JPH079022B2 - Method of dephosphorization and desulfurization of hot metal - Google Patents

Method of dephosphorization and desulfurization of hot metal

Info

Publication number
JPH079022B2
JPH079022B2 JP21651587A JP21651587A JPH079022B2 JP H079022 B2 JPH079022 B2 JP H079022B2 JP 21651587 A JP21651587 A JP 21651587A JP 21651587 A JP21651587 A JP 21651587A JP H079022 B2 JPH079022 B2 JP H079022B2
Authority
JP
Japan
Prior art keywords
cao
desulfurization
dephosphorization
ratio
hot metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP21651587A
Other languages
Japanese (ja)
Other versions
JPS6462409A (en
Inventor
泰民 深見
義夫 中島
尚玄 森谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Nisshin Co Ltd
Original Assignee
Nisshin Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nisshin Steel Co Ltd filed Critical Nisshin Steel Co Ltd
Priority to JP21651587A priority Critical patent/JPH079022B2/en
Publication of JPS6462409A publication Critical patent/JPS6462409A/en
Publication of JPH079022B2 publication Critical patent/JPH079022B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Refinement Of Pig-Iron, Manufacture Of Cast Iron, And Steel Manufacture Other Than In Revolving Furnaces (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は溶銑の、脱りん、脱硫を同時に進行する脱珪と
ともに行なう方法の改良に関する。
TECHNICAL FIELD The present invention relates to an improvement in a method of performing dephosphorization and desulfurization of hot metal together with desiliconization which proceeds at the same time.

〔従来の技術〕[Conventional technology]

CaO系フラックスを用いる場合溶銑中のSi、P、Sはそ
れぞれ(1),(2),(3)式に従い除去される。
When CaO-based flux is used, Si, P and S in the hot metal are removed according to the equations (1), (2) and (3), respectively.

Si+20→SiO2 (1) 3CaO+2P+50=3CaO・P2O5 (2) CaO+S=CaS+O (3) Siを含む溶銑にO2とともにCaOを供給すると上記反応の
他に(4)式 CaO+Si+20→CaO・SiO2 (4) の反応が併発するため、脱りん、脱硫反応の進行は大き
く阻害される。一方脱珪、脱りん反応が酸化反応である
のに対し、脱硫反応は還元反応である。
Si + 20 → SiO 2 (1) 3CaO + 2P + 50 = 3CaO ・ P 2 O 5 (2) CaO + S = CaS + O (3) When CaO is supplied together with O 2 to the hot metal containing Si, in addition to the above reaction, (4) Formula CaO + Si + 20 → CaO ・ SiO 2 Because the reaction of (4) occurs simultaneously, the progress of the dephosphorization and desulfurization reactions is greatly hindered. On the other hand, the desulfurization reaction is a reduction reaction, while the desiliconization and dephosphorization reaction is an oxidation reaction.

したがって、脱りん、脱硫をより適した条件下で行なう
べく、脱りん、脱硫に対して脱珪を分ける、あるいは脱
りんと脱硫を分ける等の2段以上の処理に分ける工夫が
なされている。例えば、予め脱珪処理を施し〔Si〕濃度
を低減させ一旦除滓し、同一のあるいは別の場合または
反応容器で同時脱りん、脱硫処理を行なうという方法は
最も一般的なものである。
Therefore, in order to carry out dephosphorization and desulfurization under more suitable conditions, dephosphorization and desulfurization have been devised in two or more stages such as desiliconization or dephosphorization and desulfurization. For example, the most general method is to perform desiliconization treatment in advance to reduce the [Si] concentration, remove the slag once, and perform simultaneous dephosphorization and desulfurization treatment in the same or different cases or in a reaction vessel.

また、近年溶銑予備処理工程における熱損失が転炉の熱
裕度を低下させるという理由から、予備処理での熱補償
を目的に気体酸素の上吹きを併用する試みが盛んであ
る。しかし、この場合同時脱硫率は著しく低下し、さら
に3段目として追脱硫処理を余儀なくされている。この
理由には、脱硫反応の起こる箇所と推定されるトップス
ラグの酸素ポテンシャルが増加してしまうからだといわ
れる。
Further, in recent years, since the heat loss in the hot metal pretreatment process lowers the thermal tolerance of the converter, attempts to use the top blowing of gaseous oxygen together for the purpose of heat compensation in the pretreatment are popular. However, in this case, the simultaneous desulfurization rate is remarkably reduced, and additional desulfurization treatment is inevitable as the third stage. It is said that the reason is that the oxygen potential of the top slag, which is presumed to be where desulfurization reaction occurs, increases.

また、脱りんと脱硫を別々に行なう場合、すなわち、脱
珪・脱りんの前に予め脱硫処理をする、あるいは上述の
様な追脱硫処理を行なうときには、脱りんと脱硫用のフ
ラックスの種類を異にする場合が一般的である。例え
ば、脱りんには酸化鉄を含むCaO系フラックスを使用す
るのに対し、脱硫には酸化鉄を含まないCaO-CaCO3系、C
aC2あるいはソーダ灰(Na2CO3)系等のフラックスを使
用する場合が多い。
Also, when performing desulfurization and desulfurization separately, that is, when performing desulfurization treatment in advance before desiliconization / desulfurization, or when performing additional desulfurization treatment as described above, different types of flux for desulfurization and desulfurization are used. It is common to do. For example, CaO-based flux containing iron oxide is used for dephosphorization, whereas CaO-CaCO 3 system containing no iron oxide, C
Fluxes such as aC 2 or soda ash (Na 2 CO 3 ) series are often used.

以上、述べた様に脱珪、脱りん、脱硫反応の分離と反応
条件の最適化は、処理の場所、および精錬剤(フラック
ス)の種類を変え、処理回数を増やすことにより図られ
てきた。各反応の分離・最適化の目的は、各反応の効率
を上げ必要とする精錬剤(フラックス)原単位を可能な
限り消滅することである。
As described above, separation of desiliconization, dephosphorization and desulfurization reactions and optimization of reaction conditions have been achieved by changing the treatment location and the type of refining agent (flux) and increasing the number of treatments. The purpose of separation / optimization of each reaction is to improve the efficiency of each reaction and eliminate the required basic unit of refining agent (flux) as much as possible.

しかし、このような工程の分割・多段化は一方で、基本
的な問題を生ずることとなる。すなわち、処理の場所や
処理回数が増せば、全工程における処理時間や温度低下
を増すばかりか、耐火物原単位等の操業経費の増加を必
ず招くこととなる。また、使用するフラックスの種類が
増すと、付帯設備あるいはその維持コスト等が増加する
こととなる。
However, on the other hand, such division of the process and multi-stepping will cause a basic problem. That is, if the treatment place and the number of treatments increase, not only the treatment time and the temperature decrease in all the processes increase, but also the operating cost such as the refractory basic unit increases. Further, as the types of flux used increase, incidental equipment or maintenance costs thereof increase.

したがって、脱珪と脱りん、脱硫を単一容器で単一のフ
ラックスによる処理で効率良く行なえば、操業経費の大
幅な低減などの観点から大いに意義深い。しかし高Si溶
銑の脱珪、脱りん、脱硫の全てを例えば普通鋼の製品規
格値レベルまで1回の処理で行なう試みと、さらにはそ
の場合の処理効率を上げる有効な方法の提案は未だに例
を見ない。
Therefore, if desiliconization, dephosphorization, and desulfurization are efficiently carried out with a single flux in a single vessel, it will be of great significance from the viewpoint of greatly reducing operating costs. However, there is still an example of an attempt to desiliconize, dephosphorize, and desulfurize high-Si hot metal in a single treatment up to the product standard value level of ordinary steel, and to propose an effective method for increasing the treatment efficiency in that case. I don't see.

〔発明が解決しようとする問題点〕[Problems to be solved by the invention]

本発明は、高Si溶銑の脱珪、脱りんと脱硫を単一容器に
よる1回のバッチ処理においても可能とするもので、フ
ラックス1種類のみの使用で良く、脱りん・脱硫に要す
る材料原単位を極力削減し得る方法を提供するものであ
る。
INDUSTRIAL APPLICABILITY The present invention enables desiliconization, dephosphorization and desulfurization of high Si hot metal even in a single batch process in a single container, and only one type of flux is required. It is intended to provide a method capable of reducing

〔発明の構成〕[Structure of Invention]

本発明は、Siの重量濃度が0.20%以上の高Si溶銑の脱り
んと脱硫を単一容器において行なうために気体酸素の全
量を固体化合酸素を含むCaO系の精錬剤(フラックス)
とともに溶銑中にインジェクションする方法において、
吹込みの前半でCaO/ΣO2比を低く保って(CaO/ΣO2=1.
5〜2.0)脱珪と脱りんを優先的に進めた後、フラックス
の吹込み速度と気体酸素流量の比を変える操作を1回の
み行ない吹込みの後半ではCaO/ΣO2比を前半期のそれの
2倍以上に高めることにより脱りんとともに主に脱硫を
促進することを特徴とする高Si溶銑の脱珪、脱りん、脱
硫方法を提供する。
The present invention is a CaO-based refining agent (flux) containing solid compound oxygen for the total amount of gaseous oxygen in order to perform dephosphorization and desulfurization of high Si hot metal having a Si concentration of 0.20% or more in a single vessel.
With the method of injecting into hot metal with
Keep the CaO / ΣO 2 ratio low in the first half of the injection (CaO / ΣO 2 = 1.
5 to 2.0) After prioritizing desiliconization and dephosphorization, the operation of changing the ratio of the flux blowing rate and the gaseous oxygen flow rate was performed only once, and the CaO / ΣO 2 ratio was changed to the value of the first half in the latter half of the blowing. Provided is a method for desiliconization, dephosphorization, and desulfurization of high-Si hot metal, which is characterized by accelerating desulfurization and mainly desulfurization by increasing the content by more than twice.

〔発明の具体的開示〕[Specific disclosure of invention]

最初に用語を定義する。 First, the terms are defined.

気体酸素比α ただしWF=フラックス量(kg) O2*=フラックス中の酸素の割合(Nm3/kg) ΣO2=全酸素量(Nm3) 酸化カルシウム/全酸素比 CaO*=フラックス中のCaOの重量割合 本発明者らは、気体酸素濃度が80〜95vol.%の高酸素富
化搬送ガスにより、CaO-CaF2‐酸化鉄(スケール)(5
0:10:4)系フラックスを〔%Si〕≧0.20の高Si溶銑中に
インジェクションする実験を数次にわたり行ない、次の
ような事実を見出した。
Gaseous oxygen ratio α However, W F = flux amount (kg) O 2 * = oxygen ratio in the flux (Nm 3 / kg) ΣO 2 = total oxygen amount (Nm 3 ) calcium oxide / total oxygen ratio CaO * = Weight ratio of CaO in the flux. The inventors of the present invention used CaO-CaF 2 -iron oxide (scale) (5) with a highly oxygen-enriched carrier gas having a gas oxygen concentration of 80 to 95 vol.
0: 10: 4) We conducted several experiments on injection of system flux into high Si hot metal with [% Si] ≧ 0.20, and found the following facts.

すなわち、CaO/ΣO2比を種々変えて吹錬したところ、先
願(特願昭62-93375)に開示したごとく、脱りんに要す
る材料原単位について、第1図に示す結果を得た。第1
図は、処理前溶銑の〔%Si〕が0.20〜0.40のとき、85%
の脱りん率を達成する(=0.100%→0.015%)のに要し
たCaO原単位および全酸素原単位を示したものである。
That is, when various CaO / ΣO 2 ratios were blown, the results shown in FIG. 1 were obtained for the material unit required for dephosphorization, as disclosed in the prior application (Japanese Patent Application No. 62-93375). First
The figure shows 85% when [% Si] of hot metal before treatment is 0.20 to 0.40.
The unit of CaO and the unit of total oxygen required to achieve the dephosphorization rate of 0.100% → 0.015% are shown.

すなわちCaO/ΣO2を1.5から2.0の範囲内に保つことが、
最も脱りん効率が良い、すなわち、CaO、ΣO2等の材料
原単位を最少とし得ることをまず見出し、これは(2)
式に示す脱りん反応において、CaO/ΣO2比が高い範囲
(CaO/ΣO2≧2.0)では、CaOが過剰なため、ΣO2原単位
がほぼ一定のまま、CaO原単位の削減が可能であるが、C
aO/ΣO2比を過度に低下させる(CaO/ΣO2≦1.5)とCaO
が不足し、ΣO2を増してもΣO2に対する脱りん効率が低
下してしまうからと考えられる。
That is, keeping CaO / ΣO 2 within the range of 1.5 to 2.0
First, we found that the dephosphorization efficiency is the best, that is, the material unit consumption of CaO, ΣO 2, etc. can be minimized.
In the dephosphorization reaction shown in the formula, in the range where the CaO / ΣO 2 ratio is high (CaO / ΣO 2 ≧ 2.0), CaO is excessive, so it is possible to reduce the CaO basic unit while the ΣO 2 basic unit remains almost constant. Yes, but C
If the aO / ΣO 2 ratio is excessively decreased (CaO / ΣO 2 ≦ 1.5), CaO
It is considered that the dephosphorization efficiency for ΣO 2 is reduced even if ΣO 2 is increased due to the shortage of oxygen.

しかし、処理前〔%Si〕=0.35〜0.40のとき、CaO/ΣO2
=1.5〜2.0の範囲においては、脱りん率85%を得た時点
での同時脱硫率は高々15〜30%と低いという問題があっ
た。
However, before treatment [% Si] = 0.35 to 0.40, CaO / ΣO 2
In the range of 1.5 to 2.0, there was a problem that the simultaneous desulfurization rate at the time when 85% of the phosphorus removal rate was obtained was as low as 15 to 30%.

そこで、本発明者らは、CaO濃度がより高きフラックス
を用いて、さらにCaO/ΣO2の高い条件下で、脱硫促進を
目的に実験を試みたところ、第2図に示すように、溶銑
の〔%Si〕Iが同じ場合に、CaO/ΣO2比を増加させれ
ば、CaO原単位当たりの脱硫率(処理前〔%S〕=0.025
〜0.030)が増加することを見出した。本発明者らは、
特に第2図において、CaO/ΣO2=2.0、CaO=30kg/THM
(ΣO2=15Nm3/THM)の時の脱硫率は高々40%にとどま
るのに対し、CaO/ΣO2=4.0のときCaO=30kg/THMとき
(ΣO2=7.5Nm3/THM)には脱硫率70%を得るという事実
に注目した。双方の場合ともCaO=30kg/THM吹込んだ時
点で、ΣO2を7.5Nm3/THM以上を供給しており、脱りんに
優先して進む脱珪反応は既に終了(△〔%Si〕=0.35〜
0.40)しているので、(4)式で費やされるCaO量も等
しい。それにもかかわらず脱硫率に大きな差が生じたの
は、(3)式に示す脱硫反応にとって酸素ポテンシャル
を下げる効果が大きいことを示唆している。すなわち、
CaO/ΣO2比が低い条件のままCaO原単位を増したところ
で脱硫は遅々として進まないわけで、CaO/ΣO2比の増加
が脱硫促進にとって必須の条件であることが明らかとな
った。
Then, the inventors of the present invention tried an experiment for the purpose of promoting desulfurization under the condition of higher CaO / ΣO 2 using a flux having a higher CaO concentration, and as shown in FIG. If the CaO / ΣO 2 ratio is increased when the [% Si] I is the same, the desulfurization rate per unit of CaO (before treatment [% S] = 0.025
~ 0.030) increased. We have
Especially in Fig. 2, CaO / ΣO 2 = 2.0, CaO = 30kg / THM
The desulfurization rate at (ΣO 2 = 15 Nm 3 / THM) is at most 40%, while at CaO / ΣO 2 = 4.0 CaO = 30 kg / THM (ΣO 2 = 7.5 Nm 3 / THM) Attention was paid to the fact that a desulfurization rate of 70% was obtained. In both cases, more than 7.5 Nm 3 / THM of ΣO 2 is supplied when CaO = 30 kg / THM is blown in, and the desiliconization reaction, which precedes dephosphorization, has already ended (△ [% Si] = 0.35-
0.40), so the amount of CaO spent in Eq. (4) is also the same. Nevertheless, the large difference in the desulfurization rate suggests that the desulfurization reaction represented by the equation (3) has a large effect of lowering the oxygen potential. That is,
Desulfurization did not proceed slowly when the CaO intensity was increased while the CaO / ΣO 2 ratio was low, and it was revealed that increasing the CaO / ΣO 2 ratio is an essential condition for promoting desulfurization.

しがたって、所望の脱りん率を得るのに必要十分のΣO2
原単位を確保し、かつ、CaO原単位も増せば(CaO/ΣO2
を増せば)脱珪・脱りんと同時の脱硫促進が可能とな
る。
Therefore, enough ΣO 2 is necessary to obtain the desired dephosphorization rate.
If the basic unit is secured and the CaO basic unit is increased (CaO / ΣO 2
It is possible to accelerate desulfurization at the same time as desiliconization and phosphorus removal.

そこで本発明者らは、同時脱硫に要したCaO原単位の増
加分をさらに低減させ効率を向上させることを目的に、
上記知見に基づいて本発明法に想到した。その方法と
は、吹込みの前半でCaO/ΣO2比を1.5から2.0(kg/Nm3
の範囲内に保ち主に脱珪と脱りんを優先的に進行させた
後、比αを下げるすなわち吹込み速度WF(kg/分)と気
体酸素流量Qo2(Nm3/分)の比を増すことにより、CaO/
ΣO2を前半期のそれの2倍以上に増加させ脱硫を促進さ
せることを特徴とする方法である。脱珪と脱りんを促進
させる前半期のCaO/ΣO2比を1.5から2.0の範囲に限定し
たのは、第1図に示すように、この範囲が脱珪・脱りん
に要するCaOおよびΣO2原単位をともに過不足なく最少
とし得るからである。またCaO/ΣO2比を増加させる、す
なわちWF/Qo2を増加させる操作は、〔%Si〕が0.10か
ら0.15%以下のSi濃度の低い時期に行なうべきである。
これは脱珪の促進には(1)式のようにO2の供給が支配
的で基本的にCaOは脱珪の促進に寄与いないからであ
る。すなわち、〔%Si〕が0.10〜0.15%以上の高Si濃度
域からCaO/ΣO2を増加させてもCaOを過剰に吹込む結果
となる。また後半のCaO/ΣO2値を前半のそれの2倍以上
とするのは、前半と後半のCaO/ΣO2の差を大きくし両期
間の分割最適の効果を明確にするためである。
Therefore, the present inventors for the purpose of further improving the efficiency by further reducing the increase in the CaO unit consumption required for simultaneous desulfurization,
The present invention has been devised based on the above findings. The method is that the CaO / ΣO 2 ratio is 1.5 to 2.0 (kg / Nm 3 ) in the first half of injection.
The ratio α is lowered after the silicon removal and phosphorus removal are preferentially promoted while keeping the temperature within the range of, that is, the ratio of the blowing velocity W F (kg / min) and the gas oxygen flow rate Q o2 (Nm 3 / min). By increasing CaO /
This is a method characterized by increasing ΣO 2 more than twice that in the first half and promoting desulfurization. The reason for limiting the first half CaO / NA: 0.75, o 2 ratio to accelerate the desiliconization and dephosphorization in the range of 1.5 to 2.0, as shown in FIG. 1, CaO and NA: 0.75, o 2 required this range the desiliconization-dephosphorization This is because both the basic units can be minimized without excess or deficiency. Further, the operation of increasing the CaO / ΣO 2 ratio, that is, increasing W F / Q o2 should be performed at a low Si concentration of [% Si] of 0.10 to 0.15% or less.
This is because the supply of O 2 is dominant in the promotion of desiliconization as shown in equation (1), and CaO basically does not contribute to the promotion of desiliconization. That is, even if CaO / ΣO 2 is increased from a high Si concentration range where [% Si] is 0.10 to 0.15% or more, CaO is excessively blown. The reason why the CaO / ΣO 2 value in the latter half is more than twice that in the first half is to increase the difference between CaO / ΣO 2 in the first half and the latter half and clarify the optimal split effect in both periods.

第3図(a)は本発明法におけるWF(kg/分)とQo2(Nm
3/分)の経時変化の一例を示し、第3図(b)はその
時のSi、P、Sの挙動を示す。8分経過後速やかにW
F(kg/分)を増しQo2(Nm3/分)を減少させCaO/ΣO2
増加させているが、その変更以降脱硫が顕著に促進され
ていることがわかる。第4図はCaO原単位10kg/t当たり
の脱硫量とCaO/ΣO2の関係を示すもので図中の×および
印が本発明方法の結果である。それぞれの吹込みの前
半と後半に分け、それぞれの期間におけるCaO/ΣO2の平
均値に対しプロットしている。α変更(WF/Qo2比変
更)後においても、CaO濃度の高いフラックス用いたと
きのα一定の吹込み時と同等かそれ以上の脱硫効率が得
られている。WF/Qo2比変更の途中操作のみで、CaO/ΣO
2比増加による脱硫効率(CaOに対する)の向上を容易に
実現できている。ただし第1図からわかるように、CaO/
ΣO2の増加は脱りんに対するΣO2の効率を向上させるの
で脱りんの促進にも好ましい。
FIG. 3 (a) shows W F (kg / min) and Q o2 (Nm in the method of the present invention.
3 / min), and FIG. 3 (b) shows the behavior of Si, P and S at that time. W immediately after 8 minutes
Although F (kg / min) was increased, Q o2 (Nm 3 / min) was decreased and CaO / ΣO 2 was increased, desulfurization has been significantly promoted since the change. FIG. 4 shows the relationship between the desulfurization amount per unit CaO unit of 10 kg / t and CaO / ΣO 2. The X and the marks in the figure show the results of the method of the present invention. It is divided into the first half and the latter half of each injection, and is plotted against the average value of CaO / ΣO 2 in each period. Even after changing α (changing the W F / Q o2 ratio), a desulfurization efficiency equal to or higher than that at the time of constant α injection when a flux with a high CaO concentration was used was obtained. W F / Q o2 ratio during the change operation only, CaO / ΣO
The desulfurization efficiency (for CaO) can be easily improved by increasing the 2 ratio. However, as can be seen from Fig. 1, CaO /
Increase of NA: 0.75, o 2 is preferred to promote dephosphorization so improve the efficiency of NA: 0.75, o 2 for dephosphorization.

第5図は脱リン率85%以上のとき同時脱硫率60%を得る
に要するCaO原単位をCaO/ΣO2に対してプロットしたも
のである。本発明方法の場合全CaO(kg/t)とΣO2(kg/
t)の比に対してプロットしたものである。CaO/ΣO2
が等しい場合で比べるとわかるように本発明法によれば
α一定の吹込みに比べ、さらにCaO原単位を削減し得て
いる。これは、CaO/ΣO2の低い期間に脱珪とともに脱り
んを、そしてCaO/ΣO2の高い期間に脱りんとともに主に
脱硫を、それぞれできるだけ少量のCaOで効率良く処理
できているからである。すなわち、本発明者らは脱珪・
脱りんと脱りん・脱硫をそれぞれより好ましい条件下で
分割して進めるということを、吹込み途中のWFとQo2
比の変更操作のみにより達成できることを見出したので
ある。
Fig. 5 is a plot of CaO unit required to obtain a simultaneous desulfurization rate of 60% when the dephosphorization rate is 85% or more, against CaO / ΣO 2 . In the case of the method of the present invention, total CaO (kg / t) and ΣO 2 (kg / t)
It is plotted against the ratio of t). As can be seen from the comparison when the CaO / ΣO 2 ratios are equal, the method of the present invention can further reduce the CaO unit consumption compared to the case of constant α injection. This is the dephosphorization with desiliconization the period of low CaO / NA: 0.75, o 2, and mainly desulfurization with dephosphorization high periods of CaO / NA: 0.75, o 2, because they can be efficiently processed in the minimum amount of CaO, respectively . That is, the present inventors
They have found that the dephosphorization and the dephosphorization / desulfurization can be carried out separately under more preferable conditions by only changing the ratio of W F and Q o2 during the blowing.

ところで、WF(kg/分)とQo2(Nm3/分)の比の途中変
更が、脱珪・脱りんおよび脱硫をそれぞれ優先的に高効
率に分割せしめる現象は、気体O2(気酸)を全量フラッ
クスキャリアガス内に富化する方法において顕著であっ
た。本発明者らは、吹込み前後のCaO/ΣO2比およびWF
増加、Qo2の減少等のタイミングをすべて等しい条件と
し供給O2の50%を上吹きする試みを行なった。すかし第
4図の△印に示すごとくCaO/ΣO2比増加に伴う脱硫効率
の向上は小さかった。O2上吹の場合トップスラグの酸素
ポテンシャルが高位に保たれ脱硫にとって好ましくない
ためと考えられる。
By the way, the phenomenon that changing the ratio of W F (kg / min) and Q o2 (Nm 3 / min) in the middle of dividing silicon dioxide / dephosphorization and desulfurization with high efficiency preferentially is gas O 2 (gas This was remarkable in the method of enriching the entire amount of acid) in the flux carrier gas. The inventors made an attempt to blow 50% of the supplied O 2 under the same conditions such that the CaO / ΣO 2 ratio before and after blowing, the increase of W F , and the decrease of Q o2 are all equal. As shown by the triangle mark in FIG. 4, the improvement in desulfurization efficiency with the increase in the CaO / ΣO 2 ratio was small. This is thought to be because the oxygen potential of the top slag is kept high in the case of O 2 top blowing, which is not preferable for desulfurization.

〔実施例〕〔Example〕

以下、本発明による実施例について述べる。実験は全て
5トンの底吹炉で行なった。底吹ノズルは、アルミナ系
焼成レンガにボーリング加工で穿孔した単管ノズルであ
り、内径5mmで、本数は6本である。フラックスの吹込
みは、差圧制御式粉体供給機で行なった。フラックスの
吹込み速度は10〜32kg/分、気体O2の吹き込み速度は0.5
〜3.0Nm3/分フラックス搬送用のN2の吹込み速度は0.18
Nm3/分であり、搬送ガス中のO2濃度は70〜95%であっ
た。溶銑の処理前成分は〔%C〕=4.3〜4.6、〔%Si〕
=0.20〜0.45、〔%P〕=0.095〜0.105、〔%S〕=0.
025〜0.030であり、処理前温度は1,280〜1,420℃であ
る。フラックスの組成は50%CaO-10%CaF2‐40%スケー
ルであり、フラックス100kg中に6Nm3のO2を含んでお
り、吹込み時間は10〜20分である。
Examples according to the present invention will be described below. All experiments were conducted in a 5 ton bottom blowing furnace. The bottom blowing nozzle is a single tube nozzle made by boring alumina fired bricks by boring, and has an inner diameter of 5 mm and six nozzles. The blowing of the flux was performed by a differential pressure control type powder feeder. Flux blow rate is 10-32 kg / min, gas O 2 blow rate is 0.5
~ 3.0Nm 3 / min N 2 blowing speed for flux transfer is 0.18
It was Nm 3 / min, and the O 2 concentration in the carrier gas was 70 to 95%. The pre-treatment component of the hot metal is [% C] = 4.3 to 4.6, [% Si]
= 0.20 to 0.45, [% P] = 0.095 to 0.105, [% S] = 0.
The temperature is 025 to 0.030, and the pretreatment temperature is 1,280 to 1,420 ° C. The composition of the flux is 50% CaO-10% CaF 2 -40% scale, in the flux 100kg Includes O 2 of 6 Nm 3, blowing time is 10 to 20 minutes.

第1表に、本発明方法および比較方法における吹込み条
件と材料の原単位、脱りん率・脱硫率および処理中の温
度変化を示す。第1表には、全て〔%Si〕I=0.36〜0.4
0の場合の実施例を示す。1回のバッチ処理で、低炭ア
ルミキルド鋼等の普通鋼のP、Sの製品規格と同等かあ
るいはそれ以上のレベルまでの脱りん、脱硫を目標に実
施した。(〔%P〕f=0.015〜20(脱りん率85%)〔%
S〕f=0.010〜0.014(脱硫率60%))脱珪は脱りんに
優先して進むので、もちろん処理後の〔%Si〕はtr(≦
0.001)である。
Table 1 shows the blowing conditions, material consumption rate, dephosphorization rate / desulfurization rate, and temperature change during treatment in the method of the present invention and the comparative method. Table 1 shows all [% Si] I = 0.36 to 0.4
An example in the case of 0 is shown. In a single batch treatment, dephosphorization and desulfurization were carried out aiming at a level equal to or higher than the product specifications for P and S for ordinary steel such as low carbon aluminum killed steel. ([% P] f = 0.015 to 20 (Phosphorus removal rate 85%) [%
S] f = 0.010 to 0.014 (desulfurization rate 60%)) Since desiliconization proceeds prior to dephosphorization, of course [% Si] after treatment is tr (≤
0.001).

比較例4では、CaO/ΣO2を1.8ほぼ一定のまま吹込みを
実施した。脱りん率85%時の同時脱硫率は高々22%で、
さらにCaOを24kg/tまで増やしても脱硫率は33%にとど
まっている。今回の実験では、脱炭量△〔%C〕はΣO2
=10Nm3/tの供給に対し処理前[%Si]が0.36〜0.40の
とき約0.5%程度であり、比較例4の吹止め時には△
〔%C〕は約1.0%にも達した。CaO/ΣO2が低いままCaO
を増やしても脱硫の停滞は元より脱炭をむやみに助長し
てしまう。
In Comparative Example 4, CaO / ΣO 2 was blown with 1.8 kept almost constant. The simultaneous desulfurization rate at a dephosphorization rate of 85% is at most 22%,
Furthermore, even if CaO was increased to 24 kg / t, the desulfurization rate remained at 33%. In this experiment, the decarburization amount △ [% C] is ΣO 2
= 10 Nm 3 / t, about 0.5% when the pre-treatment [% Si] is 0.36 to 0.40, and when the blow-off of Comparative Example 4 is stopped, Δ
[% C] reached about 1.0%. CaO / ΣO 2 remains low CaO
Even if the amount is increased, the stagnation of desulfurization unnecessarily promotes decarburization.

本発明法1、2、3のCaO/ΣO2の平均値は、それぞれ比
較例1、2、3のそれにほぼ等しい。本発明法1、2、
3では、いずれも吹込みの途中でWF(kg/分)を2〜3
倍まで増加させるとともにQo2(Nm3/分)を1/5〜2/3ま
で減少さて後半のCaO/ΣO2を前半期のそれの2倍以上に
保っている。また比較例5は吹込みの途中でWF/Qo2
を変更させたが、後半期のCaO/ΣO2比が前半期のそれの
2倍に満たない比較例である。
The average values of CaO / ΣO 2 of the present invention methods 1, 2 , and 3 are substantially equal to those of Comparative Examples 1, 2, and 3, respectively. Inventive method 1, 2,
In 3, both in the course of blow W F a (kg / min) 2-3
Times are kept at Q o2 (Nm 3 / min) 1 / 5-2 / 3 2 times or more of the first half of that decrease Well the second half of CaO / ΣO 2 up along with the increase to. The Comparative Example 5 but was changed W F / Q o2 ratio in the course of blowing, a comparative example in which CaO / NA: 0.75, o 2 ratio of the second half is less than twice that of the first half.

本発明法1と比較例1では、CaO=20kg/t、ΣO2=8Nm3
/tで比べても本発明法の法が脱硫率が10%高い。本発明
法2と比較例2では、CaO=26kg/t、ΣO2=8Nm3/tのと
き本発明法の方が脱硫率は16%高くまた脱りん率85%以
上確保し得たときの同時脱硫率60%を得るのに本発明法
の方がCaO=6kg/t、ΣO2=2.1Nm3/t、削減できている。
また本発明法3と比較例3においては、同時脱硫率が約
75%以上の極低硫濃度域(〔%S〕≦0.007)に到達す
るのに本発明法の方がCaO=10kg/t、ΣO2=2.2Nm3/t削
減できている。また比較例5ではCaO/ΣO2値の平均値が
本発明法1および比較例1とほぼ等しいが、吹止めのCa
O原単位が約21kg/tのときの脱硫率は本発明法1に比べ1
1%低く比較例1とほぼ等しかった。これは後半のCaO/
ΣO2が前半のそれの2倍未満にとどまったため、後半期
の脱硫促進の程度も抑えられたからである。後半期のCa
O/ΣO2比を思い切って増し前半期のCaO/ΣO2比の2倍以
上に保てば、双方の反応期間の分割・最適化が十分とな
り剤原単位を極力少なくすることができる。
In the present invention method 1 and the comparative example 1, CaO = 20 kg / t, ΣO 2 = 8 Nm 3
The desulfurization rate of the method of the present invention is 10% higher than that of / t. In the present invention method 2 and the comparative example 2, when CaO = 26 kg / t and ΣO 2 = 8 Nm 3 / t, the desulfurization rate is 16% higher and the dephosphorization rate of 85% or more can be secured by the method of the present invention. In order to obtain the simultaneous desulfurization rate of 60%, the method of the present invention can reduce CaO = 6 kg / t and ΣO 2 = 2.1 Nm 3 / t.
Further, in the method 3 of the present invention and the comparative example 3, the simultaneous desulfurization rate is about
In order to reach the extremely low sulfur concentration range of 75% or more ([% S] ≦ 0.007), the method of the present invention can reduce CaO = 10 kg / t and ΣO 2 = 2.2 Nm 3 / t. Further, in Comparative Example 5, the average value of CaO / ΣO 2 values is almost the same as that of the method 1 of the present invention and Comparative Example 1, but Ca
The desulfurization rate when the O basic unit is about 21 kg / t is 1 compared with the method 1 of the present invention.
It was 1% lower and almost equal to Comparative Example 1. This is the latter half of CaO /
This is because ΣO 2 was less than twice that in the first half, and the degree of acceleration of desulfurization in the second half was also suppressed. Ca in the second half
If the O / ΣO 2 ratio is drastically increased and kept at twice or more of the CaO / ΣO 2 ratio in the first half of the period, the reaction period of both reactions will be sufficiently divided and optimized, and the unit dose of the drug can be minimized.

極低りんあるいは極低硫鋼の溶製という特別の要求が無
い限り、〔%P〕,〔%S〕の一方だけに関して過剰品
質となることなく、バランス良く目標レベルに到達させ
るべきである。CaO原単位を極力削減するというねらい
故にとかく脱硫が困難となりがりの脱珪・脱りん・脱硫
同時処理において、本発明法が脱硫の集中的な促進に効
果があるため脱りん過剰となってしまう分のΣO2原単位
も削減できるメリットがある。
Unless there is a special requirement for melting ultra-low phosphorus or ultra-low sulfur steel, it is necessary to reach the target level in a well-balanced manner without causing excess quality in only one of [% P] and [% S]. Desulfurization becomes difficult because of the aim of reducing the CaO unit as much as possible, and in the simultaneous desiliconization, dephosphorization, and desulfurization simultaneous treatments, the method of the present invention is effective in intensively promoting desulfurization, resulting in excessive desulfurization. There is a merit that it can also reduce the ΣO 2 intensity per minute.

〔発明の効果〕 以上述べたように、本発明法によれば高Si溶銑の脱珪、
脱りんおよび脱硫の分割・最適化を、単一容器による1
回のバッチ処理で例えば1種類のみのフラックスにても
可能であり、脱珪と脱りん・脱硫に要するCaO、ΣO2
単位を極力削減できる。
[Effects of the Invention] As described above, according to the method of the present invention, desiliconization of high Si hot metal,
Split and optimize dephosphorization and desulfurization in a single vessel
It is possible to use only one type of flux in one batch process, and the CaO and ΣO 2 basic units required for desiliconization and dephosphorization / desulfurization can be reduced as much as possible.

【図面の簡単な説明】[Brief description of drawings]

第1図は、処理前溶銑の〔%Si〕が0.20〜0.25および0.
35〜0/40のとき脱りん率85%とするのに要する全O2(Σ
O2)原単位およびCaO原単位をCaO/ΣO2(kg/Nm3)に対
して示す図。第2図はCaOを10,20,30kg/tを使用する場
合の脱硫率をCaO/ΣO2(kg/Nm3)に対して示す図。第3
図(a)は本発明方法におけるフラックス吹込み速度WF
(kg/分)および気体酸素流量の経時変化の一例を示す
図。第3図(b)は、50%CaO-10%CaF2、−40%スケー
ルのフラックスを用いて第3図(a)に従う吹込み速度
で5tonの溶銑に吹込んだときの〔%Si〕,〔%P〕,
〔%S〕の経時変化を示す図。第4図はCaO=10kg/t当
たりの脱硫量△〔%S〕をCaO/ΣO2(kg/Nm3)に対して
示す図。第5図は脱りん率85%以上のとき同時脱硫率60
%を得るのに要するCaO原単位をCaO/ΣO2(kg/Nm3)に
対して示す図。
Figure 1 shows that the [% Si] of the hot metal before treatment was 0.20 to 0.25 and 0.
In the case of 35 to 0/40, the total O 2
O 2) shows the intensity and CaO intensity relative to CaO / ΣO 2 (kg / Nm 3). FIG. 2 is a diagram showing the desulfurization rate when CaO of 10, 20, 30 kg / t is used, with respect to CaO / ΣO 2 (kg / Nm 3 ). Third
Figure (a) shows the flux blowing velocity W F in the method of the present invention.
The figure which shows an example of the time-dependent change of (kg / min) and gaseous oxygen flow rate. Fig. 3 (b) shows [% Si] when 50% CaO-10% CaF 2 and -40% scale flux were used to blow 5ton of hot metal at a blowing speed according to Fig. 3 (a). , [% P],
The figure which shows the time-dependent change of [% S]. FIG. 4 is a diagram showing the desulfurization amount Δ [% S] per CaO = 10 kg / t with respect to CaO / ΣO 2 (kg / Nm 3 ). Fig. 5 shows the simultaneous desulfurization rate of 60 when the dephosphorization rate is 85% or more.
The figure which shows the CaO basic unit required to obtain% with respect to CaO / ΣO 2 (kg / Nm 3 ).

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】Siの重量濃度が0.20%以上の溶銑の脱りん
と脱硫を単一容器において行なうために気体酸素の全量
を固体化合酸素を含むCaO系の精錬剤(フラックス)と
ともに溶銑中にインジェクションする方法において、吹
込みの前半でCaO/ΣO2比を低く保って脱珪と脱りんを優
先的に進めた後、吹込みの後半ではCaO/ΣO2比を高くす
ることにより脱りんとともに主に脱硫を促進することを
特徴とする溶銑の脱りん、脱硫方法。
1. In order to perform dephosphorization and desulfurization of hot metal having a Si weight concentration of 0.20% or more in a single vessel, the entire amount of gaseous oxygen is injected into the hot metal together with a CaO-based refining agent (flux) containing solid compound oxygen. a method of, after advancing the first half CaO / NA: 0.75, o 2 ratio lower maintained by desiliconization and dephosphorization blow preferentially, mainly with dephosphorization by increasing the CaO / NA: 0.75, o 2 ratio in the second half of the blow A method for dephosphorizing and desulfurizing hot metal, characterized by accelerating desulfurization.
【請求項2】前記のCaO/ΣO2比の変更による脱珪・脱り
んと脱りん・脱硫の分割を、気体酸素使用比率の変更す
なわちフラックスの吹込み速度WF(kg/分)と気体酸素
流量Qo2(Nm3/分)の比の変更という操作を1回行なう
ことにより達成する特許請求の範囲第1項記載の方法。
2. The division of desiliconization / dephosphorization and dephosphorization / desulfurization by changing the CaO / ΣO 2 ratio is performed by changing the gas oxygen use ratio, that is, the flux blowing rate W F (kg / min) and the gas oxygen. The method according to claim 1, which is achieved by performing the operation of changing the ratio of the flow rate Q o2 (Nm 3 / min) once.
【請求項3】溶銑中の〔wt%Si〕が0.10〜0.15%以下と
なるまでの操業の前半の期間のCaO/ΣO2比を1.5から2.0
の範囲に保ち、後半の期間のCaO/ΣO2比を前半期のそれ
の2倍以上に保つことを特徴する特許請求の範囲第1項
ないし第2項記載の方法。
3. The CaO / ΣO 2 ratio during the first half of the operation until the [wt% Si] in the hot metal becomes 0.10 to 0.15% or less is 1.5 to 2.0.
3. The method according to claim 1 or 2, wherein the CaO / ΣO 2 ratio in the latter half period is kept at twice or more that in the first half period.
JP21651587A 1987-09-01 1987-09-01 Method of dephosphorization and desulfurization of hot metal Expired - Lifetime JPH079022B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21651587A JPH079022B2 (en) 1987-09-01 1987-09-01 Method of dephosphorization and desulfurization of hot metal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21651587A JPH079022B2 (en) 1987-09-01 1987-09-01 Method of dephosphorization and desulfurization of hot metal

Publications (2)

Publication Number Publication Date
JPS6462409A JPS6462409A (en) 1989-03-08
JPH079022B2 true JPH079022B2 (en) 1995-02-01

Family

ID=16689644

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21651587A Expired - Lifetime JPH079022B2 (en) 1987-09-01 1987-09-01 Method of dephosphorization and desulfurization of hot metal

Country Status (1)

Country Link
JP (1) JPH079022B2 (en)

Also Published As

Publication number Publication date
JPS6462409A (en) 1989-03-08

Similar Documents

Publication Publication Date Title
JP6481774B2 (en) Molten iron dephosphorizing agent, refining agent and dephosphorizing method
WO2019172195A1 (en) Dephosphorization method for molten iron
US4373949A (en) Method for increasing vessel lining life for basic oxygen furnaces
JP2013227664A (en) Molten iron preliminary treatment method
JP6773131B2 (en) Pretreatment method for hot metal and manufacturing method for ultra-low phosphorus steel
JPH079022B2 (en) Method of dephosphorization and desulfurization of hot metal
EP0015396A1 (en) A method for increasing vessel lining life for basic oxygen furnaces
WO2003029498A1 (en) Method for pretreatment of molten iron and method for refining
JPS6121285B2 (en)
JPH0324215A (en) Pretreatment of molten iron with high efficiency of utilization of quick lime
JPS63262407A (en) Method for dephosphorizing molten iron
JP3508550B2 (en) Hot metal desulfurization method
JP2017171975A (en) Dephosphorization agent for molten pig iron and dephosphorization method
JP2002212620A (en) Method for dephosphorizing molten iron
JPS636606B2 (en)
JPS6212301B2 (en)
JPH111714A (en) Steelmaking method
JPS6289807A (en) Method for acceleration slagging of high basicity slag for refining
KR0128138B1 (en) Method for producing molten metal
JPS6214603B2 (en)
JPH05156336A (en) Method for pre-treating molten iron
JP2002317218A (en) Molten iron dephosphorizing method
JPS6031885B2 (en) Dephosphorization method for high chromium molten steel
JP2001131624A (en) Dephosphorizing method of molten iron using decarburized slag
JP2001098314A (en) Treating method of molten iron