The infrared-emitting phosphor according to claim 1, having a particle size in the range of 0.1 μm to 3 μm.
JP26163593A 1993-05-11 1993-09-24 Infrared fluorescent substance and method for producing the same Expired - Lifetime JP3336572B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP26163593A JP3336572B2 (en) 1993-09-24 1993-09-24 Infrared fluorescent substance and method for producing the same
US08/238,068 US5611958A (en) 1993-05-11 1994-05-04 Infrared phosphor and material having latent images and optical reading system using said phosphor
CA002123274A CA2123274C (en) 1993-05-11 1994-05-10 Infrared phosphor and material having latent images and optical reading system using said phosphor
EP94303355A EP0624636B1 (en) 1993-05-11 1994-05-10 Infrared phosphor and material having latent images and optical reading system using said phosphor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26163593A JP3336572B2 (en) 1993-09-24 1993-09-24 Infrared fluorescent substance and method for producing the same

Publications (2)

Publication Number Publication Date
JPH0790265A true JPH0790265A (en) 1995-04-04
JP3336572B2 JP3336572B2 (en) 2002-10-21

Family

ID=17364638

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26163593A Expired - Lifetime JP3336572B2 (en) 1993-05-11 1993-09-24 Infrared fluorescent substance and method for producing the same

Country Status (1)

Country Link
JP (1) JP3336572B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007155548A (en) * 2005-12-06 2007-06-21 Hitachi Maxell Ltd Quantitative analysis using infrared phosphor
JP2007154066A (en) * 2005-12-06 2007-06-21 Hitachi Maxell Ltd Functional infrared fluorescent particle
JPWO2008152891A1 (en) * 2007-06-13 2010-08-26 コニカミノルタエムジー株式会社 Near-infrared emitting phosphor nanoparticle, method for producing the same, and biomaterial labeling agent using the same
JP2012185497A (en) * 2011-02-16 2012-09-27 Ushio Inc Surreptitious photographing prevention sheet
JP2014141601A (en) * 2013-01-25 2014-08-07 Fuji Seal International Inc Method of manufacturing plastic film printed matter, ink and plastic film printed matter

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4810639B2 (en) * 2005-12-06 2011-11-09 日立マクセル株式会社 Quantitative method using infrared fluorescent particles

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007155548A (en) * 2005-12-06 2007-06-21 Hitachi Maxell Ltd Quantitative analysis using infrared phosphor
JP2007154066A (en) * 2005-12-06 2007-06-21 Hitachi Maxell Ltd Functional infrared fluorescent particle
JPWO2008152891A1 (en) * 2007-06-13 2010-08-26 コニカミノルタエムジー株式会社 Near-infrared emitting phosphor nanoparticle, method for producing the same, and biomaterial labeling agent using the same
JP2012185497A (en) * 2011-02-16 2012-09-27 Ushio Inc Surreptitious photographing prevention sheet
JP2014141601A (en) * 2013-01-25 2014-08-07 Fuji Seal International Inc Method of manufacturing plastic film printed matter, ink and plastic film printed matter

Also Published As

Publication number Publication date
JP3336572B2 (en) 2002-10-21

Similar Documents

Publication Publication Date Title
KR100540305B1 (en) Non-green anti-Stokes luminescent substance
JP4020408B2 (en) Infrared emitting phosphor
JP2011021161A (en) Phosphor
JPS638157B2 (en)
JP3336572B2 (en) Infrared fluorescent substance and method for producing the same
Madkhli et al. Characterization, room and low temperature photoluminescence of yttrium aluminium borate activated with Sm3+ ions
US5989454A (en) Method for making small particle blue emitting lanthanum phosphate based phosphors
JP3438188B2 (en) Infrared light emitting phosphor
RU2434926C2 (en) Yttrium ortho-phosphate-based infrared luminophore and synthesis method thereof
JP3797812B2 (en) Inorganic phosphor and method for producing the same
US6139774A (en) Fluorescent substance
JP3702354B2 (en) Infrared phosphor
RU2610767C2 (en) INFRARED LUMINOPHOR OF COMPLEX ACTION BASED ON YTTRIUM ORTHOPHOSPHATE, ACTIVATED WITH IONS OF Yb3+ AND Er3+
JP7037082B2 (en) Rare earth aluminate phosphor manufacturing method, rare earth aluminate phosphor and light emitting device
JPS60127386A (en) Anti-stokes fluorescent substance and manufacture
RU2429272C1 (en) Fast-moving infrared luminophor based on yttrium orthophosphate having xenotime structure
RU2516129C2 (en) Fast-kinetising infrared lumoniphor based on yttrium and lanthanum oxisulfates
KR20010073118A (en) Lanthanum, Lutetium, Yttrium or Gadolinium Borate Comprising Two Doping Agents and Its Precursor, Use in Plasma or X-ray Systems
JP5979713B2 (en) Infrared light emitting phosphor
CN114479856B (en) Luminescent material, preparation method and application thereof
JPH10298550A (en) Infrared light-emitting fluorescent material
JP4315371B2 (en) Infrared-visible conversion phosphor
Liu et al. Coating Red Phosphor on Green Luminescent Material for Multi-Mode Luminescence and Advanced Anti-Counterfeit Applications
JP5312925B2 (en) Infrared light emitting phosphor
Lu et al. Structural and luminescent properties of cerium-ion doped barium borophosphates

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20020716

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070809

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080809

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090809

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100809

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100809

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100809

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110809

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110809

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120809

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120809

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130809

Year of fee payment: 11

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term