JP2007155548A - Quantitative analysis using infrared phosphor - Google Patents

Quantitative analysis using infrared phosphor Download PDF

Info

Publication number
JP2007155548A
JP2007155548A JP2005352409A JP2005352409A JP2007155548A JP 2007155548 A JP2007155548 A JP 2007155548A JP 2005352409 A JP2005352409 A JP 2005352409A JP 2005352409 A JP2005352409 A JP 2005352409A JP 2007155548 A JP2007155548 A JP 2007155548A
Authority
JP
Japan
Prior art keywords
infrared
mixture
test substance
fluorescence
excitation light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005352409A
Other languages
Japanese (ja)
Inventor
Kenji Kono
研二 河野
Naoki Usuki
直樹 臼杵
Masakazu Mitsunaga
雅一 満永
Toshio Kanzaki
壽夫 神崎
Mikio Kishimoto
幹雄 岸本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Maxell Holdings Ltd
Original Assignee
Hitachi Maxell Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Maxell Ltd filed Critical Hitachi Maxell Ltd
Priority to JP2005352409A priority Critical patent/JP2007155548A/en
Publication of JP2007155548A publication Critical patent/JP2007155548A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)
  • Investigating Or Analysing Materials By The Use Of Chemical Reactions (AREA)
  • Luminescent Compositions (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method capable of performing quantitative analysis with substantially high sensitivity. <P>SOLUTION: The method for performing the quantitative analysis of a test material by using an infrared phosphor radiating fluorescence having a wavelength in an infrared domain when being irradiated with excitation light having a wavelength in the infrared domain includes (1) a step of irradiating a mixture M<SB>1</SB>including the test material and the infrared phosphor or a mixture M<SB>2</SB>acquired by taking a part therefrom with the excitation light having the wavelength in the infrared domain, and acquiring fluorescence intensity I<SB>1</SB>relative to the fluorescence having the wavelength in the infrared domain radiated from the mixture M<SB>1</SB>or M<SB>2</SB>, and (2) a step of determining the quantity Q<SB>1</SB>of the test material from the fluorescence intensity I<SB>1</SB>acquired in the step (1) based on the correlation A between the fluorescence intensity I relative to a model mixture in the step (1) and the quantity Q of the test material, which is acquired beforehand by a model experiment using the infrared phosphor and the test material. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、赤外領域の波長の励起光を照射すると赤外領域の波長の蛍光を放射する赤外蛍光体を用いた定量方法に関する。   The present invention relates to a quantification method using an infrared phosphor that emits fluorescence having an infrared wavelength when irradiated with excitation light having an infrared wavelength.

非常に微量な蛍光物質であっても、蛍光物質から発せられる光は検出できる場合が多いため、種々の目的に蛍光物質が用いられている。通常、紫外線領域から可視領域の励起光および蛍光が利用される。しかしながら、紫外線領域から可視領域の光では、種々の物質による発光や吸収あるいは散乱の影響が大きく、また室内であっても蛍光灯等による外乱光の影響が大きいため、紫外線領域から可視領域の光を利用した被検物質の定量分析等では、そのような影響を完全に無視できない。従って、被検物質の定量分析に際しては、被検物質の周囲に存在する物質を洗浄等によって除去する必要があり、その分だけ手間やコストを要していた。また、そのような影響を十分に抑えることができず実質的な感度を高くできなかったり、かかる影響を抑えることに起因して分析機器が大型化してしまう等の問題もあった。   Even in a very small amount of fluorescent material, the light emitted from the fluorescent material can often be detected, and the fluorescent material is used for various purposes. Usually, excitation light and fluorescence in the ultraviolet region to the visible region are used. However, light from the ultraviolet region to the visible region is greatly affected by light emission, absorption or scattering by various substances, and is also affected by disturbance light from fluorescent lamps etc. even indoors. Such an effect cannot be completely ignored in the quantitative analysis of the test substance using the. Therefore, in the quantitative analysis of the test substance, it is necessary to remove the substance existing around the test substance by washing or the like, which requires much labor and cost. In addition, there has been a problem that such an effect cannot be sufficiently suppressed, the substantial sensitivity cannot be increased, and the analytical instrument is increased in size due to the suppression of such an effect.

その一方、かかる定量分析に用いられる蛍光物質自体の問題も残されている。例えば、有機蛍光体では蛍光の安定性が低い。また、代表的な無機蛍光体である量子ドットは高い毒性を一般に有している。   On the other hand, the problem of the fluorescent substance itself used for such quantitative analysis still remains. For example, organic phosphors have low fluorescence stability. In addition, quantum dots, which are representative inorganic phosphors, generally have high toxicity.

本発明は、上述の問題を解決するために為されたものである。本発明の課題は、被検物質の周囲に存在する物質の影響を抑えて被検物質を定量分析する方法を提供することである。   The present invention has been made to solve the above-described problems. An object of the present invention is to provide a method for quantitatively analyzing a test substance while suppressing the influence of substances existing around the test substance.

上記課題を解決すべく、本発明は、
赤外領域の波長の励起光を照射すると赤外領域の波長の蛍光を放射する赤外蛍光体を用いて、被検物質の定量分析を行う方法であって、
(i)該被検物質と該赤外蛍光体とを含んで成る混合物Mまたはそれらから一部を取り出した混合物Mに対して、赤外領域の波長の励起光を照射して、該混合物MまたはMから放射される赤外領域の波長の蛍光について蛍光強度Iを得る工程、ならびに
(ii)赤外蛍光体および被検物質を用いたモデル実験により予め得ておいた、工程(i)のモデル混合物についての蛍光強度Iと被検物質の量Qとの相関関係Aに基づいて、工程(i)で得られた蛍光強度Iから該被検物質の量Qを求める工程
を含んで成る方法。
In order to solve the above problems, the present invention provides:
A method for quantitative analysis of a test substance using an infrared phosphor that emits fluorescence having a wavelength in the infrared region when irradiated with excitation light having a wavelength in the infrared region,
(I) The mixture M 1 including the test substance and the infrared phosphor, or the mixture M 2 extracted from the mixture M 1 is irradiated with excitation light having a wavelength in the infrared region, Obtaining fluorescence intensity I 1 for the fluorescence in the infrared region emitted from the mixture M 1 or M 2 , and (ii) obtained in advance by a model experiment using an infrared phosphor and a test substance, Based on the correlation A between the fluorescence intensity I for the model mixture in step (i) and the amount Q of the test substance, the amount Q 1 of the test substance is calculated from the fluorescence intensity I 1 obtained in step (i). A method comprising the step of determining.

本発明の方法では、蛍光強度Iと被検物質の量Qとの間に相関関係A(Q=fn(I))が存在することが必要であり、この相関関係を赤外蛍光体および被検物質を用いたモデル実験により予め得ておく必要がある。 In the method of the present invention, it is necessary that a correlation A (Q = fn A (I)) exists between the fluorescence intensity I and the amount Q of the test substance. It is necessary to obtain in advance by a model experiment using a test substance.

実際には、混合物MまたはMについての蛍光強度Iと、混合物に含まれる赤外蛍光体の量Pとの間には相関関係B(P=fn(I))が一般に存在する。また、蛍光強度による被検物質の定量には相関関係Aが必要であるため、混合物MまたはM中の赤外蛍光体量Pと被検物質の量Qとの間に相関関係C(Q=fn(P))が必要である。したがって、相関関係BおよびCを求めれば、工程(i)で得られる蛍光強度Iから被検物質の量Qを求めることができる。しかしながら、相関関係BまたはCのいずれかまたは両方が求められない場合や、混合物MまたはMの成分による吸収、発光、散乱等によって単純に相関関係BおよびCから相関関係Aが求められない場合がある。この場合、蛍光強度Iと被検物質の量Qとの間の相関関係Aを直接求める必要がある。通常相関関係Aは、理論的に計算等で直接求めることは困難なため、「モデル混合物」を用いた「モデル実験」により求める。また、相関関係BおよびCを求めることが可能な場合においても、相関関係BまたはCのいずれかまたは両方についても、通常「モデル混合物」を用いた「モデル実験」が必要となる。以上のように全てまたは一部に「モデル実験」を用いて相関関係A(Q=fn(I))を予め求めておくことが、本発明では必要である。 In practice, there is generally a correlation B (P = fn B (I)) between the fluorescence intensity I for the mixture M 1 or M 2 and the amount of infrared phosphor P contained in the mixture. Further, since the correlation A is necessary for the determination of the test substance based on the fluorescence intensity, the correlation C (between the infrared phosphor amount P and the test substance quantity Q in the mixture M 1 or M 2 is used. Q = fn C (P)) is required. Therefore, if the correlations B and C are obtained, the amount Q 1 of the test substance can be obtained from the fluorescence intensity I 1 obtained in the step (i). However, and if either or both of the correlation B or C is not obtained, absorption by components of the mixture M 1 or M 2, emission, not is determined correlation A from simply correlated B and C by such scattering There is a case. In this case, it is necessary to directly obtain the correlation A between the fluorescence intensity I and the amount Q of the test substance. Usually, the correlation A is theoretically obtained directly by calculation or the like, and thus is obtained by “model experiment” using a “model mixture”. Further, even when the correlations B and C can be obtained, a “model experiment” using a “model mixture” is usually required for either or both of the correlations B and C. As described above, in the present invention, it is necessary to obtain the correlation A (Q = fn A (I)) in advance using all or part of the “model experiment”.

ここでいう「モデル混合物」とは、少なくとも赤外蛍光体および被検物質を含み、かつそれらの比率が明らかな混合物(即ち、工程(i)で得られる混合物Mのモデルとなる混合物)、またはそれらから一部を取り出した混合物(即ち、工程(i)で得られる混合物Mのモデルとなる混合物)であって、工程(i)の混合物MまたはMの全ての成分をほぼ同量含むことが望ましいが、混合物MまたはMの主な成分のみを含むものであってもかまわない。 The “model mixture” as used herein refers to a mixture containing at least an infrared phosphor and a test substance and having a clear ratio thereof (that is, a mixture serving as a model of the mixture M 1 obtained in the step (i)), Or a mixture obtained by removing a part thereof (that is, a mixture serving as a model of the mixture M 2 obtained in the step (i)), and all the components of the mixture M 1 or M 2 in the step (i) are substantially the same. Although it is desirable to include an amount, it may include only the main components of the mixture M 1 or M 2 .

一方ここでいう「モデル実験」とは、例えば相関関係Aを求める場合、被検物質の量Qを変えた「モデル混合物」を数点用意して各々の蛍光強度Iを測定し、検量線を作成する等により相関関係Aを求める実験である。なお、相関関係BまたはCについても同様の実験を用いることができる。   On the other hand, the “model experiment” herein refers to, for example, when obtaining the correlation A, prepare several “model mixtures” in which the amount Q of the test substance is changed, measure each fluorescence intensity I, and calculate the calibration curve. It is an experiment for obtaining the correlation A by creating it. A similar experiment can be used for correlation B or C.

本発明の方法で混合物Mまたは混合物Mに照射される励起光および生じる蛍光は、赤外領域の波長を有するために種々の物質などに対して高い透過性を有している。従って、赤外蛍光体および被検物質の周囲に存在する種々の物質(例えば色素)による発光、吸収もしくは散乱の影響を抑えることができる。従って、そのような赤外蛍光体および被検物質の周囲に存在する物質を洗浄等で除去しなくても、バックグランドを低く抑えて実質的に高い感度で定量分析を行うことができる。また、金属酸化物から形成される赤外蛍光体を用いると、光照射によっても蛍光強度が実質的に低下せず安定した蛍光強度を得ることができるだけでなく、赤外蛍光体自体の毒性も低いので、生体に安全な条件で安定した定量分析を実施できる。 Fluorescence generated and the excitation light irradiating the mixture M 1 or a mixture M 2 in the method of the present invention has high transparency to such various materials in order to have a wavelength in the infrared region. Therefore, it is possible to suppress the influence of light emission, absorption or scattering by various substances (for example, dyes) existing around the infrared phosphor and the test substance. Accordingly, quantitative analysis can be performed with substantially high sensitivity while keeping the background low without removing such infrared phosphors and substances present around the test substance by washing or the like. In addition, when an infrared phosphor formed from a metal oxide is used, not only the fluorescence intensity does not substantially decrease even when irradiated with light, but a stable fluorescence intensity can be obtained, and the toxicity of the infrared phosphor itself is also increased. Since it is low, stable quantitative analysis can be performed under conditions safe for living bodies.

発明を実施するための形態BEST MODE FOR CARRYING OUT THE INVENTION

以下、本発明の方法を詳細に説明する。   Hereinafter, the method of the present invention will be described in detail.

本明細書で用いる「赤外蛍光体」とは、赤外領域の波長を有する励起光を照射すると、赤外領域の波長を有する光のエネルギーを放射する蛍光体を意味している。従って、励起光の照射に際して、非常に短い時間で光のエネルギーが放射される場合は「蛍光」として光を発するが、長い時間にわたって光のエネルギーが放射される場合は「燐光」として光を発することになり、本発明の方法で用いられる「赤外蛍光体」は、「蛍光」または「燐光」を放射する蛍光体を実質的に意味している。   The “infrared phosphor” used in this specification means a phosphor that emits energy of light having a wavelength in the infrared region when irradiated with excitation light having a wavelength in the infrared region. Therefore, upon irradiation with excitation light, light is emitted as “fluorescence” if light energy is emitted in a very short time, but light is emitted as “phosphorescence” when light energy is emitted over a long time. Thus, the “infrared phosphor” used in the method of the present invention substantially means a phosphor that emits “fluorescence” or “phosphorescence”.

また、本明細書において「被検物質」とは、後で具体例を挙げて説明するが、一般的な定量分析に際して対象となる物質を意味しており、例えば、工業生産、検査、研究等の分野にて測定対象となる物質を意味している。そして、「非被検物質」とは、被検物質および/または赤外蛍光体の周囲に存在する物質を意味しており、例えば、定量分析の感度を低下させると従来考えられていた物質(特に、紫外線領域から可視領域の励起光および蛍光を利用した定量分析に際して洗浄除去されていた物質)であり、水、溶剤、樹脂、添加剤、色素、微粒子および生体物質から成る群から選択される少なくとも1種以上の非被検物質が挙げられる。   Further, in the present specification, the “test substance” will be described later with a specific example, but means a substance that is a target in general quantitative analysis, for example, industrial production, inspection, research, etc. Means a substance to be measured in the field. The “non-test substance” means a substance existing around the test substance and / or the infrared phosphor. For example, a substance (conventionally considered to reduce the sensitivity of quantitative analysis) In particular, substances that have been washed and removed during quantitative analysis using excitation light and fluorescence in the ultraviolet region to the visible region, and are selected from the group consisting of water, solvents, resins, additives, dyes, microparticles, and biological materials. Examples include at least one non-test substance.

図1に、本発明の方法の工程をフローチャートで示す。まず、工程(i)では、被検物質と赤外蛍光体とを混ぜることによって、あるいはこれをさらに別の物質と混合することによって被検物質と赤外蛍光体とから成る混合物Mを形成する。また、必要であれば、さらに分離等の操作を行って混合物Mから一部を取り出した混合物Mを得る。 FIG. 1 is a flowchart showing the steps of the method of the present invention. First, in step (i), forming a mixture M 1 comprising a by mixing a test substance and the infrared phosphor, or which a further test substance by mixing with another substance with infrared phosphor To do. Further, if necessary, an operation such as separation is further performed to obtain a mixture M 2 obtained by partially removing the mixture M 1 .

用いられる赤外蛍光体は、粒子状であることが好ましい(以下、粒子状の赤外蛍光体を「赤外蛍光粒子」ともいう)。特に、赤外蛍光体を粉末形態として用いる際には、得られる結果のばらつきを防ぐために、赤外蛍光粒子は、被検物質を含んだ液体試料に均一に溶解または分散できるものが好ましく、従って、赤外蛍光粒子の直径の上限は、好ましくは5μm以下であり、より好ましくは500nm以下、更に好ましくは100nm以下である。その一方、赤外蛍光粒子の直径の下限は、製造が可能か否か及び検出できる蛍光強度が得られるか否かによって決まるものであり、一般的には2nm以上が好ましい。以上を踏まえると、赤外蛍光粒子は、2nm〜5μmの粒径を有していることが好ましい。ここでいう「粒径」は、例えば、電子顕微鏡や光学顕微鏡等で拡大した画像から100個の粒子を無作為に選択し、それぞれの粒子について直径を読み取り、これらを平均することによって求めた場合の粒径をいう。ただし、直径が均一でない場合には、最大径と最小径を求めて平均したものを、各粒子の直径とする。なお、かかる赤外蛍光粒子の好ましい粒径は、被検物質または赤外蛍光粒子の形状および種類などに応じて変わり得ることを理解されよう。   The infrared phosphor used is preferably in the form of particles (hereinafter, the particulate infrared phosphor is also referred to as “infrared phosphor particles”). In particular, when the infrared phosphor is used in powder form, in order to prevent variation in the results obtained, it is preferable that the infrared phosphor particles can be dissolved or dispersed uniformly in the liquid sample containing the test substance. The upper limit of the diameter of the infrared fluorescent particles is preferably 5 μm or less, more preferably 500 nm or less, still more preferably 100 nm or less. On the other hand, the lower limit of the diameter of the infrared fluorescent particles is determined depending on whether the production is possible and whether a detectable fluorescence intensity is obtained, and generally 2 nm or more is preferable. In view of the above, it is preferable that the infrared fluorescent particles have a particle diameter of 2 nm to 5 μm. The “particle size” here is obtained by, for example, randomly selecting 100 particles from an image magnified with an electron microscope or an optical microscope, reading the diameter of each particle, and averaging these. The particle size of However, if the diameter is not uniform, the average of the maximum and minimum diameters is determined as the diameter of each particle. It should be understood that the preferred particle size of such infrared fluorescent particles can vary depending on the shape and type of the test substance or infrared fluorescent particles.

また、本発明の方法に用いられる赤外蛍光体は、無機材料、有機材料、複合材料または錯体等のいずれの材料から形成されていてもよい。とりわけ、無機材料から形成された赤外蛍光体は、励起光の照射等による蛍光強度の低下が小さく、安定性に優れているため、本発明の赤外蛍光体として好ましい。   The infrared phosphor used in the method of the present invention may be formed from any material such as an inorganic material, an organic material, a composite material, or a complex. In particular, an infrared phosphor formed of an inorganic material is preferable as the infrared phosphor of the present invention because the decrease in fluorescence intensity due to irradiation with excitation light is small and the stability is excellent.

また、本発明の方法に用いられる赤外蛍光体は、安全面または環境面の点でも優れているものが好ましい。例えば、金属酸化物系の赤外蛍光体は一般に安定性が高く、毒性も低いので本発明の赤外蛍光体に好適に使用される。金属酸化物から成る赤外蛍光体としては、例えば、遷移金属元素、リン元素および酸素元素を含んで成る化合物が挙げられる。その代表的な化合物としては、Y・Nd・Yb・PO、Lu・Nd・Yb・POおよびLa・Nd・Yb・PO(式中、Y:イットリウム元素、Nd:ネオジム元素、Yb:イッテルビウム元素、Lu:ルテチウム元素、La:ランタン元素、P:リン元素、O:酸素元素)等の化合物が挙げられる。 The infrared phosphor used in the method of the present invention is preferably excellent in safety or environmental aspects. For example, metal oxide-based infrared phosphors are generally suitable for the infrared phosphor of the present invention because of their high stability and low toxicity. Examples of the infrared phosphor made of a metal oxide include a compound containing a transition metal element, a phosphorus element, and an oxygen element. Typical examples of such compounds include Y · Nd · Yb · PO 4 , Lu · Nd · Yb · PO 4 and La · Nd · Yb · PO 4 (wherein Y: yttrium element, Nd: neodymium element, Yb: Ytterbium element, Lu: lutetium element, La: lanthanum element, P: phosphorus element, O: oxygen element) and the like.

金属酸化物から成る赤外蛍光体の中でも特に、一般式A1−x−y Nd Yb PO(式中、AはY,LuおよびLaからなる群から選択される少なくとも1種以上の元素であり;0<x≦0.5;0<y≦0.5および0<x+y<1である)で表される化合物が好ましい。更に、上記一般式A1−x−y Nd Yb POで表される化合物の中でも、100μs以上の残光持続時間を有する化合物が特に好ましい。ここでいう「残光持続時間」は、励起光照射停止後の蛍光強度が1/10にまで低下するまでの時間を計測することによって得られる時間をいう。 Among infrared phosphors composed of metal oxides, in particular, the general formula A 1-xy Nd x Yb y PO 4 (wherein A is at least one selected from the group consisting of Y, Lu and La) Compounds represented by the following formulas are preferred: 0 <x ≦ 0.5; 0 <y ≦ 0.5 and 0 <x + y <1). Further, among the compounds represented by the general formula A 1-xy Nd x Yb y PO 4 , compounds having an afterglow duration of 100 μs or more are particularly preferable. Here, “afterglow duration” refers to the time obtained by measuring the time until the fluorescence intensity after stopping the excitation light irradiation is reduced to 1/10.

本発明の実施態様において、工程(i)で用いられる被検物質は、モデル実験で相関関係Aを予め得ておくことができるものであれば、液体、固体、溶解物等、いずれの種類の物質であってもかまわない。また、液状のものが乾燥や硬化等によってゲル化、固形物化したものであってもよい。好ましくは、被検物質は、溶剤、樹脂、添加剤、固形添加物、硬化性液体および生体物質から成る群から選択される少なくとも1種以上の物質である。なお、被検物質あるいは赤外蛍光体は、例えば、水、溶剤等が含まれる液体試料に溶解または分散した状態、固体またはゲル中に溶解または分散した状態で使用されることが好ましいが、定量性のある蛍光測定が可能であれば、蛍光測定時には沈降または浮遊等分離していても構わない。例えば、平底容器に被検物質を含む溶液を入れ、容器の底に均一に沈降物を生じた場合、容器上方または下方から励起光を照射、容器上方または下方から蛍光を観察すれば、定量性のある蛍光測定が可能である。この場合、例えば側面から励起光を照射すれば、定量性が得られない可能性がある。   In the embodiment of the present invention, the test substance used in step (i) may be any kind of liquid, solid, dissolved substance, etc., as long as the correlation A can be obtained in advance by a model experiment. It may be a substance. Further, a liquid material may be gelled or solidified by drying or curing. Preferably, the test substance is at least one substance selected from the group consisting of a solvent, a resin, an additive, a solid additive, a curable liquid, and a biological substance. The test substance or infrared phosphor is preferably used in a state dissolved or dispersed in a liquid sample containing water, a solvent, etc., or dissolved or dispersed in a solid or gel. As long as the fluorescence measurement is possible, it may be separated by sedimentation or floating at the time of fluorescence measurement. For example, if a solution containing a test substance is placed in a flat bottom container and a precipitate is uniformly formed at the bottom of the container, irradiation with excitation light from the top or bottom of the container and observation of fluorescence from the top or bottom of the container will give quantitative results. Fluorescence measurement with In this case, for example, if excitation light is irradiated from the side surface, the quantitative property may not be obtained.

工程(i)の混合物Mは、被検物質を含んだ液体試料と赤外蛍光体とを混合して、あるいはこれをさらに別の物質と混合して形成されるが、好ましくは、被検物質を含んだ液体試料を入れた容器等に対して赤外蛍光体を加えた後、必要に応じて、振とう、攪拌、混錬および/または静置などの操作が行われることになる。さらに必要に応じて、沈殿・相分離したものや、固形分等を分離し、取り出した成分のいずれかを後の蛍光測定用混合物Mとして用いる。次いで、得られた混合物MまたはMに対して赤外領域の波長の励起光が照射され、かかる励起光に起因して混合物MまたはMから赤外領域の波長の蛍光が放射されることになる。 Mixture M 1 of step (i) by mixing a liquid sample containing an analyte and an infrared phosphor, or which is further formed by mixing with another substance, preferably, be tested After adding the infrared phosphor to a container or the like containing a liquid sample containing a substance, operations such as shaking, stirring, kneading and / or standing are performed as necessary. Further, if necessary, the precipitate / phase-separated one or the solid content is separated, and any one of the extracted components is used as the mixture M 2 for subsequent fluorescence measurement. Next, the obtained mixture M 1 or M 2 is irradiated with excitation light having a wavelength in the infrared region, and fluorescence having a wavelength in the infrared region is emitted from the mixture M 1 or M 2 due to the excitation light. Will be.

混合物Mまたは混合物Mに照射する励起光および生じる蛍光は、被検物質およびその周囲に存在する物質に対する透過性が高く、それらの物質による発光、吸収または散乱が少ない赤外領域の波長を有するものである。好ましくは、励起光スペクトルおよび蛍光スペクトルのピーク波長は、700〜3000nmの近赤外領域の範囲にある。かかる波長よりも短い波長域の光では、被検物質およびその周囲に存在する物質による可視領域の光の吸収や発光がより多いだけでなく、散乱もより多くなり、その一方、かかる波長よりも長い波長域の光では、混合物Mまたは混合物Mによる赤外吸収がより多くなるからである。特に、混合物Mまたは混合物Mに水分が含まれている場合には、励起光スペクトルおよび蛍光スペクトルのピーク波長は、水による光の吸収が少ない700〜1300nmの近赤外領域の範囲にあることがより好ましい。更に、励起光の波長と蛍光の波長との差が大きい方が、赤外蛍光体を用いた蛍光強度測定に際して励起光の影響をカットしやすくなることをも考慮すると、励起光スペクトルのピーク波長が700〜1100nmの近赤外領域の範囲にあり、蛍光のスペクトルのピーク波長が850〜1200nmの近赤外領域の範囲にあることが更に好ましい。 The excitation light and the resulting fluorescence that irradiates the mixture M 1 or the mixture M 2 have a wavelength in the infrared region that is highly transmissive to the test substance and the substances existing around it, and that emits, absorbs, or scatters less from those substances. It is what you have. Preferably, the peak wavelength of the excitation light spectrum and the fluorescence spectrum is in the near infrared region of 700 to 3000 nm. Light in a shorter wavelength range than this wavelength not only absorbs and emits more light in the visible region, but also scatters more than the wavelength of the test substance and its surrounding materials, This is because the infrared absorption by the mixture M 1 or the mixture M 2 is increased in light having a long wavelength range. In particular, when the mixture M 1 or the mixture M 2 contains moisture, the peak wavelengths of the excitation light spectrum and the fluorescence spectrum are in the near infrared region of 700 to 1300 nm where light absorption by water is small. It is more preferable. Furthermore, considering that the greater the difference between the excitation light wavelength and the fluorescence wavelength, the easier it is to cut the influence of excitation light when measuring fluorescence intensity using an infrared phosphor, the peak wavelength of the excitation light spectrum Is more preferably in the near infrared region range of 700 to 1100 nm and the peak wavelength of the fluorescence spectrum is in the near infrared region range of 850 to 1200 nm.

なお、励起光スペクトルのピーク波長と蛍光スペクトルのピーク波長との差が20nm以下では、分光フィルタ等により、励起光と蛍光とを分離するのが難しく、仮に分離できたとしても各々の光が重なっている部分はカットせざるを得ず、光量ロスが大きくなるので、励起光スペクトルのピーク波長と蛍光スペクトルのピーク波長との差が20nm以上であることが好ましい。より好ましくは、励起光スペクトルのピーク波長と蛍光スペクトルのピーク波長との差が、50nm以上であり、更に好ましくは100nm以上である。   If the difference between the peak wavelength of the excitation light spectrum and the peak wavelength of the fluorescence spectrum is 20 nm or less, it is difficult to separate the excitation light and the fluorescence by a spectral filter or the like, and even if they can be separated, the respective lights overlap. Therefore, the difference between the peak wavelength of the excitation light spectrum and the peak wavelength of the fluorescence spectrum is preferably 20 nm or more. More preferably, the difference between the peak wavelength of the excitation light spectrum and the peak wavelength of the fluorescence spectrum is 50 nm or more, and more preferably 100 nm or more.

なお、本発明の方法に用いられる「赤外領域の波長を有する励起光」は、赤外領域の波長のレーザーで得られる他、ハロゲンランプ等の光源から発せられた光を適当な分光フィルタに通すことによって得ることができる。   The “excitation light having a wavelength in the infrared region” used in the method of the present invention can be obtained by using a laser having a wavelength in the infrared region, and can also use light emitted from a light source such as a halogen lamp as an appropriate spectral filter. Can be obtained by threading.

工程(i)では、励起光に起因して混合物MまたはMから放射される赤外領域の波長の蛍光について蛍光強度Iが得られる。本発明の方法では、蛍光強度Iと被検物質の量Qとの間に相関関係A(Q=fn(I))が存在することが必要であり、この相関関係Aを赤外蛍光体および被検物質を用いたモデル実験により予め得ておく必要がある。 In step (i), a fluorescence intensity I 1 is obtained for fluorescence in the infrared region emitted from the mixture M 1 or M 2 due to the excitation light. In the method of the present invention, it is necessary that a correlation A (Q = fn A (I)) exists between the fluorescence intensity I and the amount Q of the test substance. And it is necessary to obtain in advance by a model experiment using a test substance.

実際には、「蛍光強度」は、他の条件が一定ならば、測定に供せられる混合物MまたはM中に含まれる赤外蛍光体の濃度、あるいは混合物MまたはM中に含まれる赤外蛍光体の絶対量に一般に比例するものであるため(図2参照)、混合物MまたはMについての蛍光強度Iと、混合物MまたはMに含まれる赤外蛍光体の量Pとの間には相関関係B(P=fn(I))が一般に存在する。また、蛍光強度による被検物質の定量には相関関係Aが必要であるため、混合物MまたはM中の赤外蛍光体量Pと被検物質の量Qとの間に相関関係C(Q=fn(P))が必要であり、その相関関係が得られるような混合方法や併せて用いる処理方法を選択する。 In fact, "fluorescence intensity" may, if other conditions are constant, contains a concentration of the infrared phosphor contained in the mixture M 1 or M 2 is subjected to the measurement or in a mixture M 1 or M 2, since the is proportional to the general absolute amount of the infrared phosphor (see FIG. 2), and the fluorescence intensity I of the mixture M 1 or M 2, the amount of infrared phosphor contained in the mixture M 1 or M 2 A correlation B (P = fn B (I)) generally exists with P. Further, since the correlation A is necessary for the determination of the test substance based on the fluorescence intensity, the correlation C (between the infrared phosphor amount P and the test substance quantity Q in the mixture M 1 or M 2 is used. Q = fn C (P)) is required, and a mixing method and a processing method to be used are selected so that the correlation can be obtained.

相関関係BおよびCを求めれば、工程(i)で得られる蛍光強度Iから被検物質の量Qを求めることができるものの、相関関係BまたはCのいずれかまたは両方が求められない場合や、混合物の成分による吸収、発光、散乱等によって単純に相関関係BおよびCから相関関係Aが求められない場合がある。この場合、蛍光強度Iと被検物質の量Qとの間の相関関係Aを直接求める必要がある。通常相関関係Aは、理論的に計算等で直接求めることは困難なため、「モデル混合物」を用いた「モデル実験」により求めることになる。例えば、相関関係Aは、被検物質の量Qの量を変えた「モデル混合物」を数点用意して各々の蛍光強度Iを測定し、検量線を作成すること等により得ることができる。なお、相関関係BおよびCを求めることが可能な場合においても、相関関係BまたはCのいずれかまたは両方についても、通常「モデル混合物」を用いた「モデル実験」が必要となる。混合物中の成分により相関関係BまたはCが影響を受けない場合で、かつ相関関係BまたはCのいずれかが理論的に計算等で求められる場合には、このいずれかを理論的に計算等で求め、他方をモデル実験により求め、相関関係Aを求めてもよい。 When the correlations B and C are obtained, the amount Q 1 of the test substance can be obtained from the fluorescence intensity I 1 obtained in the step (i), but either or both of the correlations B and C are not obtained. In some cases, the correlation A cannot be obtained simply from the correlations B and C due to absorption, emission, scattering, and the like due to the components of the mixture. In this case, it is necessary to directly obtain the correlation A between the fluorescence intensity I and the amount Q of the test substance. Usually, the correlation A is theoretically difficult to obtain directly by calculation or the like, and is thus obtained by “model experiment” using a “model mixture”. For example, the correlation A can be obtained by preparing several “model mixtures” with different amounts of the test substance Q, measuring each fluorescence intensity I, and creating a calibration curve. Even when the correlations B and C can be obtained, a “model experiment” using a “model mixture” is usually required for either or both of the correlations B and C. When the correlation B or C is not affected by the components in the mixture, and either of the correlations B or C is theoretically calculated, etc., either of these is calculated theoretically. Alternatively, the other may be obtained by a model experiment, and the correlation A may be obtained.

以上のように全てまたは一部に「モデル実験」を用いて相関関係A(Q=fn(I))を予め求めておくことが、本発明では必要であり、その相関関係Aを用いることによって、工程(i)で得られた蛍光強度Iから被検物質の量Qを得ることができる。 As described above, it is necessary in the present invention to obtain the correlation A (Q = fn A (I)) in advance using all or part of the “model experiment”, and the correlation A is used. Thus, the amount Q 1 of the test substance can be obtained from the fluorescence intensity I 1 obtained in the step (i).

なお、ここでいう「モデル混合物」とは、少なくとも赤外蛍光体および被検物質を含み(モデル混合物を数点用いる場合、被検物質の量=0の混合物を一部含んでも構わない)、かつそれらの比率が明らかな混合物、またはそれらから一部を取り出した混合物であって、工程(i)の混合物MまたはMの全ての成分をほぼ同量含むことが望ましいが、混合物MまたはMの主な成分のみを含むものであってもかまわない。ただし、赤外領域に吸収・発光・散乱等のある成分は得られる蛍光強度に影響を及ぼすため、(i)の混合物MまたはMと同量または近い量含むことが最も好ましい。また、混合物MまたはMを得る過程が蛍光強度Iに影響を与える場合には同様の過程を経てモデル混合物を得ることが望ましい。 The “model mixture” here includes at least an infrared phosphor and a test substance (in the case of using several model mixtures, a part of the mixture in which the amount of the test substance = 0 may be included). and obvious mixtures thereof ratios, or a mixture obtained by extracting a part from them, it is desirable to include about the same amount of all components of the mixture M 1 or M 2 step (i), the mixture M 1 or it may be one containing only the main component of M 2. However, since components having absorption, emission, scattering, etc. in the infrared region affect the fluorescence intensity to be obtained, it is most preferable to contain the same or close amount as the mixture M 1 or M 2 in (i). Further, when the process of obtaining the mixture M 1 or M 2 affects the fluorescence intensity I 1 , it is desirable to obtain the model mixture through a similar process.

なお、特に制約がない限り、機器分析の分野で一般的に使用されている蛍光光度計を用いることによって、工程(i)で放射される蛍光から蛍光強度を得ることができる。   Unless otherwise specified, the fluorescence intensity can be obtained from the fluorescence emitted in the step (i) by using a fluorometer generally used in the field of instrumental analysis.

本発明の方法では、赤外領域の励起光・蛍光が用いられており、種々の物質に対する透過性が高いため、赤外蛍光体および被検物質の周囲に他の物質が存在していても、そのような物質を洗浄等により除去する必要がない点で利点を有する。このため、本発明の方法では、従来の定量分析(即ち、紫外線領域から可視領域の励起光および蛍光を利用した定量分析)等で洗浄除去しなければならなかった物質を除去せずに定量分析できる。その結果、洗浄工程を省くこと又は減らすことができ、定量分析に要する時間および手間を減らすことができる。また、必要な容器等も減らすこともでき、場合によっては1つの容器で済ませることが可能となる。また、検体が固体である場合には、非破壊で定量分析が可能である場合も多い。更には、被検物質が含まれる試料容器に蓋を設けたり、パラフィンまたはポリオレフィン製等のフィルム等でシールすることが可能となるだけでなく、かかる試料が、色素、微粒子、繊維および/または血液等の生体物質等の添加物が加えられた試料であったり、試料を透明性の低い樹脂で固めたりすること等も本発明の方法に与える影響が少ないために行うことができる。   In the method of the present invention, excitation light / fluorescence in the infrared region is used, and since it is highly permeable to various substances, even if other substances exist around the infrared phosphor and the test substance. This is advantageous in that it is not necessary to remove such substances by washing or the like. Therefore, in the method of the present invention, quantitative analysis is performed without removing substances that had to be washed and removed by conventional quantitative analysis (that is, quantitative analysis using excitation light and fluorescence from the ultraviolet region to the visible region). it can. As a result, the washing step can be omitted or reduced, and the time and labor required for quantitative analysis can be reduced. In addition, the number of necessary containers can be reduced, and in some cases, it is possible to use only one container. In addition, when the specimen is a solid, it is often possible to perform quantitative analysis nondestructively. Furthermore, it is possible not only to provide a lid on a sample container containing a test substance or to seal it with a film made of paraffin or polyolefin or the like, but also for such a sample to contain a dye, fine particles, fibers and / or blood. It is also possible to carry out a sample to which an additive such as a biological substance has been added or to harden the sample with a resin having low transparency because it has little influence on the method of the present invention.

次に、本発明の方法に好適な装置について説明する。かかる装置は、
赤外領域の波長を含む励起光を発する光源、
赤外蛍光体および被検物質を含んで成る混合物Mまたはそれらから一部を取り出した混合物Mから放射される赤外領域の波長の蛍光を検知する受光センサー、ならびに
光源と受光センサーとの間の光路に、混合物Mまたは混合物Mを保持または通過させる手段
を有して成り、
得られる蛍光強度に基づいて被検物質の定量を行うことができる装置である。
Next, an apparatus suitable for the method of the present invention will be described. Such a device is
A light source that emits excitation light including wavelengths in the infrared region,
A light receiving sensor for detecting fluorescence in the infrared region emitted from a mixture M 1 comprising an infrared phosphor and a test substance or a mixture M 2 partially extracted therefrom; and a light source and a light receiving sensor. Comprising means for holding or passing the mixture M 1 or the mixture M 2 in the optical path between,
This is an apparatus capable of quantifying a test substance based on the obtained fluorescence intensity.

上述したように、本発明の方法の実施に際しては、レーザーとフォトダイオードの組み合せ等、小さなパーツの組み合わせでよく、また、外乱光の影響が小さいため厳密な遮光が必要ないため、装置の小型化が図られている。   As described above, in carrying out the method of the present invention, a combination of small parts such as a combination of a laser and a photodiode may be used, and since the influence of disturbance light is small, strict light shielding is not necessary, so that the apparatus can be downsized. Is planned.

本発明の方法に好適な装置に用いられる「光源」は、赤外領域の波長を含む励起光を発するものであれば、いずれの種類の光源を用いてもよい。例えば、一般的な分析機器に使用されている光源(例えば、レーザーまたはハロゲンランプ等)を用いることができる。光源から発せられる光から赤外領域の波長の励起光を取り出すことができる分光フィルタを好ましくは備えている。   As the “light source” used in the apparatus suitable for the method of the present invention, any type of light source may be used as long as it emits excitation light including wavelengths in the infrared region. For example, a light source (for example, a laser or a halogen lamp) used in a general analytical instrument can be used. A spectral filter that can extract excitation light having a wavelength in the infrared region from light emitted from the light source is preferably provided.

本発明の方法に好適な装置の「受光センサー」は、励起光の照射によって混合物Mまたは混合物Mから放射される赤外領域の波長の蛍光を検知できるものであれば、いずれの種類のセンサーであってもよい。例えば、一般的な分析機器に使用されているフォトダイオード、アバランシェ・フォトダイオード、CCD等の受光センサーを用いることができる。 The “light-receiving sensor” of the apparatus suitable for the method of the present invention is any type as long as it can detect fluorescence in the infrared region emitted from the mixture M 1 or the mixture M 2 by irradiation with excitation light. It may be a sensor. For example, a light receiving sensor such as a photodiode, an avalanche photodiode, or a CCD used in a general analytical instrument can be used.

本発明の方法に好適な装置の「混合物Mまたは混合物Mを保持または通過させる手段」は、光源と受光センサーとの間の光路に混合物Mまたは混合物Mを供することができるものであれば、いずれの種類の手段であってもかまわない。つまり、赤外領域の波長の励起光が照射される位置に混合物Mまたは混合物Mをサポートする又は通過させるものであればよい。例えば、一般的な分析機器で測定試料を保持または移動するのに使用されている手段を用いることができる。 The “means for holding or passing the mixture M 1 or the mixture M 2 ” of the apparatus suitable for the method of the present invention is capable of providing the mixture M 1 or the mixture M 2 in the optical path between the light source and the light receiving sensor. Any type of means can be used. In other words, any material that supports or allows the mixture M 1 or the mixture M 2 to pass through the position where the excitation light having the wavelength in the infrared region is irradiated. For example, the means used for holding or moving the measurement sample in a general analytical instrument can be used.

なお、被検物質および赤外蛍光体を含んだ混合物Mまたは混合物Mと光源との間、かかる混合物Mまたは混合物Mと受光センサーとの間、またはその双方に適当なフィルタを挿入し、光源で生じる励起光が受光センサーに届かないようにすることが好ましい。 Incidentally, the insertion between, between such mixtures M 1 or a mixture M 2 and the light-receiving sensor or a suitable filter both, of a mixture M 1 or a mixture M 2 and the light source including the test substance and the infrared fluorescent However, it is preferable that excitation light generated by the light source does not reach the light receiving sensor.

以下、実施例を挙げて具体的に説明するが、本発明はかかる実施例に限定されない。   Hereinafter, although an example is given and explained concretely, the present invention is not limited to this example.

<赤外蛍光粒子の合成>
特許公報3336572号の実施例1に従って、「被検物質が結合することが可能な官能基または物質」が固定化されていない赤外蛍光粒子(以下、「赤外蛍光粒子A」ともいう)を合成した。具体的には、Nd23:3.5g,Yb23:4.0g,Y23:18.0gおよびH3PO4:60.0gから成る原料を十分に混合し、アルミナ製の蓋付きルツボに充填した後、電気炉に入れ、室温から700℃位まで、一定昇温速度で2時間かけて昇温し、その後、700℃で6時間焼成した。焼成終了後、直ちに電気炉から取り出し、空気中で放冷した。次いで、ルツボに100℃の熱湯を入れ、煮沸した。その結果得られた蛍光粒子をルツボから取り出し、1規定の硝酸で洗浄し、水洗し、乾燥を行った。以上の操作により、一般式Nd0.1Yb0.10.8PO4で表される赤外蛍光粒子Aを得た。この赤外蛍光粒子Aは、「被検物質が結合することが可能な官能基または物質」が固定化されていない。赤外蛍光粒子Aでは、励起光スペクトルのピーク波長が約810nmの励起光を照射すると980nmの蛍光スペクトルのピーク波長が得られた。
<Synthesis of infrared fluorescent particles>
Infrared fluorescent particles (hereinafter, also referred to as “infrared fluorescent particles A”) to which “functional groups or substances to which a test substance can bind” are not immobilized according to Example 1 of Japanese Patent Publication No. 3336572 Synthesized. Specifically, raw materials composed of Nd 2 O 3 : 3.5 g, Yb 2 O 3 : 4.0 g, Y 2 O 3 : 18.0 g and H 3 PO 4 : 60.0 g are mixed thoroughly to obtain alumina. After filling a crucible with a lid made of the product, it was put in an electric furnace, heated from room temperature to about 700 ° C. at a constant heating rate over 2 hours, and then fired at 700 ° C. for 6 hours. Immediately after the completion of firing, the product was taken out from the electric furnace and allowed to cool in air. Next, hot water at 100 ° C. was put into the crucible and boiled. The resulting fluorescent particles were removed from the crucible, washed with 1N nitric acid, washed with water, and dried. Through the above operation, infrared fluorescent particles A represented by the general formula Nd 0.1 Yb 0.1 Y 0.8 PO 4 were obtained. In this infrared fluorescent particle A, “functional group or substance capable of binding to the test substance” is not immobilized. In the infrared fluorescent particles A, the peak wavelength of the fluorescence spectrum of 980 nm was obtained when the excitation light having the peak wavelength of the excitation light spectrum of about 810 nm was irradiated.

<蛍光強度測定試験に用いる試料の調製>
次いで、赤外蛍光粒子Aおよび他の材料を用いることによって、以下の蛍光強度測定試験で用いる試料を調製した。
<Preparation of sample used for fluorescence intensity measurement test>
Next, a sample used in the following fluorescence intensity measurement test was prepared by using the infrared fluorescent particles A and other materials.

まず、実施例として以下の試料を調製した。
(実施例1・・・試料Aの調製)
10ppmとなるように赤外蛍光粒子Aを水に均一に分散させて試料Aを調製した。
First, the following samples were prepared as examples.
Example 1 Preparation of Sample A
Sample A was prepared by uniformly dispersing the infrared fluorescent particles A in water so as to be 10 ppm.

(実施例2・・・試料Bの調製)
10ppmとなるように赤外蛍光粒子Aを水に均一に分散させた後、その50μLとエチルアルコール950μLとを混合することによって試料Bを調製した。
(Example 2 ... Preparation of sample B)
Sample B was prepared by uniformly dispersing the infrared fluorescent particles A in water so as to be 10 ppm, and then mixing 50 μL thereof with 950 μL of ethyl alcohol.

(実施例3・・・試料Cの調製)
エチルアルコールをアガロース1重量%加熱溶解水溶液に変更し、混合後に室温に冷却してやや白濁したゲルを得たこと以外は実施例2と同様な操作によって試料Cを調製した。
Example 3 Preparation of Sample C
Sample C was prepared in the same manner as in Example 2, except that ethyl alcohol was changed to a 1% by weight heated solution of agarose and cooled to room temperature after mixing to obtain a slightly cloudy gel.

(実施例4・・・試料Dの調製)
エチルアルコールをヘモグロビン溶液に変更したこと以外は実施例2と同様な操作によって試料Dを調製した。
Example 4 Preparation of Sample D
Sample D was prepared in the same manner as in Example 2 except that ethyl alcohol was changed to a hemoglobin solution.

(実施例5・・・試料Eの調製)
実施例1で得られた試料Aに対して励起用レーザー光を5分間照射することによって試料Eを調製した。
(Example 5: Preparation of sample E)
Sample E was prepared by irradiating the sample A obtained in Example 1 with excitation laser light for 5 minutes.

次いで、各実施例に対応する比較例として、以下の試料を調製した(実施例2に対応する比較例2は除く)。
(比較例1・・・試料A’の調製)
赤外蛍光粒子Aの代わりに可視蛍光色素FITC(Fluorescein isothiocianate)を用いたこと以外は、実施例1と同様な操作によって試料A’を調製した。
Next, the following samples were prepared as comparative examples corresponding to the respective examples (excluding comparative example 2 corresponding to example 2).
(Comparative Example 1 ... Preparation of Sample A ')
Sample A ′ was prepared in the same manner as in Example 1 except that the visible fluorescent dye FITC (Fluorescein isothiocyanate) was used instead of the infrared fluorescent particle A.

(比較例3・・・試料C’の調製)
赤外蛍光粒子Aの代わりに可視蛍光色素FITCを用いたこと以外は、実施例3と同様な操作によって試料C’を調製した。
(Comparative Example 3 ... Preparation of Sample C ')
Sample C ′ was prepared in the same manner as in Example 3 except that the visible fluorescent dye FITC was used instead of the infrared fluorescent particle A.

(比較例4・・・試料D’の調製)
赤外蛍光粒子Aの代わりに可視蛍光色素FITCを用いたこと以外は、実施例4と同様な操作によって試料D’を調製した。
(Comparative Example 4 ... Preparation of Sample D ')
Sample D ′ was prepared in the same manner as in Example 4 except that the visible fluorescent dye FITC was used instead of the infrared fluorescent particle A.

(比較例5・・・試料E’の調製)
赤外蛍光粒子Aの代わりに可視蛍光色素FITCを用いたこと以外は、実施例5と同様な操作によって試料E’を調製した。
(Comparative Example 5 ... Preparation of sample E ')
Sample E ′ was prepared in the same manner as in Example 5 except that the visible fluorescent dye FITC was used instead of the infrared fluorescent particle A.

実施例および比較例で得られた試料を表1にまとめる。

Figure 2007155548
Samples obtained in Examples and Comparative Examples are summarized in Table 1.
Figure 2007155548

<蛍光強度測定試験>
得られた実施例1〜5および比較例1〜5(比較例2を除く)で得られた試料に対して、蛍光強度を測定した。
<Fluorescence intensity measurement test>
The fluorescence intensity was measured for the samples obtained in Examples 1 to 5 and Comparative Examples 1 to 5 (excluding Comparative Example 2).

各種レーザー光源、試料容器、シリコン受光素子およびフィルタを並べて測定を行った。実施例の試料を用いた測定では、光源側には810nmのレーザーを使用して810nmを中心とした波長を取り出せるバンドパスフィルタを挿入し、受光素子側には980nmを中心とした波長を取り出せるバンドパスフィルタを挿入した。また、比較例の試料を用いた測定では、光源側には495nmのレーザーを使用して495nmを中心とした波長を取り出せるバンドパスフィルタを挿入し、受光素子側には520nmを中心とした波長を取り出せるバンドパスフィルタを挿入した。   Various laser light sources, sample containers, silicon light receiving elements and filters were arranged side by side for measurement. In the measurement using the sample of the example, a bandpass filter that can extract a wavelength centered at 810 nm using a 810 nm laser is inserted on the light source side, and a band that can extract a wavelength centered on 980 nm is inserted on the light receiving element side. A path filter was inserted. In the measurement using the sample of the comparative example, a bandpass filter capable of extracting a wavelength centered on 495 nm using a 495 nm laser is inserted on the light source side, and a wavelength centered on 520 nm is inserted on the light receiving element side. A removable bandpass filter was inserted.

蛍光強度の結果を表2に示す。なお、蛍光強度は検出光の信号強度(dB)を用いて表しており、実施例1および比較例1の遮光時の信号強度を0(dB)として規格化している。また、表中の「遮光」は「外乱光がある」ことを実質的に意味する一方、「遮光なし」は「外乱光がない」ことを実質的に意味している。   The results of fluorescence intensity are shown in Table 2. The fluorescence intensity is expressed using the signal intensity (dB) of the detection light, and the signal intensity at the time of shading in Example 1 and Comparative Example 1 is normalized to 0 (dB). In addition, “light shielding” in the table substantially means “there is disturbance light”, whereas “no light shielding” substantially means “no disturbance light”.

Figure 2007155548
Figure 2007155548

表2の結果から以下のことが分かった:

・赤外蛍光体を用いた実施例1の結果と可視蛍光体を用いた比較例1の結果とを比べると、実施例1の方が、「遮光」/「遮光なし」の条件に対する検出光の信号強度の差が小さく、外乱光の影響が小さい;

・実施例1の結果と実施例2の結果とを比べると(実施例2の試料Bは、実施例1の試料Aよりも赤外蛍光体濃度が低い)、赤外蛍光体の濃度の変化が検出光の信号強度の変化として観測され、それに基づいて検量線を作成すれば定量分析が可能である;

・実施例3の結果と比較例3の結果とを比べると、赤外蛍光体を用いた実施例3の方が、可視蛍光体を用いた比較例3によりも、検出光の信号強度の低下が小さく、赤外光は可視光よりも透過性が高い;

・実施例4の結果と比較例4の結果とを比べると、より透明性の低いヘモグロビン存在下であっても、赤外蛍光体を用いた実施例4の場合では蛍光を検出できるのに対し、可視蛍光体を用いた比較例4の場合では蛍光を殆ど検出できない;

・実施例5の結果と比較例5の結果とを比べると、励起光の照射によって蛍光強度が低下する比較例5の蛍光色素と比べて、実施例5の金属酸化物系の赤外蛍光体では蛍光強度の低下がほとんど見られず安定している。
The results in Table 2 showed that:

-When comparing the result of Example 1 using an infrared phosphor with the result of Comparative Example 1 using a visible phosphor, Example 1 detects light with respect to the conditions of "light shielding" / "no light shielding". Signal intensity difference between the two is small and the influence of ambient light is small;

When the result of Example 1 is compared with the result of Example 2 (Sample B of Example 2 has a lower infrared phosphor concentration than Sample A of Example 1), the change in concentration of the infrared phosphor Is observed as a change in the signal intensity of the detected light, and if a calibration curve is created based on this change, quantitative analysis is possible;

When comparing the results of Example 3 and the results of Comparative Example 3, the signal intensity of the detected light is lower in Example 3 using the infrared phosphor than in Comparative Example 3 using the visible phosphor. , And infrared light is more transmissive than visible light;

-When the result of Example 4 and the result of Comparative Example 4 are compared, in the case of Example 4 using an infrared phosphor, fluorescence can be detected even in the presence of hemoglobin having lower transparency. In the case of Comparative Example 4 using a visible phosphor, almost no fluorescence can be detected;

-When comparing the result of Example 5 with the result of Comparative Example 5, compared to the fluorescent dye of Comparative Example 5 in which the fluorescence intensity is reduced by the irradiation of excitation light, the metal oxide infrared phosphor of Example 5 Is stable with almost no decrease in fluorescence intensity.

以上の結果から、実施例では、安定した蛍光強度が得られるだけでなく、試料の透明性が低い場合であっても外乱光の影響を殆ど受けずに定量分析できることが分かり、本発明の方法を用いるとバックグランドを低く抑えて実質的に高い感度で定量分析できることが示された。   From the above results, it can be seen that in the example, not only stable fluorescence intensity can be obtained, but also quantitative analysis can be performed with little influence of disturbance light even when the transparency of the sample is low. It was shown that quantitative analysis can be performed with substantially high sensitivity by using a low background.

赤外蛍光体を用いると、工業生産、検査、研究等における被検物質の混合比率や存在比率の定量、被検物質を含む膜厚の計測等に本発明の方法を利用することができる。   When the infrared phosphor is used, the method of the present invention can be used for quantification of the mixing ratio and existence ratio of the test substance in industrial production, inspection, research, etc., measurement of the film thickness including the test substance, and the like.

図1は、本発明の方法の工程を示すフローチャートである。FIG. 1 is a flowchart showing the steps of the method of the present invention. 図2は、本発明の方法で用いる相関関係を模式的に示すグラフである。FIG. 2 is a graph schematically showing the correlation used in the method of the present invention.

Claims (10)

赤外領域の波長の励起光を照射すると赤外領域の波長の蛍光を放射する赤外蛍光体を用いて、被検物質の定量分析を行う方法であって、
(i)該被検物質と該赤外蛍光体とを含んで成る混合物Mまたはそれらから一部を取り出した混合物Mに対して、赤外領域の波長の励起光を照射して、該混合物MまたはMから放射される赤外領域の波長の蛍光について蛍光強度Iを得る工程、ならびに
(ii)赤外蛍光体および被検物質を用いたモデル実験により予め得ておいた、工程(i)のモデル混合物についての蛍光強度Iと被検物質の量Qとの相関関係Aに基づいて、工程(i)で得られた蛍光強度Iから該被検物質の量Qを求める工程
を含んで成る方法。
A method for quantitative analysis of a test substance using an infrared phosphor that emits fluorescence having a wavelength in the infrared region when irradiated with excitation light having a wavelength in the infrared region,
(I) The mixture M 1 including the test substance and the infrared phosphor, or the mixture M 2 extracted from the mixture M 1 is irradiated with excitation light having a wavelength in the infrared region, Obtaining fluorescence intensity I 1 for the fluorescence in the infrared region emitted from the mixture M 1 or M 2 , and (ii) obtained in advance by a model experiment using an infrared phosphor and a test substance, Based on the correlation A between the fluorescence intensity I for the model mixture in step (i) and the amount Q of the test substance, the amount Q 1 of the test substance is calculated from the fluorescence intensity I 1 obtained in step (i). A method comprising the step of determining.
前記工程(i)において、励起光スペクトルのピーク波長が近赤外領域の範囲にある励起光を照射することによって、蛍光スペクトルのピーク波長が近赤外領域の範囲にある蛍光を得ることを特徴とする、請求項1に記載の方法。   In the step (i), by irradiating excitation light whose excitation light spectrum has a peak wavelength in the near infrared region, fluorescence having a fluorescence spectrum peak wavelength in the near infrared region is obtained. The method according to claim 1. 前記工程(i)において、励起光スペクトルのピーク波長が700〜1100nmの範囲の励起光を照射することによって、蛍光スペクトルのピーク波長が850〜1200nmの範囲の蛍光を得ることを特徴とする、請求項2に記載の方法。   In the step (i), by irradiating excitation light having a peak wavelength of the excitation light spectrum in the range of 700 to 1100 nm, fluorescence having a peak wavelength of the fluorescence spectrum in the range of 850 to 1200 nm is obtained. Item 3. The method according to Item 2. 励起光スペクトルのピーク波長と蛍光スペクトルのピーク波長との差が、50nm以上であることを特徴とする、請求項2または請求項3に記載の方法。   The method according to claim 2 or 3, wherein the difference between the peak wavelength of the excitation light spectrum and the peak wavelength of the fluorescence spectrum is 50 nm or more. 前記赤外蛍光体および/または前記被検物質の周囲には非被検物質が存在していることを特徴とする、請求項1〜4のいずれかに記載の方法。   The method according to claim 1, wherein a non-test substance exists around the infrared phosphor and / or the test substance. 前記非被検物質が、水、溶剤、樹脂、添加剤、色素、微粒子および生体物質から成る群から選択される少なくとも1種以上の非被検物質であることを特徴とする、請求項5に記載の方法。   6. The non-test substance according to claim 5, wherein the non-test substance is at least one kind of non-test substance selected from the group consisting of water, a solvent, a resin, an additive, a dye, fine particles, and a biological substance. The method described. 前記赤外蛍光体が、粒径が2nm〜5μmの粒子状物質であることを特徴とする、請求項1〜6のいずれかに記載の方法。   The method according to claim 1, wherein the infrared phosphor is a particulate substance having a particle size of 2 nm to 5 μm. 前記赤外蛍光体が金属酸化物から形成されることを特徴とする、請求項1〜7のいずれかに記載の方法。   The method according to claim 1, wherein the infrared phosphor is formed from a metal oxide. 前記金属酸化物が、遷移金属元素、リン元素および酸素元素から成ることを特徴とする、請求項8に記載の方法。   9. The method according to claim 8, wherein the metal oxide comprises a transition metal element, a phosphorus element and an oxygen element. 前記赤外蛍光体が、一般式A1−x−y Nd Yb PO(式中、AはY,LuおよびLaからなる群から選択される少なくとも1種以上の元素であり;0<x≦0.5;0<y≦0.5および0<x+y<1である)で表される金属酸化物から形成されていることを特徴とする、請求項9に記載の方法。
The infrared phosphor is represented by the general formula A 1-xy Nd x Yb y PO 4 (wherein A is at least one element selected from the group consisting of Y, Lu and La; 0 < The method according to claim 9, wherein the metal oxide is represented by the following formula: x ≦ 0.5; 0 <y ≦ 0.5 and 0 <x + y <1.
JP2005352409A 2005-12-06 2005-12-06 Quantitative analysis using infrared phosphor Pending JP2007155548A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005352409A JP2007155548A (en) 2005-12-06 2005-12-06 Quantitative analysis using infrared phosphor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005352409A JP2007155548A (en) 2005-12-06 2005-12-06 Quantitative analysis using infrared phosphor

Publications (1)

Publication Number Publication Date
JP2007155548A true JP2007155548A (en) 2007-06-21

Family

ID=38240116

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005352409A Pending JP2007155548A (en) 2005-12-06 2005-12-06 Quantitative analysis using infrared phosphor

Country Status (1)

Country Link
JP (1) JP2007155548A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008152891A1 (en) * 2007-06-13 2008-12-18 Konica Minolta Medical & Graphic, Inc. Near-infrared light-emitting phosphor nanoparticle, method for producing the same, and agent for labeling biological substance using the same
WO2009011188A1 (en) * 2007-07-18 2009-01-22 Konica Minolta Medical & Graphic, Inc. Near infrared light-emitting phosphor nanoparticle, method for producing the same, and agent for labeling biological substance using the same
CN113072374A (en) * 2021-03-08 2021-07-06 江苏大学 Ytterbium-doped lanthanum phosphate ceramic and preparation method thereof

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0770560A (en) * 1993-09-06 1995-03-14 Hitachi Maxell Ltd Fluorescencer and its production
JPH0790265A (en) * 1993-09-24 1995-04-04 Hitachi Maxell Ltd Infrared rays-emitting fluorescent material
JPH07145148A (en) * 1992-06-02 1995-06-06 Bio Sensor Kenkyusho:Kk Polymethine-based compound and measuring method using the same
JP2005509857A (en) * 2001-11-14 2005-04-14 ベックマン コールター インコーポレイテッド Analyte detection system
JP2005189237A (en) * 2003-12-05 2005-07-14 Sekisui Chem Co Ltd Optical measuring method

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07145148A (en) * 1992-06-02 1995-06-06 Bio Sensor Kenkyusho:Kk Polymethine-based compound and measuring method using the same
JPH0770560A (en) * 1993-09-06 1995-03-14 Hitachi Maxell Ltd Fluorescencer and its production
JPH0790265A (en) * 1993-09-24 1995-04-04 Hitachi Maxell Ltd Infrared rays-emitting fluorescent material
JP2005509857A (en) * 2001-11-14 2005-04-14 ベックマン コールター インコーポレイテッド Analyte detection system
JP2005189237A (en) * 2003-12-05 2005-07-14 Sekisui Chem Co Ltd Optical measuring method

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008152891A1 (en) * 2007-06-13 2008-12-18 Konica Minolta Medical & Graphic, Inc. Near-infrared light-emitting phosphor nanoparticle, method for producing the same, and agent for labeling biological substance using the same
US20100171076A1 (en) * 2007-06-13 2010-07-08 Konica Minolta Medical & Graphic, Inc. Near-infrared light-emitting phosphor nanoparticles, method for manufacturing the same, and biological substance labeling agent employing the same
JPWO2008152891A1 (en) * 2007-06-13 2010-08-26 コニカミノルタエムジー株式会社 Near-infrared emitting phosphor nanoparticle, method for producing the same, and biomaterial labeling agent using the same
WO2009011188A1 (en) * 2007-07-18 2009-01-22 Konica Minolta Medical & Graphic, Inc. Near infrared light-emitting phosphor nanoparticle, method for producing the same, and agent for labeling biological substance using the same
CN113072374A (en) * 2021-03-08 2021-07-06 江苏大学 Ytterbium-doped lanthanum phosphate ceramic and preparation method thereof

Similar Documents

Publication Publication Date Title
Verri The spatially resolved characterisation of Egyptian blue, Han blue and Han purple by photo-induced luminescence digital imaging
Katumo et al. Smartphone‐based luminescent thermometry via temperature‐sensitive delayed fluorescence from Gd2O2S: Eu3+
de Barros Santos et al. Fast detection of paracetamol on a gold nanoparticle–chitosan substrate by SERS
CN109073561B (en) Detection of organic chemicals
JP2006194711A (en) Performance evaluation method and performance evaluation device of fluorescence-emission pigment
Ehgartner et al. Low cost referenced luminescent imaging of oxygen and pH with a 2-CCD colour near infrared camera
JP6721030B2 (en) Pathological specimen, method of making pathological specimen
US7842505B2 (en) Fluorescent labeling reagent
Hauser et al. Improvement in fingerprint detection using Tb (III)-dipicolinic acid complex doped nanobeads and time resolved imaging
JP3878782B2 (en) Food condition evaluation method and food condition evaluation apparatus
JP2007155548A (en) Quantitative analysis using infrared phosphor
Könemann et al. Characterization of steady-state fluorescence properties of polystyrene latex spheres using off-and online spectroscopic methods
JP5209705B2 (en) Automatic analyzer
JP4810639B2 (en) Quantitative method using infrared fluorescent particles
CN105917212B (en) Calibration standard for a device for graphically representing biological material
JP2016080565A (en) Raman spectrum detection method for ebola virus, and ebola virus antibody-immobilized plate
Alaoui et al. Fingerprint visualization and spectroscopic properties of 1, 2-indanedione-alanine followed by zinc chloride or europium chloride
RU2629839C1 (en) Method for determining palm oil content in milk
CN103185686B (en) Particulate matter component assay method in transformer oil
CN110849854B (en) Method for determining Hg2+ and CH3Hg + contents by adopting BA-Eu-MOF composite material
JP2006280296A (en) Method for detecting living cell
JP2012008042A (en) Parasite eggs detection method and system
Terpetschnig et al. Long-wavelength polarization standards
JP2006333812A (en) Method for metering microorganism and apparatus for metering microorganism
EP4206332A1 (en) Target measurement method, device for target measurement, target measurement apparatus, and kit for target measurement

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20080911

Free format text: JAPANESE INTERMEDIATE CODE: A621

A977 Report on retrieval

Effective date: 20100916

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100928

A521 Written amendment

Effective date: 20101124

Free format text: JAPANESE INTERMEDIATE CODE: A523

A131 Notification of reasons for refusal

Effective date: 20110419

Free format text: JAPANESE INTERMEDIATE CODE: A131

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110816