JP4315371B2 - Infrared-visible conversion phosphor - Google Patents

Infrared-visible conversion phosphor Download PDF

Info

Publication number
JP4315371B2
JP4315371B2 JP2003319132A JP2003319132A JP4315371B2 JP 4315371 B2 JP4315371 B2 JP 4315371B2 JP 2003319132 A JP2003319132 A JP 2003319132A JP 2003319132 A JP2003319132 A JP 2003319132A JP 4315371 B2 JP4315371 B2 JP 4315371B2
Authority
JP
Japan
Prior art keywords
phosphor
infrared
particle size
boron
visible conversion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003319132A
Other languages
Japanese (ja)
Other versions
JP2005082770A (en
Inventor
武 高原
純也 渡部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nemoto and Co Ltd
Original Assignee
Nemoto and Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nemoto and Co Ltd filed Critical Nemoto and Co Ltd
Priority to JP2003319132A priority Critical patent/JP4315371B2/en
Publication of JP2005082770A publication Critical patent/JP2005082770A/en
Application granted granted Critical
Publication of JP4315371B2 publication Critical patent/JP4315371B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Luminescent Compositions (AREA)

Description

本発明は、赤外線照射により緑色発光する蛍光体に関する。更に詳しくは、適当な赤外線発光源と組み合わせて、高付加価値製品、秘密書類の真偽確認コードないし偽造防止のために使用する蛍光体に関する。また、赤外線検出システムに使用できる蛍光体に関する。   The present invention relates to a phosphor that emits green light by infrared irradiation. More particularly, the present invention relates to a high-value-added product, a genuine document verification code for secret documents, or a phosphor used for preventing counterfeiting in combination with a suitable infrared light source. Moreover, it is related with the fluorescent substance which can be used for an infrared detection system.

赤外線で励起したとき、可視光を発光する赤外可視光変換蛍光体は公知であり、多数の低エネルギーの赤外線フォトン照射により高エネルギーの可視光フォトンを発生させる目的で、Yb及びErで賦活された蛍光体が知られている。
このような蛍光体としては、たとえば、下記の非特許文献1にはフッ化物を主成分とする蛍光体が記載されている。これらのフッ化物蛍光体の赤外可視光変換効率は高いが、製造工程において、酸素を混入しないように製造することが難しく、湿度・気温等の環境条件の影響を受け易く、品質の安定性の点で問題がある。
これに対して、希土類酸化硫化物蛍光体は変換効率は上記フッ化物蛍光体に比べると若干劣るが、製造が比較的容易で、上述の環境条件のほかに有機溶媒、アルカリなどにも強く、過去にもいくつかの特許提案がなされている。
Infrared-visible light-converting phosphors that emit visible light when excited with infrared light are known and activated with Yb and Er for the purpose of generating high-energy visible light photons by irradiating many low-energy infrared photons. Known phosphors are known.
As such a phosphor, for example, the following Non-Patent Document 1 describes a phosphor mainly composed of fluoride. Although these fluoride phosphors have high infrared-visible light conversion efficiency, they are difficult to manufacture without mixing oxygen in the manufacturing process, are easily affected by environmental conditions such as humidity and temperature, and are stable in quality. There is a problem in terms of.
In contrast, rare earth oxysulfide phosphors are slightly inferior in conversion efficiency to the above-mentioned fluoride phosphors, but are relatively easy to manufacture, and are resistant to organic solvents, alkalis, and the like in addition to the environmental conditions described above. Several patent proposals have been made in the past.

例えば下記特許文献1には(La,Gd,Y)22S:Yb,Er蛍光体、下記特許文献2には(La,Gd,Y)22S:Yb,Er,Ho蛍光体、下記特許文献3には(Sc,Lu)22S:Yb,Er蛍光体、下記特許文献4にはY22S:Yb,Er蛍光体が記載されている。
これらの希土類酸化硫化物蛍光体は、通常希土類酸化物にアルカリ金属炭酸塩と硫黄とを反応させて製造する。加熱すると、アルカリ金属多硫化物が生成し、希土類酸化物を硫化して酸化硫化物を生成する。この焼成物を水洗するとアルカリ金属成分が除去され、所望の酸化硫化物蛍光体が得られる。
For example, the following Patent Document 1 discloses (La, Gd, Y) 2 O 2 S: Yb, Er phosphor, and the following Patent Document 2 describes (La, Gd, Y) 2 O 2 S: Yb, Er, Ho phosphor. Patent Document 3 below describes (Sc, Lu) 2 O 2 S: Yb, Er phosphor, and Patent Document 4 below discloses Y 2 O 2 S: Yb, Er phosphor.
These rare earth oxysulfide phosphors are usually produced by reacting a rare earth oxide with an alkali metal carbonate and sulfur. When heated, an alkali metal polysulfide is produced, and the rare earth oxide is sulfided to produce an oxysulfide. When the fired product is washed with water, the alkali metal component is removed, and a desired oxysulfide phosphor is obtained.

これらの蛍光体は、赤外線を照射することにより緑色に発光することから、この特性を利用したセキュリティシステム、たとえば適当な赤外線発光源と組み合わせて、高付加価値製品としての証明書類、秘密書類、紙幣などにこれらの蛍光体を印刷塗布して、偽造防止等の目的として使用される。このとき、印刷塗布性の観点から、小粒子であり粒子形状が揃っている蛍光体が望まれている。
一般的に赤外可視光変換効率は蛍光体の粒子径に依存して、小粒子になるほど発光輝度は低下する。また、蛍光体を小粒子化するために、焼成後の蛍光体をボールミル等で粉砕して小粒子蛍光体を得る方法や、分級によって小粒子部分を選別して、目的とする粒径を備えた小粒子蛍光体を得る方法が知られている。 しかしながら、この様な方法で得られた蛍光体はボールミル等のストレスによる発光輝度の更なる低下や分級法による歩留まりの低下が起こり、好ましくない。
Since these phosphors emit green light when irradiated with infrared rays, they are combined with a security system using this characteristic, for example, an appropriate infrared emission source, such as certificates, secret documents, banknotes as high-value-added products. These phosphors are used for the purpose of preventing counterfeiting by printing and applying these phosphors. At this time, from the viewpoint of print applicability, a phosphor that is small and has a uniform particle shape is desired.
In general, the infrared-visible light conversion efficiency depends on the particle diameter of the phosphor, and the emission luminance decreases as the particle size decreases. In addition, in order to reduce the size of the phosphor, a method of obtaining a small particle phosphor by pulverizing the phosphor after firing with a ball mill or the like, and selecting a small particle portion by classification to provide a target particle size. A method for obtaining a small particle phosphor is known. However, the phosphor obtained by such a method is not preferable because a further decrease in emission luminance due to stress such as a ball mill or a decrease in yield due to a classification method occurs.

このため、小粒子で高効率の蛍光体の開発が望まれていた。酸化硫化物蛍光体の発光特性向上のために蛍光体の融剤(フラックス)として、例えば下記非特許文献2にはヒ酸塩、ゲルマン酸塩、リン酸塩及び硫酸塩を用いることが好ましいと記載されている。このほかに上述の特許文献4にはアルカリ金属フッ化物のKFを使用することが記載されている。
しかしながら、これらの工夫によっても光出力は十分とはいえず、更なる改良が期待されていた。
特公昭47−47518号公報 特公昭49−34307号公報 特公昭49−45990号公報 英国特許第2258659号公開公報 G.Blasse & B.C.Grabmaier著,「Luminescent Materials」,Springer−Verlag刊(ドイツ),1994年9月、p.195−202 蛍光体同学会編、「蛍光体ハンドブック」、オーム社、昭和62年12月25日、p.260
For this reason, development of highly efficient phosphors with small particles has been desired. In order to improve the light emission characteristics of the oxysulfide phosphor, it is preferable to use, for example, arsenate, germanate, phosphate and sulfate as a flux of the phosphor in Non-Patent Document 2 below. Are listed. In addition, the above-mentioned Patent Document 4 describes the use of alkali metal fluoride KF.
However, even with these devices, the light output is not sufficient, and further improvements have been expected.
Japanese Examined Patent Publication No. 47-47518 Japanese Patent Publication No.49-34307 Japanese Patent Publication No.49-45990 British Patent No. 2258659 Publication G. Blasse & B. C. Grabmeier, “Luminescent Materials”, published by Springer-Verlag (Germany), September 1994, p. 195-202 Edited by the Society of Phosphors, “Phosphor Handbook”, Ohmsha, December 25, 1987, p. 260

本発明の目的は、上記に説明した従来技術に鑑み、小粒子で赤外変換効率の高い希土類酸化硫化物蛍光体を提供することである。
本発明者等は上記目的のために種々合成方法の検討を行った。その結果、該当蛍光体に微量のホウ素(B)を導入し、これを固溶させることにより、高効率で小粒子な赤外可視変換蛍光体が得られることを見出し、本発明に至ったものである。
An object of the present invention is to provide a rare earth oxysulfide phosphor having small particles and high infrared conversion efficiency in view of the above-described prior art.
The present inventors have studied various synthesis methods for the above purpose. As a result, it was found that by introducing a small amount of boron (B) into the corresponding phosphor and dissolving it , a highly efficient and small-particle infrared-visible conversion phosphor can be obtained, and the present invention has been achieved. It is.

上記の課題に鑑み、本発明のうち第1の発明に係る赤外可視変換蛍光体は、原料混合においてホウ酸ナトリウム(Na )を添加することにより製造される蛍光体であって、一般式が(Ln1−x−yYbErS(ただし、LnはY、Gd及びLaから選ばれる少なくとも1種以上の元素であり、xは0.02≦x≦0.2、yは0.02≦y≦0.2)で表される蛍光体に、ホウ素Bが0.001重量%以上、0.5重量%以下の範囲で固溶させ、固溶されていない場合に比べて、粒度分布の巾を狭め、かつ累積粒度分布の中央値であるD50の値を小さくしたことを特徴とする。
LnはY、Gd、Laから選ばれた少なくとも1種以上の元素を用いることができるが、特にYを含む蛍光体は化学的安定性が良好で好適である。ここでYbの濃度xを0.02≦x≦0.2、Erの濃度yを0.02≦y≦0.2の範囲に限定した理由は、発光輝度がこれらの濃度に依存し、この範囲外では十分な発光が得られないからである。本発明の赤外可視変換蛍光体のホウ素B含有量を、固溶した状態で0.001重量%以上、0.5重量%以下に限定した理由は、0.001重量以下ではホウ素のない従来の蛍光体と特性が変わらず、0.5重量以上になると蛍光体の粒度は小さくなるが、蛍光体の輝度低下も大きくなり好ましくないからである。
In view of the above problems, the infrared-visible conversion phosphor according to the first invention of the present invention is a phosphor produced by adding sodium borate (Na 2 B 4 O 7 ) in a raw material mixture. Te general formula (Ln 1-x-y Yb x Er y) 2 O 2 S ( however, Ln is at least one or more elements selected from Y, Gd and La, x is 0.02 ≦ x ≦ 0.2, y is 0.02 ≦ y ≦ 0.2) Boron B is dissolved in the range of 0.001 wt% or more and 0.5 wt% or less. Compared to the case where it is not, the width of the particle size distribution is narrowed, and the value of D50, which is the median value of the cumulative particle size distribution, is reduced.
Ln can use at least one element selected from Y, Gd, and La, and a phosphor containing Y is particularly preferable because of good chemical stability. Here, the reason why the Yb concentration x is limited to 0.02 ≦ x ≦ 0.2 and the Er concentration y is limited to the range of 0.02 ≦ y ≦ 0.2 is that the emission luminance depends on these concentrations. This is because sufficient light emission cannot be obtained outside the range. The reason why the boron B content of the infrared-visible conversion phosphor of the present invention is limited to 0.001% by weight or more and 0.5% by weight or less in a solid solution state is 0.001% by weight or less. This is because when the weight is 0.5 weight or more, the particle size of the phosphor is decreased, but the luminance of the phosphor is greatly decreased, which is not preferable.

の蛍光体は小粒子であり粒子形状が揃っているため、適当な赤外線発光源と組み合わせて、高付加価値製品の証明、秘密書類、紙幣などに印刷塗布して、偽造防止等の目的のために使用される際の印刷塗布性の観点から、好適である。
For phosphors This we have all are particle shape small particles, in combination with a suitable infrared light emitting sources, proof of the high value-added products, and print coating secret documents, such as the bill, the purpose of forgery prevention Therefore, it is preferable from the viewpoint of print applicability when used.

ここでホウ素(B)はホウ酸根の形で蛍光体中に固溶すると考えられ、焼成工程において酸化硫化物蛍光体の結晶同志が融合し、結晶成長を妨げる方向に働くが、発光特性には悪い影響を与えないと推定している。このように発光輝度が低下せずに、しかも粒子径を抑制することがホウ素(B)を固溶させることの効果であり、これにより従前のような、焼成後の粉砕作業が軽減または不要となり、粉砕ストレスによる輝度低下が抑制されるため、本発明の蛍光体はホウ素を固溶させていない蛍光体に比べて、抑制された粒子径として粒子形状が揃っており、粒度分布の巾を狭めることによって、粒度分布がシャープになり、しかも赤外線励起での発光輝度も向上する。
Here, boron (B) is considered to be a solid solution in the phosphor in the form of boric acid radicals, and the crystals of the oxysulfide phosphor are fused in the firing process, which acts to hinder crystal growth. Estimated not to have a negative effect. In this way, the emission luminance is not lowered and the particle size is suppressed by the effect of dissolving boron (B), thereby reducing or eliminating the pulverization work after firing as before. The phosphor of the present invention has a uniform particle shape with a suppressed particle size and narrows the width of the particle size distribution compared to a phosphor not containing boron as a solid solution , because luminance reduction due to crushing stress is suppressed. As a result, the particle size distribution becomes sharp, and the luminance of light emitted by infrared excitation is also improved.

上記組成としたことにより、抑制された粒子径として蛍光体粒子形状の揃った、シャープな粒度分布を持つ小粒子で高輝度の赤外可視変換蛍光体を得ることができる。
By adopting the above composition, it is possible to obtain a high- intensity infrared-visible conversion phosphor with small particles having a sharp particle size distribution with a uniform particle size as a suppressed particle size .

以下、本発明の実施例につき説明する。
(1)実施例1
酸化イットリウム(Y23)を383.9g(1.7モル)に、酸化イッテルビウム(Yb23)を78.8g(0.2モル)、酸化エルビウム(Er23)を38.3g(0.1モル)加え、よく混合して希土類酸化物粉末501gを得た。さらに、硫黄(S)75g、ホウ酸ナトリウム(Na247)3.0g及び炭酸ナトリウム(Na2CO3)100gを加えて、よく混合した後、アルミナ容器に入れて、1,150℃に保ちながら3時間焼成した。
Examples of the present invention will be described below.
(1) Example 1
383.9 g (1.7 mol) of yttrium oxide (Y 2 O 3 ), 78.8 g (0.2 mol) of ytterbium oxide (Yb 2 O 3 ), and 38. g of erbium oxide (Er 2 O 3 ). 3 g (0.1 mol) was added and mixed well to obtain 501 g of rare earth oxide powder. Further, 75 g of sulfur (S), 3.0 g of sodium borate (Na 2 B 4 O 7 ) and 100 g of sodium carbonate (Na 2 CO 3 ) were added and mixed well. Firing was performed for 3 hours while maintaining the temperature.

室温まで冷却後、5%の硝酸水溶液で洗浄を3回繰り返し、蛍光体粒子の凝集を除去するために、直径2mmのアルミナボール500gと脱イオン水500gを添加して、ミリング処理を行い、更に脱イオン水で5回蛍光洗浄を行った。その後、濾過、乾燥、篩別工程を経て本発明の赤外可視変換蛍光体を得た。この実施例1に係る赤外可視変換蛍光体の化学分析の結果、ホウ素を600ppm含有するものであった。
(2)実施例2
実施例1の原料混合において、ホウ酸ナトリウム(Na247)を3.0g添加する代わりに、0.15g添加混合した混合原料を用いて、以下の工程は実施例1と同様にして、本発明に係る赤外可視変換蛍光体の実施例2を試作した。
After cooling to room temperature, washing with a 5% nitric acid aqueous solution is repeated three times, and in order to remove the aggregation of phosphor particles, 500 g of alumina balls having a diameter of 2 mm and 500 g of deionized water are added and milling is performed. Fluorescent washing was performed 5 times with deionized water. Then, the infrared visible conversion phosphor of the present invention was obtained through filtration, drying and sieving steps. As a result of chemical analysis of the infrared-visible conversion phosphor according to Example 1, boron was contained at 600 ppm.
(2) Example 2
In the raw material mixing of Example 1, instead of adding 3.0 g of sodium borate (Na 2 B 4 O 7 ), using the mixed raw material added and mixed with 0.15 g, the following steps were the same as in Example 1. Thus, Example 2 of the infrared-visible conversion phosphor according to the present invention was prototyped.

(3)実施例3
実施例1の原料混合において、ホウ酸ナトリウム(Na247)を3.0g添加する代わりに、4.5g添加混合した混合原料を用いて、以下の工程は実施例1と同様にして、本発明に係る赤外可視変換蛍光体の実施例3を試作した。
(4)実施例4
実施例1の原料混合において、ホウ酸ナトリウム(Na247)を3.0g添加する代わりに、6.0g添加混合した混合原料を用いて、以下の工程は実施例1と同様にして、本発明に係る赤外可視変換蛍光体の実施例4を試作した。
(3) Example 3
In the raw material mixing of Example 1, instead of adding 3.0 g of sodium borate (Na 2 B 4 O 7 ), using the mixed raw material added and mixed with 4.5 g, the following steps were the same as in Example 1. Thus, Example 3 of the infrared-visible conversion phosphor according to the present invention was prototyped.
(4) Example 4
In the raw material mixing of Example 1, instead of adding 3.0 g of sodium borate (Na 2 B 4 O 7 ), using the mixed raw material with 6.0 g added and mixed, the following steps were the same as in Example 1. Thus, Example 4 of the infrared-visible conversion phosphor according to the present invention was prototyped.

(5)実施例5
実施例1の原料混合において、ホウ酸ナトリウム(Na247)を3.0g添加する代わりに、25.0g添加混合した混合原料を用いて、以下の工程は実施例1と同様にして、本発明に係る赤外可視変換蛍光体の実施例5を試作した。
(6)比較例1
酸化イットリウム(Y23)を383.9g(1.7モル)に、酸化イッテルビウム(Yb23)を78.8g(0.2モル)、酸化エルビウム(Er23)を38.3g(0.1モル)加え、よく混合して希土類酸化物粉末501gを得た。さらに、硫黄(S)75g、炭酸ナトリウム(Na2CO3)100gを加えて、よく混合した後、アルミナ容器に入れて、1,150℃に保ちながら3時間焼成した。
(5) Example 5
In the raw material mixing of Example 1, instead of adding 3.0 g of sodium borate (Na 2 B 4 O 7 ), using the mixed raw material added and mixed with 25.0 g, the following steps were the same as in Example 1. Thus, Example 5 of the infrared-visible conversion phosphor according to the present invention was prototyped.
(6) Comparative Example 1
383.9 g (1.7 mol) of yttrium oxide (Y 2 O 3 ), 78.8 g (0.2 mol) of ytterbium oxide (Yb 2 O 3 ), and 38. g of erbium oxide (Er 2 O 3 ). 3 g (0.1 mol) was added and mixed well to obtain 501 g of rare earth oxide powder. Further, 75 g of sulfur (S) and 100 g of sodium carbonate (Na 2 CO 3 ) were added and mixed well, then placed in an alumina container and baked for 3 hours while maintaining at 1,150 ° C.

以下の工程は上記実施例1と同様にして、比較用の蛍光体を試作した。化学分析の結果から、この比較例1に係る蛍光体のホウ素含有量は検出限界(10ppm)未満であった。
(7)比較例2
実施例1の原料混合において、ホウ酸ナトリウム(Na247)の混合添加量を35gにする以外は、実施例1と同様にして、比較例2の蛍光体を試作した。
(8)測定方法
赤外線励起による発光輝度評価には、赤外線光源(波長900nm〜1,000nmの範囲)を用い、蛍光体の発光輝度はミノルタの輝度計LS−100を用いて測定した。
The following steps were carried out in the same manner as in Example 1 above, and a comparative phosphor was prototyped. From the result of the chemical analysis, the boron content of the phosphor according to Comparative Example 1 was less than the detection limit (10 ppm).
(7) Comparative Example 2
A phosphor of Comparative Example 2 was made in the same manner as in Example 1 except that the amount of sodium borate (Na 2 B 4 O 7 ) added was 35 g in the raw material mixing of Example 1.
(8) Measuring method For the evaluation of emission luminance by infrared excitation, an infrared light source (wavelength range of 900 nm to 1,000 nm) was used, and the emission luminance of the phosphor was measured using a Minolta luminance meter LS-100.

また、蛍光体の粒度分布は島津のSALD−2100レーザー回折粒度測定装置で測定した。
(9)結果
下記の表1に、比較例1を標準(100)にしたときの発光輝度並びに累積粒度分布において、分布の10%に相当するD10値、分布の50%に相当する中央値D50値並びに分布の90%に相当するD90値、そして各試料の化学分析の結果から、試料中に含まれるホウ素(B)の分析値を示す。
The particle size distribution of the phosphor was measured with a SALD-2100 laser diffraction particle size analyzer from Shimadzu.
(9) Results In Table 1 below, in the light emission luminance and cumulative particle size distribution when Comparative Example 1 is standard (100), the D10 value corresponding to 10% of the distribution and the median value D50 corresponding to 50% of the distribution The analysis value of boron (B) contained in the sample is shown from the value, D90 value corresponding to 90% of the distribution, and the result of chemical analysis of each sample.

Figure 0004315371
Figure 0004315371

この表から分かるように、ホウ素の固溶により、発光輝度は向上するのに対して、粒度分布の中央値であるD50、及びD90は減少し、粒度が小径になると共に、粒度分布がシャープになることが分かる。ホウ素量が更に多くなると、輝度は減少傾向になるので、ホウ素量の好ましい範囲は10ppmから5,000ppmの範囲である。この範囲内であれば、小粒子で高輝度の赤外可視変換蛍光体が得られる。
また、発明者は、ミリング工程を繰り返し実施し、配合量及びその他は実施例1ないし実施例5と同様な工程により製造されたD90が3.2μm、4.7μm、3.6μm、2.7μm及び1.8μmである本発明に係る赤外可視変換蛍光体を試作した。
As can be seen from this table, the emission luminance is improved by the solid solution of boron, whereas the median values of D50 and D90 of the particle size distribution are decreased, the particle size becomes smaller and the particle size distribution becomes sharper. I understand that Since the luminance tends to decrease as the boron content further increases, the preferred range of the boron content is in the range of 10 ppm to 5,000 ppm. Within this range, an infrared-visible conversion phosphor with small particles and high brightness can be obtained.
In addition, the inventor repeatedly performed the milling process, and the blending amount and other D90 produced by the same processes as in Examples 1 to 5 were 3.2 μm, 4.7 μm, 3.6 μm, 2.7 μm. And an infrared-visible conversion phosphor according to the present invention having a thickness of 1.8 μm.

さらに、比較対象として、ミリング工程を繰り返し実施し、配合量及びその他は比較例1及び比較例2と同様な工程により製造された、D90が6.2μm及び2.2μmである蛍光体も試作した。そして上記と同様に発光輝度及びホウ素量を測定し、確認したところ、ホウ素の固溶により、発光輝度は向上するのに対して、粒度を小径にし、かつ粒度分布の巾を狭めることによって、粒度分布がシャープになり、さらに、ホウ素量が多くなると、発光輝度は減少傾向になるので、ホウ素量の好ましい範囲は10ppmから5,000ppmの範囲であることを確認している。
なお、本発明の上記各実施例及び比較例は例示を目的としたもので、本発明の範囲を制限するものではない。本発明の他の実施例は本発明書の内容の検討から当業者には自明であろう。
Furthermore, as a comparison object, the milling process was repeatedly performed, and the phosphors having D90 of 6.2 μm and 2.2 μm manufactured by the same processes as those of Comparative Example 1 and Comparative Example 2 were also produced. . Then, the emission luminance and the amount of boron were measured and confirmed in the same manner as described above. The emission luminance was improved by the solid solution of boron, whereas the particle size was reduced by reducing the particle size and reducing the width of the particle size distribution. As the distribution becomes sharper and the amount of boron increases, the luminance of light emission tends to decrease. Therefore, it is confirmed that the preferable range of the amount of boron is in the range of 10 ppm to 5,000 ppm.
In addition, each said Example and comparative example of this invention are for the purpose of illustration, and do not restrict | limit the scope of the present invention. Other embodiments of the invention will be apparent to those skilled in the art from consideration of the content of the invention.

Claims (1)

原料混合においてホウ酸ナトリウム(Na )を添加することにより製造される蛍光体であって、一般式が(Ln1−x−yYbErS(ただし、LnはY、Gd及びLaから選ばれる少なくとも1種以上の元素であり、xは0.02≦x≦0.2、yは0.02≦y≦0.2)で表される蛍光体に、ホウ素Bが0.001重量%以上、0.5重量%以下の範囲で固溶させ、固溶されていない場合に比べて、粒度分布の巾を狭め、かつ累積粒度分布の中央値であるD50の値を小さくしたことを特徴とする赤外可視変換蛍光体。 A phosphor produced by adding sodium borate (Na 2 B 4 O 7 ) in the raw material mixture, and the general formula is (Ln 1-xy Yb x Er y ) 2 O 2 S (however, Ln is at least one element selected from Y, Gd, and La, x is 0.02 ≦ x ≦ 0.2, and y is 0.02 ≦ y ≦ 0.2) Boron B is solid solution in the range of 0.001 wt% or more and 0.5 wt% or less, and the width of the particle size distribution is narrower compared to the case where it is not dissolved, and the median value of the cumulative particle size distribution. An infrared-visible conversion phosphor characterized in that the value of D50 is reduced.
JP2003319132A 2003-09-11 2003-09-11 Infrared-visible conversion phosphor Expired - Fee Related JP4315371B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003319132A JP4315371B2 (en) 2003-09-11 2003-09-11 Infrared-visible conversion phosphor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003319132A JP4315371B2 (en) 2003-09-11 2003-09-11 Infrared-visible conversion phosphor

Publications (2)

Publication Number Publication Date
JP2005082770A JP2005082770A (en) 2005-03-31
JP4315371B2 true JP4315371B2 (en) 2009-08-19

Family

ID=34418162

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003319132A Expired - Fee Related JP4315371B2 (en) 2003-09-11 2003-09-11 Infrared-visible conversion phosphor

Country Status (1)

Country Link
JP (1) JP4315371B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101365361B1 (en) * 2011-03-18 2014-02-20 메르크 파텐트 게엠베하 Silicate fluorescent substance

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101365361B1 (en) * 2011-03-18 2014-02-20 메르크 파텐트 게엠베하 Silicate fluorescent substance

Also Published As

Publication number Publication date
JP2005082770A (en) 2005-03-31

Similar Documents

Publication Publication Date Title
Darshan et al. Blue light emitting ceramic nano-pigments of Tm3+ doped YAlO3: applications in latent finger print, anti-counterfeiting and porcelain stoneware
KR20080003435A (en) Novel materials used for emitting light
JP2011021161A (en) Phosphor
Ćirić et al. Photoluminescence of Gd2O3 and Gd2O3: Ln3+ (Ln= Eu, Er, Ho) formed by plasma electrolytic oxidation of pure gadolinium substrate
Kumari et al. White Light Emission and Optical Heating in ${{Er}}^{3+} $–${{Tm}}^{3+} $–${{Yb}}^{3+} $ Codoped ${{La}} _ {2}{{O}} _ {3} $ Phosphor
Silva et al. Effect of dopant concentrations on the luminescent properties of LiAl5O8: Fe phosphors
Jaiswal et al. Luminescence enhancement of high temperature hexagonal phase of Ba0. 99MgAl10O17: Eu0. 01 nanophosphor synthesized at moderately low temperature
RU2434926C2 (en) Yttrium ortho-phosphate-based infrared luminophore and synthesis method thereof
RU2390535C2 (en) Infrared luminophor based on yttrium oxysulphide
Janani et al. Luminescence properties of LiYF4: Yb3+, Er3+ phosphors: A study on influence of synthesis temperature and dopant concentration
Noh et al. Concentration enhanced upconversion luminescence in ZrO2: Ho3+, Yb3+ nanophosphors
JP4315371B2 (en) Infrared-visible conversion phosphor
JP4635184B2 (en) Zinc oxide phosphor, method for producing the same and light emitting device
JP2010053213A (en) Fluorescent light emitting material, and method for producing the same
Marciniak et al. Modulation of thulium upconversion in potassium tetraphosphate (KLaP 4 O 12) nanocrystals by co-doping with Yb 3+ ions
Noto et al. Enhancement of persistent luminescence of ZnTa2O6: Pr3+ by addition Li+, Na+, K+ and Cs+ ions
RU2614690C2 (en) INFRARED COMPLEX ACTING PHOSPHOR BASED ON YTTRIUM, LANTHANUM, GADOLINIUM OXYSULFIDES, ACTIVATED BY Er3+ IONS
Sao et al. Photoluminescence and thermoluminescence properties of Eu2+ doped and Eu2+, Dy3+ co‐doped Ba2MgSi2O7 phosphors
Ferby et al. Dependence of photoluminescence on doping concentration of Ho 3+ in nanocrystalline La (OH) 3
Öztürk et al. The effect of Eu3+-doping on the photoluminescent properties of REInO3 (RE= Er, Sm) type phosphors
Khanin et al. Scintillator-Oriented Investigation of Y3Al5O12: Ce, Tb Powders
Panse et al. Photoluminescence Analytical Study of Ce3+‐Activated Blue‐Emitting SrAl12O19 Lamp Phosphors
JP2006199876A (en) Aluminum nitride-based fluorescent substance
Anthuvan et al. Synthesis and Luminescent Properties of Tb3+ Activated Li3Ba2Gd3-x (MoO4) 8 Based Efficient Green Emitting Phosphors
JP5979713B2 (en) Infrared light emitting phosphor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060616

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081125

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081204

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090123

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090219

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090414

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090514

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090515

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4315371

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120529

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120529

Year of fee payment: 3

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: R3D03

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120529

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120529

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130529

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130529

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130529

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees