JPH0789900A - Method for recovering high-quality monomer from plastic - Google Patents

Method for recovering high-quality monomer from plastic

Info

Publication number
JPH0789900A
JPH0789900A JP20560593A JP20560593A JPH0789900A JP H0789900 A JPH0789900 A JP H0789900A JP 20560593 A JP20560593 A JP 20560593A JP 20560593 A JP20560593 A JP 20560593A JP H0789900 A JPH0789900 A JP H0789900A
Authority
JP
Japan
Prior art keywords
monomer
plastic
reactor
quality
plastics
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP20560593A
Other languages
Japanese (ja)
Inventor
Shigeo Nakamura
茂男 中村
Shingo Inoue
進吾 井上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Chemical Industry Co Ltd
Original Assignee
Asahi Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Chemical Industry Co Ltd filed Critical Asahi Chemical Industry Co Ltd
Priority to JP20560593A priority Critical patent/JPH0789900A/en
Publication of JPH0789900A publication Critical patent/JPH0789900A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J11/00Recovery or working-up of waste materials
    • C08J11/04Recovery or working-up of waste materials of polymers
    • C08J11/10Recovery or working-up of waste materials of polymers by chemically breaking down the molecular chains of polymers or breaking of crosslinks, e.g. devulcanisation
    • C08J11/12Recovery or working-up of waste materials of polymers by chemically breaking down the molecular chains of polymers or breaking of crosslinks, e.g. devulcanisation by dry-heat treatment only
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C67/00Preparation of carboxylic acid esters
    • C07C67/30Preparation of carboxylic acid esters by modifying the acid moiety of the ester, such modification not being an introduction of an ester group
    • C07C67/333Preparation of carboxylic acid esters by modifying the acid moiety of the ester, such modification not being an introduction of an ester group by isomerisation; by change of size of the carbon skeleton
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2325/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring; Derivatives of such polymers
    • C08J2325/02Homopolymers or copolymers of hydrocarbons
    • C08J2325/04Homopolymers or copolymers of styrene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2333/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Derivatives of such polymers
    • C08J2333/04Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Derivatives of such polymers esters
    • C08J2333/06Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Derivatives of such polymers esters of esters containing only carbon, hydrogen, and oxygen, the oxygen atom being present only as part of the carboxyl radical
    • C08J2333/10Homopolymers or copolymers of methacrylic acid esters
    • C08J2333/12Homopolymers or copolymers of methyl methacrylate
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/62Plastics recycling; Rubber recycling

Abstract

PURPOSE:To efficiently recover high-quality monomer(s) from plastics in high yield in good operability by feeding feedstock plastics into a reactor heated to specified temperatures followed by pyrolyzing the plastics under dry distillation and then conducting a distillation of the resultant monomer(s). CONSTITUTION:Feedstock plastics such as acrylic synthetic resin or styrenic synthetic resin is continuously fed into a reactor heated to >=300 deg.C in advance and packed with a heating medium comprising spherical granules 0.1-100mm in diameter and/or aspherical granules 0.1-100mm in size consisting of inorganic material selected from sand, alumina, glass, agate zirconia, silicon nitride and ceramics and/or metallic material selected from aluminum, iron, stainless steel and titanium; In the reactor, the plastics are pyrolyzed under dry distillation into crude monomer(s), which is, in turn, distilled to separate and eliminate impurity compounds higher and lower in boiling point than the aimed monomer(s), thus recovering the objective high-quality monomer(s) from the platics.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、アクリル系合成樹脂や
スチレン系合成樹脂等の熱可塑性プラスチック材料(以
下プラスチックと略記する)を乾留し回収精製する方法
に関するものであり、具体的にはポリメチルメタクリレ
ート(以下PMMAと略記する)やポリスチレン(以下
PSと略記する)等を乾留熱分解により粗モノマ−に分
解させ、次いでそれを蒸留することにより高品質モノマ
−を回収する方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for recovering and refining a thermoplastic material such as an acrylic synthetic resin or a styrene synthetic resin (hereinafter abbreviated as plastic) by dry distillation. The present invention relates to a method of recovering a high-quality monomer by decomposing methyl methacrylate (hereinafter abbreviated as PMMA), polystyrene (hereinafter abbreviated as PS) and the like into a crude monomer by dry distillation pyrolysis and then distilling the crude monomer.

【0002】[0002]

【従来の技術】アクリル系合成樹脂やスチレン系合成樹
脂等のプラスチックは、他の熱可塑性プラスチックに比
べて乾留熱分解することにより比較的容易にモノマーに
まで分解することが知られている。そこでそれらの重合
物、成型品および成型時に生じる廃材、あるいは製品と
して使用した後に回収される廃材等に対し、乾留熱分解
法によりモノマーを工業的に回収する方法が種々検討さ
れている。
2. Description of the Related Art It is known that plastics such as acrylic synthetic resins and styrene synthetic resins are relatively easily decomposed into monomers by dry distillation pyrolysis as compared with other thermoplastics. Therefore, various methods of industrially recovering the monomer by the dry distillation pyrolysis method have been studied for the polymer, the molded product, the waste material generated at the time of molding, or the waste material recovered after being used as a product.

【0003】例えば、特開昭54ー154710号公報
には、PMMAの廃材を粒径が小さく且つかさ比重の小
さい無機質材料又は金属粉末から選ばれる1種又は2種
以上の添加剤の共存下にロータリーキルンを用いて連続
的に乾留熱分解してメチルメタクリレートモノマー(以
下MMAと略記する)を回収する方法が開示されてい
る。しかし、この方法には当該PMMA廃材が添加物と
共に塊状物になりやすい為、熱分解温度制御が困難であ
り、結果的にMMAモノマーの回収率が低いという問題
があり、且つロータリーキルンの回転部からの外気混入
による爆発の危険性が高く、設備全体の安全確保が難し
いという問題点、及びPMMA廃材供給ラインがPMM
A廃材で閉塞しやすいという問題点があり、工業的に完
成された方法とはいえない。
For example, in JP-A-54-154710, waste material of PMMA is mixed with one or more additives selected from an inorganic material having a small particle size and a low bulk specific gravity or a metal powder. A method of continuously carrying out dry distillation pyrolysis using a rotary kiln to recover a methyl methacrylate monomer (hereinafter abbreviated as MMA) is disclosed. However, in this method, the PMMA waste material is likely to be aggregated together with the additive, so that it is difficult to control the thermal decomposition temperature, and as a result, the recovery rate of the MMA monomer is low. There is a high risk of explosion due to the entry of outside air into the equipment, and it is difficult to ensure the safety of the entire equipment.
There is a problem that it is easily clogged with waste material A, and it cannot be said to be an industrially completed method.

【0004】また、特公昭47ー41886号公報に
は、PMMAの解重合温度またはそれ上の温度に保った
溶解金属とPMMA廃材を不活性雰囲気に連続的に接触
させる方法が開示されている。しかし、この方法も乾留
によって生成する炭化物及び灰分(以下灰分と略記す
る)が系内に蓄積することによるMMA回収率の経時的
低下がある他、溶融金属成分が乾留液に混入するという
欠点があり、これも完成された工業的方法とは言えない
方法である。
Further, Japanese Patent Publication No. 47-41886 discloses a method of continuously contacting a PMMA waste material and a PMMA waste material maintained at or above the PMMA depolymerization temperature with an inert atmosphere. However, this method also has a drawback that the MMA recovery rate decreases with time due to the accumulation of carbides and ash (hereinafter abbreviated as ash) produced by carbonization in the system, and that molten metal components are mixed in the carbonization liquid. Yes, this is also not a completed industrial method.

【0005】[0005]

【発明が解決しようとする課題】本発明は、PMMAや
PS等のプラスチックの重合物、成型品、成型する時に
生じる廃材および商品として使用した後に回収された廃
材等を原料として、それらを乾留熱分解し、次いで、蒸
留法によって高品質モノマーを操作性良く、高収率で工
業的に得る方法を提供することを課題とするものであ
る。
DISCLOSURE OF THE INVENTION The present invention uses a polymer of a plastic such as PMMA or PS, a molded product, a waste material produced at the time of molding, and a waste material recovered after being used as a raw material as a raw material for dry distillation heat. It is an object of the present invention to provide a method of decomposing and then industrially obtaining a high quality monomer by a distillation method with good operability and in a high yield.

【0006】[0006]

【課題を解決するための手段】本発明者らは、上記課題
を解決するための研究を重ねた結果、特定の熱媒体を充
填した内部撹拌できる反応器を用いて、不活性雰囲気中
で乾留熱分解し、次いで、その際生成した蒸気を凝縮す
ることにより、該プラスチックに対応した粗モノマーを
回収し、同時に反応器下部より乾留熱分解で生成する灰
分を連続的に排出した後、粗モノマーを蒸留法により、
当該モノマーに比べ低沸点の不純化合物と高沸点の不純
化合物を分離除去することにより高品質モノマーを回収
できることを見いだし本発明に到達した。
As a result of repeated studies for solving the above-mentioned problems, the inventors of the present invention have conducted a dry distillation in an inert atmosphere using a reactor which can be internally stirred and which is filled with a specific heat medium. By pyrolyzing and then condensing the vapor generated at that time, the crude monomer corresponding to the plastic is recovered, and at the same time, the ash produced by dry distillation pyrolysis is continuously discharged from the lower part of the reactor, and then the crude monomer is discharged. By the distillation method
The inventors have found that high-quality monomers can be recovered by separating and removing the impure compound having a low boiling point and the impure compound having a high boiling point as compared with the monomer, and arrived at the present invention.

【0007】すなわち、本発明は原料のプラスチックを
予め300℃以上に加熱された熱媒体が充填してある反
応器に連続的に供給し、乾留熱分解させて粗モノマーに
分解する第1の工程と、該第1の工程を経た乾留熱分解
粗モノマーを蒸留して、当該モノマーに比べて低沸点の
不純化合物と高沸点の不純化合物とを分離除去する第2
の工程とからなるプラスチックから高品質モノマーを回
収する方法を提供するものである。
That is, according to the present invention, the first step of continuously supplying the raw material plastic to a reactor filled with a heating medium preheated to 300 ° C. or higher and pyrolyzing it to decompose it into a crude monomer And a second dry distillation pyrolysis crude monomer that has undergone the first step is distilled to separate and remove an impure compound having a lower boiling point and an impure compound having a higher boiling point than the monomer.
The present invention provides a method for recovering high quality monomers from plastics, which comprises the steps of

【0008】以下、本発明を詳細に説明する。本発明の
原料となるアクリル系合成樹脂としては、ポリアクリル
酸メチル、ポリアクリル酸エチル、ポリアクリル酸プロ
ピル、ポリアクリル酸ブチル、PMMA、ポリメタクリ
ル酸プロピル、ポリメタクリル酸ブチル等が挙げられ
る。
The present invention will be described in detail below. Examples of the acrylic synthetic resin as the raw material of the present invention include polymethyl acrylate, polyethyl acrylate, polypropyl acrylate, polybutyl acrylate, PMMA, polypropyl methacrylate, polybutyl methacrylate and the like.

【0009】スチレン系合成樹脂としては、PS、ポリ
メチルスチレン、ポリエチルスチレン、ポリブチルスチ
レン、ポリジメチルスチレン等が挙げられる。また、こ
れらの共重合体としては、MMA−スチレン共重合体、
MMA−ジメチルスチレン共重合体等が挙げられる。上
記プラスチックは単独または組み合わせのいずれでも良
いが、単独のプラスチックを乾留熱分解した方が後工程
の精製処理を容易にするので好ましい。
Examples of styrene synthetic resins include PS, polymethylstyrene, polyethylstyrene, polybutylstyrene, polydimethylstyrene and the like. Moreover, as these copolymers, MMA-styrene copolymers,
Examples thereof include MMA-dimethylstyrene copolymer. Although the above plastics may be used alone or in combination, it is preferable to subject the individual plastics to dry distillation pyrolysis because the purification process in the subsequent step is facilitated.

【0010】この乾留熱分解させるために反応器に送入
させるプラスチックは、どんな形状でも良く、削り屑
状、片状、粒状、粉末状、チップ状、シート状のいずれ
でもよく、それらは単独でも組み合わせでも、また、汚
染され、または、汚染されていない液状モノマーと共に
使用しても良い。しかし、シートや原形のままの成型品
のような大きいプラスチックは反応器への仕込みを容易
にするため20mm以下の使い易い片状に破砕するのが
好ましい。
The plastic to be fed into the reactor for the pyrolysis by dry distillation may have any shape, such as shavings, flakes, granules, powder, chips and sheets, which may be used alone. They may be used in combination or with contaminated or uncontaminated liquid monomers. However, it is preferable to crush a large plastic such as a sheet or a molded product in its original shape into an easy-to-use piece having a size of 20 mm or less in order to facilitate charging into a reactor.

【0011】次に本発明の方法を図1に示すフローシー
トにより説明する。上記のプラスチックを原料として図
1に示すような外熱式竪型の反応器(1)を用いて連続
的に熱分解を行う。即ち、該プラスチックを供給装置の
ホッパー(2)に入れ、外気の侵入と反応器内部からの
ガス逆流と漏洩を防止するように密閉構造とし、パージ
用の不活性ガスを導管(13)から適宜導入しながらホ
ッパー(2)内のプラスチックを定量供給装置(3)に
より反応器(1)に供給する。
Next, the method of the present invention will be described with reference to the flow sheet shown in FIG. Pyrolysis is continuously performed using the above plastic as a raw material and using an external heat type vertical reactor (1) as shown in FIG. That is, the plastic is put in a hopper (2) of a supply device, and a closed structure is provided so as to prevent invasion of outside air and backflow and leakage of gas from inside the reactor, and an inert gas for purging is appropriately supplied from a conduit (13). While being introduced, the plastic in the hopper (2) is supplied to the reactor (1) by the constant quantity supply device (3).

【0012】反応器(1)に接続されている供給配管
(14)及び該プラスチックを、温度250℃以下、好
ましくは50℃〜100℃に温度調節できる構造とする
ことにより、半融解状態のプラスチックによる閉塞を防
ぎ、操作性良く安定供給する。プラスチックの供給速度
は、プラスチックの寸法の大きさ、反応器(1)の寸
法、及び加熱された熱媒体の量及び保持温度等で決定す
る。また、不活性ガスとしては、窒素、アルゴン、二酸
化炭素、及び乾留熱分解時生成する非凝縮性ガスなどが
使われる。
The supply pipe (14) connected to the reactor (1) and the plastic have a structure in which the temperature can be adjusted to 250 ° C. or lower, preferably 50 to 100 ° C. Prevents blockage due to, and provides stable supply with good operability. The plastic supply rate is determined by the size of the plastic, the size of the reactor (1), the amount of heated heating medium and the holding temperature, and the like. Further, as the inert gas, nitrogen, argon, carbon dioxide, and non-condensable gas produced during pyrolysis of carbon are used.

【0013】この反応器(1)には、熱媒体を反応器容
積の5〜95%、好ましくは40〜80%充填し、温度
300℃〜700℃、好ましくは350℃〜450℃に
加熱した条件で、一定速度で撹拌しながら熱媒体とプラ
スチックとを効率良く接触させる。また、同時に撹拌し
た熱媒体により、乾留熱分解で生成し反応器内部や壁に
付着した、灰分を粉砕し、次いで、反応器下部に設けら
れた金網状の分別板(4)で熱媒体と灰分とを分離した
後、熱伝達の妨げとなる灰分を反応器下部バルブ(5)
を経て連続的に排出することにより、反応器内部の温度
を安定させる。
The reactor (1) was filled with a heat medium in an amount of 5 to 95%, preferably 40 to 80% of the reactor volume, and heated to a temperature of 300 ° C to 700 ° C, preferably 350 ° C to 450 ° C. Under the conditions, the heat medium and the plastic are efficiently contacted with each other while stirring at a constant speed. In addition, the ash content generated by dry distillation pyrolysis and adhered to the inside and walls of the reactor is crushed by the heat medium stirred at the same time, and then the ash is separated by the wire mesh-like separation plate (4) provided at the bottom of the reactor. After separating the ash from the ash, the ash that interferes with heat transfer is removed from the reactor lower valve (5).
The temperature inside the reactor is stabilized by continuously discharging through the reactor.

【0014】熱媒体としては、砂、アルミナ、ガラス、
メノー、ジルコニア、窒化硅素、セラミックなどの無機
質材料、アルミニウム、鉄、ステンレス、チタンなどの
金属材料から選ばれた一種または2種以上を併用しても
良く、熱媒体の形状は直径0.1〜100mmの球状ま
たは一辺が0.1〜100mmの塊状のものを単独又は
併用して用いる。熱媒体の選定は、熱伝導性、密度、耐
熱強度、耐摩耗性、耐食性、経済性を勘案し決定する。
As the heat medium, sand, alumina, glass,
One or more selected from inorganic materials such as meno, zirconia, silicon nitride, and ceramics, and metal materials such as aluminum, iron, stainless steel, and titanium may be used in combination, and the shape of the heating medium has a diameter of 0.1 to 0.1. A sphere having a diameter of 100 mm or a lump having a side of 0.1 to 100 mm is used alone or in combination. The heat medium is selected in consideration of thermal conductivity, density, heat resistance strength, wear resistance, corrosion resistance, and economic efficiency.

【0015】乾留熱分解で生成したモノマーを含むガス
は、反応器の頂部から導管(15)を通して、冷却塔
(6)に導かれ、そこでモノマーを凝縮させ、粗モノマ
ー貯蔵槽(7)に貯蔵する。非凝縮性ガスはブロアー
(8)によつて導管(16)に導かれ、中段ノズル(1
7)及びホッパー(2)から反応器に循環される。また
余剰なガスは導管(18)を通してガス処理装置(9)
に導かれて処理される。反応器中で生成したガスは、二
次分解を防ぐためにできるだけ速やかに反応器から追い
出すのが好ましく、そのために、前記循環ガスのほかに
パージ用の不活性ガスを導管(13)から適宜導入す
る。
The gas containing the monomer produced by dry distillation pyrolysis is introduced from the top of the reactor through a conduit (15) into a cooling tower (6) where the monomer is condensed and stored in a crude monomer storage tank (7). To do. The non-condensable gas is introduced into the conduit (16) by the blower (8), and the intermediate nozzle (1
7) and hopper (2) are recycled to the reactor. In addition, the surplus gas is passed through the conduit (18) to the gas treatment device (9).
To be processed. The gas produced in the reactor is preferably expelled from the reactor as quickly as possible in order to prevent secondary decomposition. Therefore, in addition to the circulating gas, an inert gas for purging is appropriately introduced from the conduit (13). .

【0016】反応器の加熱法は電熱またはガス燃料など
による直接加熱、または反応器をジャケット式にしてジ
ャケット内に溶融塩等の加熱熱媒を通す間接加熱法が用
いられる。好ましくは熱の分布が均一で安全確保が容易
な間接加熱法が用いられる。加熱炉(10)で加熱され
た溶融塩槽(11)の溶融塩を循環ポンプ(12)で反
応器ジャケットに循環せる。この反応器の温度は熱電対
(19)によって制御される。更に、熱電対(20)に
よってガス温度を測り、乾留熱分解の運転管理の指標と
する。余剰なガス処理装置(9)としては、水またはア
ルカリ水等によるガス洗浄塔装置またはガス焼却炉装置
によって処理される。
As a heating method for the reactor, direct heating using electric heat or gas fuel, or an indirect heating method in which a heating medium such as a molten salt is passed through a jacket of the reactor is used. Preferably, an indirect heating method is used, which has a uniform heat distribution and is easy to ensure safety. The molten salt in the molten salt tank (11) heated in the heating furnace (10) is circulated in the reactor jacket by the circulation pump (12). The temperature of this reactor is controlled by a thermocouple (19). Furthermore, the gas temperature is measured with a thermocouple (20) and used as an index for operation management of dry distillation pyrolysis. The surplus gas treatment device (9) is treated by a gas washing tower device or a gas incinerator device using water or alkaline water.

【0017】次いで、粗モノマー液を上記の乾留熱分解
の過程で生成した低沸点不純化合物と高沸点不純化合物
を蒸留分離すると、その中間留分として高品質モノマー
が得られる。この蒸留は、低沸点不純化合物分離蒸留塔
と高沸点不純化合物分離蒸留塔の2塔で行っても良い
し、或いは、一つの蒸留塔で低沸点不純化合物と高沸点
不純化合物を同時に分離し、目的とする高品質モノマー
をこの蒸留塔の側流として抜きだしても良い。これら
は、回分的方法あるいは連続的方法で操作される。
Next, the low-boiling point impure compound and the high-boiling point impure compound produced in the course of the above-mentioned dry distillation pyrolysis are separated by distillation from the crude monomer liquid to obtain a high-quality monomer as an intermediate fraction. This distillation may be carried out in two columns, a low boiling point impure compound separation distillation column and a high boiling point impure compound separation distillation column, or a single distillation column may simultaneously separate a low boiling point impure compound and a high boiling point impure compound, The desired high quality monomer may be withdrawn as a sidestream of this distillation column. These are operated either batchwise or continuously.

【0018】これらの操作は、減圧、常圧、加圧のいず
れの操作でも可能であるが、モノマーの重合、不純物の
分解抑制等を考慮し、高品質モノマーを確保するために
は、系内に重合防止剤を入れながら減圧蒸留するのが好
ましい。以上により、プラスチックから高回収率で高品
質モノマーを回収することができる。
These operations can be carried out by any of depressurization, normal pressure and pressurization. However, in order to ensure high quality monomers in consideration of polymerization of monomers, suppression of decomposition of impurities, etc. It is preferable to carry out distillation under reduced pressure while adding a polymerization inhibitor. As described above, high quality monomers can be recovered from plastic at a high recovery rate.

【0019】[0019]

【実施例】次に、本発明を実施例及び比較例により説明
する。
EXAMPLES Next, the present invention will be described with reference to Examples and Comparative Examples.

【0020】実施例1 内容量3Lのステンレス製反応器に熱媒体の鉄球(寸法
直径3mm)を1L充填して、パージ用窒素ガスを5L
/Hrで供給し、反応器内部を60RPMで撹拌しなが
ら400℃となるように温度調節した。次いで、反応器
内温度を400℃に維持する供給速度で7mm角に破砕
したPMMAを70℃に保たれた供給口より供給し、生
成したガス状のMMAモノマーを速やかに凝縮器に導い
た。
Example 1 A stainless steel reactor having an internal capacity of 3 L was charged with 1 L of iron balls (having a diameter of 3 mm) as a heat medium, and 5 L of nitrogen gas for purging.
/ Hr, and the temperature was adjusted to 400 ° C. while stirring the inside of the reactor at 60 RPM. Next, PMMA crushed into 7 mm square was supplied from a supply port kept at 70 ° C. at a supply rate for maintaining the temperature inside the reactor at 400 ° C., and the produced gaseous MMA monomer was promptly introduced into the condenser.

【0021】PMMAは1時間当たり400gの割合で
供給し、同時に反応器下部より灰分を1時間当たり4g
排出した。尚、この操作は1000Hrにわたって連続
して行ったが、反応器内のガス温度の変動も極めて少な
く、灰分抜き出しも容易に出来、PMMAの連続的な乾
留熱分解を安定して行うことが出来た。また、この時の
粗MMAの回収率は供給PMMAの99%の高収率であ
った。
PMMA was supplied at a rate of 400 g per hour, and at the same time, ash was added from the bottom of the reactor at 4 g per hour.
Discharged. This operation was continuously carried out for 1000 hours, but the fluctuation of the gas temperature in the reactor was extremely small, the ash could be easily extracted, and the continuous dry distillation pyrolysis of PMMA could be stably carried out. . Further, the recovery rate of the crude MMA at this time was as high as 99% of the supplied PMMA.

【0022】次いで、上記粗MMAを原料として、5m
mラッシヒリングを1000mmの高さに充填した直径
15mmの蒸留装置で塔頂圧力を80mmHgに減圧
し、全還流し、次いで、還流比5で供給量の5%を初留
として除いたあと、残りの90%を蒸留留出させたとこ
ろ、MMA濃度99.8wt%の無色透明な高品質のM
MAモノマーを得た。尚、乾留熱分解から蒸留までの一
通操作でのMMAモノマー回収率は供給PMMAの89
%であった。
Next, using the above-mentioned crude MMA as a raw material, 5 m
The column top pressure was reduced to 80 mmHg by a distillation apparatus having a diameter of 15 mm, which was filled with m Raschig rings at a height of 1000 mm, and was completely refluxed. When 90% was distilled off, MMA concentration of 99.8 wt% was obtained.
MA monomer was obtained. The recovery rate of MMA monomer in one operation from dry distillation pyrolysis to distillation is 89% of the supplied PMMA.
%Met.

【0023】実施例2 実施例1に於いて、鉄球の代わりに同じ寸法、量のジル
コニアセラミックスボール1Lを入れ、2日間にわたっ
て連続的に乾留熱分解を行った。実施例1と同様安定に
運転することが出来た。この時のPMMA供給量は1時
間当たり380gの割合で、灰分は1時間当たり約4g
排出し、粗MMAの回収率は供給PMMAの98%の高
収率であった。
Example 2 In Example 1, 1 L of zirconia ceramic balls having the same size and quantity were put in place of the iron balls, and pyrolysis was continuously carried out for 2 days. It was possible to operate stably as in Example 1. At this time, the PMMA supply rate was 380 g per hour, and the ash content was about 4 g per hour.
The recovery of the crude MMA discharged was as high as 98% of the feed PMMA.

【0024】次いで、実施例1と同じ装置、操作で粗M
MAを蒸留し、MMA濃度99.6wt%の無色透明な
高品質のMMAモノマーを得た。尚、乾留熱分解から蒸
留までの一通操作でのMMAモノマー回収率は供給PM
MAの88%であった。
Then, using the same apparatus and operation as in Example 1, a coarse M
MA was distilled to obtain a colorless and high-quality MMA monomer having an MMA concentration of 99.6 wt%. The recovery rate of MMA monomer in one operation from dry distillation pyrolysis to distillation is
It was 88% of MA.

【0025】実施例3 実施例1に於いて、鉄球の代りに同じ寸法、量のアルミ
ナボール1Lを入れ、20Hrにわたって連続的に乾留
熱分解を行い、安定に運転することが出来た。この時の
PMMA供給量は1時間当たり390gの割合で、灰分
は1時間当たり約4g排出し、粗MMAの回収率は供給
PMMAの97%の高収率であった。次いで、実施例1
と同じ装置、操作で粗MMAを蒸留し、MMA濃度9
9.5wt%の無色透明な高品質のMMAモノマーを得
た。尚、乾留熱分解から蒸留までの一通操作でのMMA
モノマー回収率は供給PMMAの87%であった。
Example 3 In Example 1, 1 L of alumina balls of the same size and amount were put in place of the iron balls, and pyrolysis was continuously carried out over 20 hours, and stable operation was possible. At this time, PMMA was supplied at a rate of 390 g per hour, ash was discharged at about 4 g per hour, and the recovery rate of crude MMA was a high yield of 97% of the supplied PMMA. Then, Example 1
Crude MMA was distilled using the same equipment and operation as in MMA concentration 9
9.5 wt% colorless and transparent high quality MMA monomer was obtained. In addition, MMA in one operation from dry distillation pyrolysis to distillation
Monomer recovery was 87% of the feed PMMA.

【0026】比較例1 実施例1に於いて、熱媒体を入れずに、反応器内温度を
400℃に維持する供給速度で16Hrにわたって連続
的に乾留熱分解を行った。この時のPMMA供給量は1
時間当たり100gの割合であり、粗MMAの回収率は
供給PMMAの92%であった。また、運転時間の経過
と共に、反応器内の滞留灰分が増加したため、ガス温度
が不安定となり、安定した運転が不能となった。更に、
着色度合いも強く不純物の多い粗MMAとなった。
Comparative Example 1 In Example 1, dry distillation pyrolysis was continuously carried out for 16 hours at a feed rate for keeping the temperature inside the reactor at 400 ° C. without adding a heat medium. PMMA supply at this time is 1
At a rate of 100 g per hour, the recovery of crude MMA was 92% of the feed PMMA. Further, as the operating time passed, the ash content in the reactor increased, and the gas temperature became unstable, making stable operation impossible. Furthermore,
The MMA was a crude MMA having a high degree of coloring and a large amount of impurities.

【0027】次いで、実施例1と同じ装置、操作で粗M
MAを蒸留し、MMA濃度96.5wt%の無色透明な
MMAモノマーを得た。尚、乾留熱分解から蒸留までの
一通操作でのMMAモノマー回収率は供給PMMAの8
3%であった。実施例1に比べ、PMMAの供給速度が
1/4に減少する事、粗MMAの回収率が3%低下する
事、一通操作でのMMAモノマー回収率が83%に減少
し、更に、運転が困難である事から工業的に実施するこ
とは難しいことが分かる。
Then, using the same apparatus and operation as in Example 1, a coarse M
MA was distilled to obtain a colorless and transparent MMA monomer having an MMA concentration of 96.5 wt%. The recovery rate of MMA monomer in one operation from dry distillation pyrolysis to distillation is 8
It was 3%. Compared with Example 1, the PMMA supply rate is reduced to 1/4, the crude MMA recovery rate is reduced by 3%, the MMA monomer recovery rate in a single operation is reduced to 83%, and the operation is further reduced. It is difficult to carry out industrially because it is difficult.

【0028】比較例2 実施例1に於いて、熱媒体をゼオライト(寸法直径3m
m)に変え、反応器に1L充填した。次いで、反応器内
温度を400℃に維持する供給速度で10Hrにわたっ
て連続的に安定して乾留熱分解を行うことができた。こ
の時のPMMA供給量は1時間当たり400gの割合で
あり、同時に反応器下部より灰分を1時間当たり4g排
出した。粗MMAの回収率は供給PMMAの56%と低
く、且つ、実施例1〜3に比べ粗MMA中の不純物を多
く含んでおり、また、非凝縮性ガスも多量に発生した。
Comparative Example 2 In Example 1, the heat medium was zeolite (dimension diameter 3 m).
m) and charged to the reactor by 1 L. Then, dry distillation pyrolysis could be carried out continuously and stably over 10 hours at a feed rate maintaining the temperature in the reactor at 400 ° C. At this time, the amount of PMMA supplied was 400 g per hour, and at the same time, 4 g of ash was discharged from the lower part of the reactor per hour. The recovery rate of the crude MMA was as low as 56% of the supplied PMMA, and contained a large amount of impurities in the crude MMA as compared with Examples 1 to 3, and also generated a large amount of non-condensable gas.

【0029】次いで、実施例1と同じ装置、操作で粗M
MAを蒸留し、MMA濃度85.2wt%の無色透明な
MMAモノマーを得た。尚、乾留熱分解から蒸留までの
一通操作でのMMAモノマー回収率は供給PMMAの5
0%であった。実施例1に比べ、粗MMAの回収率が4
3%低下する事及び一通操作でのMMAモノマー回収率
が50%に激減する事などから、工業的に実施すること
は難しいことが分かる。
Then, using the same apparatus and operation as in Example 1, a coarse M
MA was distilled to obtain a colorless and transparent MMA monomer having an MMA concentration of 85.2 wt%. In addition, the recovery rate of MMA monomer in one operation from dry distillation pyrolysis to distillation is 5 for PMMA supplied.
It was 0%. Compared with Example 1, the recovery rate of crude MMA is 4
It can be seen that it is difficult to carry out industrially, because the MMA monomer recovery rate is reduced by 3% and the MMA monomer recovery rate per operation is drastically reduced to 50%.

【0030】比較例3 実施例1に於いて、反応器内温度を290℃に維持する
供給速度で10Hrにわたって連続的に乾留熱分解を行
った。この時のPMMA供給量は1時間当たり50gの
割合であり、粗MMAの回収率は供給PMMAの10%
と低く、殆ど乾留熱分解されず系内に堆積した。
Comparative Example 3 In Example 1, dry distillation pyrolysis was continuously carried out for 10 hours at a feed rate maintaining the temperature in the reactor at 290 ° C. The amount of PMMA supplied at this time was 50 g per hour, and the recovery rate of crude MMA was 10% of the supplied PMMA.
It was low, and almost no pyrolysis was carried out, and it was deposited in the system.

【0031】次いで、実施例1と同じ装置、操作で粗M
MAを蒸留し、MMA濃度96.4wt%の無色透明な
MMAモノマーを得た。尚、乾留熱分解から蒸留までの
一通操作でのMMAモノマー回収率は供給PMMAの9
%であった。実施例1に比べ、粗MMAの回収率が89
%低下する事及び一通操作でのMMAモノマー回収率が
9%に激減する事などから、工業的に実施し得ない方法
であることが分かる。
Then, using the same apparatus and operation as in Example 1, a coarse M
MA was distilled to obtain a colorless and transparent MMA monomer having an MMA concentration of 96.4 wt%. In addition, the recovery rate of MMA monomer in one operation from dry distillation pyrolysis to distillation is 9 for PMMA supplied.
%Met. Compared to Example 1, the recovery rate of crude MMA was 89.
%, And the MMA monomer recovery rate per operation is drastically reduced to 9%, which indicates that the method cannot be industrially implemented.

【0032】比較例4 実施例1に於いて、反応器内温度を750℃に維持する
供給速度で10Hrにわたって連続的に乾留熱分解を行
った。この時のPMMA供給量は1時間当たり600g
の割合であり、同時に反応器下部より灰分を1時間当た
り6g排出した。粗MMAの回収率は供給PMMAの6
1%と低く、且つ、不純物を多く含んでいた。また、非
凝縮性ガスが多量に発生した。
Comparative Example 4 In Example 1, dry distillation pyrolysis was continuously carried out for 10 hours at a feed rate maintaining the temperature in the reactor at 750 ° C. The amount of PMMA supplied at this time is 600 g per hour
At the same time, 6 g of ash was discharged from the lower part of the reactor per hour. The recovery rate of crude MMA is 6 for PMMA supplied.
It was as low as 1% and contained a large amount of impurities. Also, a large amount of non-condensable gas was generated.

【0033】次いで、実施例1と同じ装置、操作で粗M
MAを蒸留し、MMA濃度92.0wt%の無色透明な
MMAモノマーを得た。尚、乾留熱分解から蒸留までの
一通操作でのMMAモノマー回収率は供給PMMAの5
5%であった。実施例1に比べ、粗MMAの回収率が3
8%低下する事及び一通操作でのMMAモノマー回収率
が55%に激減する事などから、工業的に実施すること
は難しいことが分かる。
Then, using the same apparatus and operation as in Example 1, a coarse M
MA was distilled to obtain a colorless and transparent MMA monomer having an MMA concentration of 92.0 wt%. In addition, the recovery rate of MMA monomer in one operation from dry distillation pyrolysis to distillation is 5 for PMMA supplied.
It was 5%. Compared to Example 1, the recovery rate of crude MMA is 3
It can be seen that it is difficult to carry out the process industrially, because it is decreased by 8% and the recovery rate of the MMA monomer in one operation is drastically reduced to 55%.

【0034】実施例4 実施例1に於て、プラスチックをPMMAの代わりにP
Sを反応器内温度を400℃に維持する供給速度で20
Hrにわたって連続的に乾留熱分解を行った。この時の
PS供給量は1時間当たり270gの割合であり、同時
に反応器下部より灰分を1時間当たり5.4g排出し
た。粗PSの回収率は供給PSの96%と高いが、不純
物を多く含んでいた。次いで、実施例1と同じ装置、操
作で粗PSを蒸留し、スチレン濃度88.5wt%の無
色透明なスチレンモノマーを得た。尚、乾留熱分解から
蒸留までの一通操作でのスチレンモノマー回収率は供給
PSの86%であった。
Example 4 In Example 1, the plastic was replaced by P instead of PMMA.
20% S at a feed rate for maintaining the temperature in the reactor at 400 ° C.
Pyrolysis was carried out continuously over Hr. At this time, the PS feed rate was 270 g per hour, and at the same time, ash was discharged from the lower part of the reactor at 5.4 g per hour. The recovery rate of crude PS was as high as 96% of the supplied PS, but it contained a large amount of impurities. Then, the crude PS was distilled using the same apparatus and operation as in Example 1 to obtain a colorless and transparent styrene monomer having a styrene concentration of 88.5 wt%. The styrene monomer recovery rate in one operation from dry distillation pyrolysis to distillation was 86% of the supplied PS.

【0035】[0035]

【発明の効果】本発明によって、PMMA、PS等のプ
ラスチックから高品質モノマーを操作性良く、高収率で
工業的に得られるようになった効果は大きい。
Industrial Applicability According to the present invention, it is possible to obtain a high quality monomer from a plastic such as PMMA or PS with good operability and a high yield industrially.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の方法に用いられる、乾留熱分解装置の
一例を示すフローシート。
FIG. 1 is a flow sheet showing an example of a dry distillation pyrolysis apparatus used in the method of the present invention.

【符号の説明】[Explanation of symbols]

1 反応器 2 ホッパー 3 定量供給装置 4 分別板 5 反応器下部バルブ 6 冷却塔 7 粗モノマー貯蔵槽 8 ブロアー 9 ガス処理装置 10 加熱炉 11 溶融塩槽 12 循環ポンプ 13 導管 14 供給配管 15 導管 16 導管 17 中段ノズル 18 導管 19 熱電対 20 熱電対 1 Reactor 2 Hopper 3 Fixed-quantity Supply Device 4 Separation Plate 5 Reactor Lower Valve 6 Cooling Tower 7 Crude Monomer Storage Tank 8 Blower 9 Gas Treatment Device 10 Heating Furnace 11 Molten Salt Tank 12 Circulation Pump 13 Conduit 14 Supply Pipe 15 Conduit 16 Conduit 16 17 middle stage nozzle 18 conduit 19 thermocouple 20 thermocouple

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 原料のプラスチックを予め300℃以上
に加熱された熱媒体が充填してある反応器に連続的に供
給し、乾留熱分解させて粗モノマーに分解する第1の工
程と、該第1の工程を経た乾留熱分解粗モノマーを蒸留
して、当該モノマーに比べて低沸点の不純化合物と高沸
点の不純化合物とを分離除去する第2の工程とからなる
プラスチックから高品質モノマーを回収する方法。
1. A first step in which a raw material plastic is continuously supplied to a reactor filled with a heating medium previously heated to 300 ° C. or higher, and pyrolysis is carried out to decompose it into a crude monomer. The high-quality monomer is obtained from the plastic, which comprises the second step of distilling the dry distillation pyrolysis crude monomer that has undergone the first step to separate and remove the impure compound having a lower boiling point and the impure compound having a higher boiling point than the monomer. How to collect.
【請求項2】 原料がアクリル系合成樹脂、又は/及び
スチレン系合成樹脂を含むプラスチックであることを特
徴とする請求項1記載のプラスチックから高品質モノマ
ーを回収する方法。
2. A method for recovering high-quality monomers from a plastic according to claim 1, wherein the raw material is a plastic containing an acrylic synthetic resin and / or a styrene synthetic resin.
【請求項3】 熱媒体が砂、アルミナ、ガラス、メノ
ー、ジルコニア、窒化硅素、セラミックから選ばれた無
機質材料及び/又はアルミニウム、鉄、ステンレス、チ
タンから選ばれた金属材料からなる直径0.1〜100
mmの球状及び/又は一辺が0.1〜100mmの塊状
形状を有する熱媒体であることを特徴とする請求項1記
載のプラスチックから高品質モノマーを回収する方法。
3. The diameter of the heat medium is 0.1, which is made of an inorganic material selected from sand, alumina, glass, meno, zirconia, silicon nitride and ceramics and / or a metal material selected from aluminum, iron, stainless steel and titanium. ~ 100
The method for recovering high-quality monomers from plastics according to claim 1, wherein the heat medium has a spherical shape of mm and / or a lump shape having a side of 0.1 to 100 mm.
【請求項4】 プラスチックを反応器に供給する際、当
該プラスチックおよび供給配管温度を250℃以下にし
ておくことを特徴とする請求項1記載のプラスチックか
ら高品質モノマーを回収する方法。
4. The method for recovering high-quality monomers from plastic according to claim 1, wherein the temperature of the plastic and the supply pipe are kept at 250 ° C. or lower when the plastic is supplied to the reactor.
【請求項5】 第1の工程の反応器において熱媒体を撹
拌することを特徴とする請求項1記載のプラスチックか
ら高品質モノマーを回収する方法。
5. The method for recovering high-quality monomers from a plastic according to claim 1, wherein the heat medium is stirred in the reactor of the first step.
【請求項6】 第1の工程において不活性ガスを乾留熱
分解装置内で循環させることを特徴とする請求項1記載
のプラスチックから高品質モノマーを回収する方法。
6. The method for recovering high-quality monomers from plastic according to claim 1, wherein an inert gas is circulated in the carbonization pyrolysis apparatus in the first step.
【請求項7】 第1の工程において乾留熱分解によって
生成する炭化物及び灰分を連続的に排出することを特徴
とする請求項1記載のプラスチックから高品質モノマー
を回収する方法。
7. The method for recovering high-quality monomers from plastics according to claim 1, wherein charcoal and ash produced by dry distillation pyrolysis in the first step are continuously discharged.
JP20560593A 1993-07-29 1993-07-29 Method for recovering high-quality monomer from plastic Withdrawn JPH0789900A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20560593A JPH0789900A (en) 1993-07-29 1993-07-29 Method for recovering high-quality monomer from plastic

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20560593A JPH0789900A (en) 1993-07-29 1993-07-29 Method for recovering high-quality monomer from plastic

Publications (1)

Publication Number Publication Date
JPH0789900A true JPH0789900A (en) 1995-04-04

Family

ID=16509637

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20560593A Withdrawn JPH0789900A (en) 1993-07-29 1993-07-29 Method for recovering high-quality monomer from plastic

Country Status (1)

Country Link
JP (1) JPH0789900A (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11315162A (en) * 1998-03-02 1999-11-16 Toshiba Corp Heat treatment and heat treating system
WO2008108461A1 (en) * 2007-03-07 2008-09-12 Mitsubishi Rayon Co., Ltd. Method of recovering resin decomposition product
JP2008214320A (en) * 2007-03-07 2008-09-18 Mitsubishi Rayon Co Ltd Method for recovering methyl methacrylate
JP2011236338A (en) * 2010-05-11 2011-11-24 Mitsubishi Rayon Co Ltd Thermal decomposition method for acrylic resin
JP2012001567A (en) * 2010-06-14 2012-01-05 Omega:Kk Carbonizing machine of scrap wood
WO2012046967A2 (en) * 2010-10-06 2012-04-12 주식회사 에이치알테크놀로지 Method of recycling a waste acrylic resin
JP2014500343A (en) * 2010-11-02 2014-01-09 シュルター、ハルトビク Reactor and method for at least partially decomposing, in particular depolymerizing and / or cleaning plastic materials
CN106573217A (en) * 2014-06-23 2017-04-19 巴斯夫欧洲公司 Apparatus for introduction of droplets of a monomer solution into a reactor
WO2018224482A1 (en) * 2017-06-06 2018-12-13 Ineos Styrolution Group Gmbh Recycling method for styrene-containing plastic waste
CN112097451A (en) * 2020-09-21 2020-12-18 安徽省含山县锦华氧化锌厂 High-efficient cooler of zinc oxide
WO2021074112A1 (en) * 2019-10-15 2021-04-22 Ineos Styrolution Group Gmbh Method of producing styrene monomers by depolymerization of a styrene-copolymer-containing polymer mass
EP4339185A1 (en) * 2022-09-16 2024-03-20 Arkema France Method and installation for the production of a monomer by depolymerization of the corresponding polymer
FR3140090A1 (en) * 2022-09-28 2024-03-29 Valoregen Sas Process and installation for converting plastic materials into pyrolytic oils

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11315162A (en) * 1998-03-02 1999-11-16 Toshiba Corp Heat treatment and heat treating system
WO2008108461A1 (en) * 2007-03-07 2008-09-12 Mitsubishi Rayon Co., Ltd. Method of recovering resin decomposition product
JP2008214320A (en) * 2007-03-07 2008-09-18 Mitsubishi Rayon Co Ltd Method for recovering methyl methacrylate
US8304573B2 (en) 2007-03-07 2012-11-06 Mitsubishi Rayon Co., Ltd. Recovery method of pyrolysis product of resin
JP2011236338A (en) * 2010-05-11 2011-11-24 Mitsubishi Rayon Co Ltd Thermal decomposition method for acrylic resin
JP2012001567A (en) * 2010-06-14 2012-01-05 Omega:Kk Carbonizing machine of scrap wood
WO2012046967A2 (en) * 2010-10-06 2012-04-12 주식회사 에이치알테크놀로지 Method of recycling a waste acrylic resin
WO2012046967A3 (en) * 2010-10-06 2012-08-30 주식회사 에이치알테크놀로지 Method of recycling a waste acrylic resin
JP2014500343A (en) * 2010-11-02 2014-01-09 シュルター、ハルトビク Reactor and method for at least partially decomposing, in particular depolymerizing and / or cleaning plastic materials
CN106573217A (en) * 2014-06-23 2017-04-19 巴斯夫欧洲公司 Apparatus for introduction of droplets of a monomer solution into a reactor
WO2018224482A1 (en) * 2017-06-06 2018-12-13 Ineos Styrolution Group Gmbh Recycling method for styrene-containing plastic waste
WO2021074112A1 (en) * 2019-10-15 2021-04-22 Ineos Styrolution Group Gmbh Method of producing styrene monomers by depolymerization of a styrene-copolymer-containing polymer mass
CN114901737A (en) * 2019-10-15 2022-08-12 英力士苯领集团股份公司 Method for producing styrene monomer by depolymerization of polymer material containing styrene copolymer
EP4353773A1 (en) * 2019-10-15 2024-04-17 INEOS Styrolution Group GmbH Method for producing styrene monomers by depolymerization of a polymer mass containing styrene copolymer
CN112097451A (en) * 2020-09-21 2020-12-18 安徽省含山县锦华氧化锌厂 High-efficient cooler of zinc oxide
EP4339185A1 (en) * 2022-09-16 2024-03-20 Arkema France Method and installation for the production of a monomer by depolymerization of the corresponding polymer
WO2024056890A1 (en) * 2022-09-16 2024-03-21 Arkema France Method and installation for the production of a monomer by depolymerization of the corresponding polymer
FR3140090A1 (en) * 2022-09-28 2024-03-29 Valoregen Sas Process and installation for converting plastic materials into pyrolytic oils

Similar Documents

Publication Publication Date Title
JPH0789900A (en) Method for recovering high-quality monomer from plastic
US9376632B2 (en) Apparatus for conducting thermolysis of plastic waste and method of thermolysis in continuous manner
US5738025A (en) Method and apparatus for thermal cracking of waste plastics
KR20200014737A (en) Method, apparatus and system for producing silicon-containing products using silicon sludge, a by-product produced by cutting silicon with diamond wire
JPH06500592A (en) Monomer recovery from polymers
KR101637056B1 (en) A process for the production of bimodal hdpe with wax recovery
AU725055B2 (en) Process for decomposing a polymer to its monomer or monomers
US6469203B1 (en) Method for depolymerizing polymethylmethacrylate
AU2007327788A1 (en) Integrated process and apparatus for preparing esters of methacrylic acid from acetone and hydrocyanic acid
JP2002060212A (en) Method and apparatus for separating metal chloride from gaseous reaction mixture obtained at synthesizing chlorosilane
CN114829475B (en) Method for depolymerizing polystyrene in presence of foreign polymer
US3974206A (en) Process for the thermal decomposition of thermoplastic resins with a heat transfer medium
WO1999049000A1 (en) Conversion of heavy petroleum oils to coke with a molten alkali metal hydroxide
JP4768920B2 (en) Thermal decomposition of waste plastic
US7387770B2 (en) Method for ferric sulfate manufacturing
JPH08253773A (en) Method of pyrolyzing plastic and plastic pyrolysis catalyst for use therein
JP4161293B2 (en) Monomer recovery method and recovery device
CA2662118C (en) Process and apparatus for utilizing oxygen-containing polymers
US4183904A (en) Recovery of boron from waste streams
CN200963586Y (en) Chemical industry waste material regenerating device
JP4485621B2 (en) Thermal decomposition of waste plastic
JP2001031978A (en) Process and device for recovering oil from waste plastic
JP3551958B2 (en) Waste plastic decomposition treatment method and apparatus and fuel
JP2003321571A (en) Method for recovering monomer from acrylic resin
US3998595A (en) Apparatus for melting and cracking amorphous polyolefin

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20040121

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040309

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040316

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20040428