JP4485621B2 - Thermal decomposition of waste plastic - Google Patents

Thermal decomposition of waste plastic Download PDF

Info

Publication number
JP4485621B2
JP4485621B2 JP23210699A JP23210699A JP4485621B2 JP 4485621 B2 JP4485621 B2 JP 4485621B2 JP 23210699 A JP23210699 A JP 23210699A JP 23210699 A JP23210699 A JP 23210699A JP 4485621 B2 JP4485621 B2 JP 4485621B2
Authority
JP
Japan
Prior art keywords
pyrolysis
waste plastic
tank
oil
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP23210699A
Other languages
Japanese (ja)
Other versions
JP2001055583A (en
Inventor
孝 立花
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
EARTHRECYCLE CO., LTD.
Original Assignee
EARTHRECYCLE CO., LTD.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by EARTHRECYCLE CO., LTD. filed Critical EARTHRECYCLE CO., LTD.
Priority to JP23210699A priority Critical patent/JP4485621B2/en
Publication of JP2001055583A publication Critical patent/JP2001055583A/en
Application granted granted Critical
Publication of JP4485621B2 publication Critical patent/JP4485621B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/62Plastics recycling; Rubber recycling

Description

【0001】
【発明の属する技術分野】
本発明は塩化ビニルを含む廃プラスチックの熱分解法に関し、特に1つの熱分解槽にて溶融、脱塩化水素、熱分解を回分式で行って塩化ビニルを含む廃プラスチックを効率よく油化できるようにした熱分解法に関する。
【0002】
【従来の技術】
塩化ビニルを含む混合廃プラスチックを油化する場合、破砕及び異物分別を含む前処理、溶融、脱塩化水素、熱分解及び改質蒸留の各工程を経て処理されるが、これらは連続処理されるのが一般的である。かかる溶融、脱塩化水素及び熱分解に必要な熱は次のような方法にて供給されていた。
1.溶融及び脱塩化水素に必要な熱は押出機と熱媒加熱部を設定し、熱媒油を導入して間接加熱によって供給する。
2.溶融及び熱分解に必要な熱は電気ヒータや燃焼ガスによって槽外壁へ直接加熱することによって供給する。
3.熱分解に必要な熱は一定量の熱分解槽の残油をポンプで熱分解槽から抜き出し、加熱部を経て熱分解槽に循環させ、加熱部にて熱分解に必要な熱量を与えることによって供給する。
4.熱分解生成油のある留分を加熱炉で高温加熱して熱分解槽に直接吹き込むことにより熱を供給する。
【0003】
また、熱分解残渣を抜き出す場合は次の2法が採用されていた。
1.熱分解残油を高温のまま重力分離槽に導入し、下部に設けたジャケット付円筒竪型槽に定期的に落とし込み、冷却後、系外へ排出する。
2.熱分解槽底部にボールバルブを介してスクリューコンベアを設け、スクリューコンベアの出口にもボールバルブを設置し、スクリューコンベアによって冷却しながら系外へ排出する。
【0004】
また、熱分解時に生成するコークの前駆体を系外へ排出するために、重力沈降分離や遠心分離法が採用されていた。
【0005】
ところで、混合廃プラスチックを熱分解する場合、各プラスチックの熱分解速度は温度によって異なり、特に塩化ビニル、ポリスチレン及びポリプロピレンはポリエチレンより低い温度で熱分解するが、混合廃プラスチック全体の処理速度を速くするために、分解に最も時間のかかるポリエチレンの熱分解速度に対応する温度に処理温度の設定を行っている。
【0006】
【発明が解決しようとする課題】
しかし、従来の廃プラスチックの熱分解法では次のような問題があった。
1.熱媒油によって加熱する方法では、市販の熱媒油の限界温度が約300°Cと低く、廃プラスチックの溶融にしか使用できない一方、脱塩化水素の温度は300°C〜320°Cであり、温度差△Tが小さいので、効率的に加熱できず、熱媒油の温度を限界温度以上に上げると、熱劣化し寿命が短くなる。
2.熱分解残油を循環させて加熱する方法では管内コーキングが生じる。
3.熱分解生成油を高温加熱して槽内へ吹き込むことのみによって熱を供給すると、加熱炉が大型となる。
4.電気ヒータや高温燃焼ガスによって槽外壁を直接加熱する方法では槽内壁にコーキングが生成しやすい。
5.特に、回分処理の時に熱媒装置等で各槽や各機器の保熱を行うと、コスト高となる。
【0007】
また、従来の廃プラスチックの熱分解法では熱分解すべき廃プラスチックがポリエチレン、ポリプロピレン及びポリスチレンのみの場合には残渣は系外に比較的容易に排出できるが、一般廃棄物から分別収集された廃プラスチックには塩化ビニル、熱硬化性樹脂、木くず、ゴム、金属、土石等が混入し、これらを含む廃プラスチックを熱分解した場合には残渣の流動性が乏しく、従来法では系外へ安定に排出できない。
【0008】
さらに、従来の廃プラスチックの熱分解法では処理速度を向上させるために熱分解温度は高く設定され、特に混合廃プラスチックを熱分解するときは最も分解しにくいポリエチレンの熱分解温度や反応時間に設定しているので、ポリエチレンより分解しやすいプラスチックは早期に分解し気化し、生成した残渣はポリエチレンの反応時間内に高温雰囲気に曝されるので、アスファルト、ピッチ、さらにはコークに変成してしまう。
【0009】
ここで、N2 雰囲気において1時間当り300°C昇温させた場合における各種プラスチックの熱分解特性を図5に示す。図において、PVCは塩化ビニル樹脂、UFはユリア樹脂、URはポリウレタン樹脂、PFはフェノール樹脂、PMMAはメタクリル樹脂、PSはポリスチレン樹脂、ABSはABS樹脂、PPはポリプロピレン樹脂、PEはポリエチレン樹脂、PETはPET樹脂である。
【0010】
また、熱分解反応により生成するコークの前駆体は早期に濃縮し、系外へ排出することが望ましいが、実際には多くの異物が絡み合い、流動性が低下して排出が困難となるおそれが多分にある。そこで、従来の廃プラスチックの熱分解法では濃縮前の状態で排出することが行われ、熱分解量が少ないので、油化収率が低下する。
【0011】
また、従来の廃プラスチックの熱分解法では塩化ビニルを含む混合廃プラスチックを連続的に油化する場合に下記の問題があった。
1.脱塩化水素処理は押出機でかつ連続的に行うので、破砕、分別、乾燥等の前処理設備がコスト高となる。
2.原料が廃棄物であるので、各機器や配管等での閉塞が生じやすい。連続法では閉塞が発生した場合の対応が難しく、更に機器数が多くなって複雑となり、高度な運転技術が必要となる。
3.連続的に脱塩化水素を行っているので、ショートパスが発生しやすく、脱塩化水素率が安定せず、結果として製品物性に悪影響を与える。
【0012】
本発明は、かかる従来の問題点に鑑み、1つの熱分解槽にて溶融、脱塩化水素、熱分解を回分式で行って塩化ビニルを含む廃プラスチックを効率よく油化できるようにした廃プラスチックの熱分解法を提供することを課題とする。
【0013】
【課題を解決するための手段】
そこで、本発明に係る廃プラスチックの熱分解方法は、塩化ビニルを含む廃プラスチックを熱分解槽にて回分で溶融し脱塩化水素処理した後、熱分解するにあたり、熱分解槽において廃プラスチックを熱分解しうる温度範囲のうちの400°Cまでの低温度で廃プラスチックの熱分解を行わせて廃プラスチックの半部を油化し、その残渣を熱分解槽から抽出し、廃プラスチックを熱分解しうる温度範囲のうちの高温度で残渣の熱分解を行わせて残渣を油化させる一方、低温度における半熱分解油のうち、廃プラスチック投入量の2倍の重量の半熱分解油を熱分解槽内に残留させ、該残留した半熱分解油の保有熱によって次の投入廃プラスチックの溶融及び脱塩化水素に必要な熱量を供給するようにしたことを特徴とする。
【0014】
本発明の特徴の1つは廃プラスチック投入量の2倍の重量の半熱分解油を熱分解槽内に残留させ、その保有熱によって次の投入廃プラスチックの溶融及び脱塩化水素に必要な熱量を供給するようにした点にあるが、単に半熱分解油の保有熱によって熱量を供給するようにすると、溶融及び脱塩化水素に必要な熱量が不足する場合もある。かかる場合には図3に示されるように、熱分解槽から抽出された熱分解生成油のうち、軽質油留分を加熱して高温蒸気Vとなし、高温蒸気V1、V2を熱分解槽100のジャケット及び蛇管に流通させることにより、次の投入廃プラスチックの溶融及び脱塩化水素に必要な熱量の不足分を供給することができる。
【0015】
また、軽質油留分の高温蒸気を熱分解槽のジャケット及び蛇管に流通させて溶融及び脱塩化水素に必要な熱量の不足分を供給するようにしているが、かかるシステムを利用し、熱分解槽から抽出された熱分解生成油のうち、軽質油留分を加熱して高温蒸気となし、その一部V1、V2を熱分解槽100のジャケット及び蛇管に流通させ、残部V3を熱分解槽100内に直接吹き込むことにより、熱分解に必要な熱量を供給することができる。
【0016】
上述のように、熱分解槽にて廃プラスチックを低温度でマイルド熱分解し、その半熱分解油で溶融・脱塩化水素に必要な熱量を供給しているが、マイルド熱分解を採用すると、油化効率が低下する。そこで、マイルド熱分解を行った後の残渣を熱分解槽から抽出し、これに高温のハード熱分解を行うようにすると、油化効率を向上できる。即ち、本発明によればマイルド熱分解とハード熱分解の2段階で廃プラスチックの熱分解を行うようにした廃プラスチックの熱分解法を提供することができる。
【0017】
本発明に係る廃プラスチックの熱分解方法は、塩化ビニルを含む廃プラスチックを熱分解槽にて回分で溶融及び脱塩化水素処理した後、熱分解することにより廃プラスチックを油化するにあたり、熱分解槽において廃プラスチックを熱分解しうる温度範囲のうちの低温度で廃プラスチックのマイルド熱分解を行わせて廃プラスチックの半部を油化し、その残渣を溶融・脱塩化水素・熱分解槽から抽出し、廃プラスチックを熱分解しうる温度範囲のうちの高温度で残渣のハード熱分解を行わせて残渣を油化させるようにしたことを特徴とする。
【0018】
ハード熱分解は熱分解槽から残渣を抽出して行うので、ハード熱分解用の設備にて行う必要がある。即ち、ハード熱分解は残渣を砂又はセラミックボールとともにキルン炉又は攪拌機付き槽に導入して行うようにする。ハード熱分解の条件は投入する廃プラスチックの種類によって適宜選択するが、実際に回収される廃プラスチックの種類を考慮すると、ハード熱分解は約475℃の温度で、約1時間反応させることにより行うようにすることができる。
【0019】
本件発明者らが行った槽タイプの回分実験によれば、廃プラスチックは300°Cで溶融し、塩化ビニルは300°Cの熱を約3時間与えることにより95%の脱塩化水素率が得られ、ポリエチレンを除く主要なプラスチックについての熱分解は約4時間で完了することが確認された。
【0020】
本発明においては、溶融、脱塩化水素及び熱分解に必要な熱は次の方法で供給する。即ち、溶融・脱塩化水素に必要な熱量については約380°Cの熱分解残油(半熱分解油)を廃プラスチック投入量の2倍の重量を熱分解槽に残し、残した熱分解残油と廃プラスチックとを混合させることにより熱分解残油の保有熱によって必要な熱を供給する。この熱分解残油の保有熱によって廃プラスチックが短時間で溶融し、脱塩化水素温度の300°Cに達する。熱量が不足する場合には1つの熱分解槽のジャケットと槽内蛇管から熱分解生成油のうち、軽質油を加熱部で高温蒸気とし、これを熱媒として熱量の不足分を供給することができる。その時、気化する塩化水素、水分、軽質炭化水素、フタール酸等は中和又は塩酸回収工程にて処理される。また、廃プラスチック投入は粗形状のまま、図3に示されるようなスライドダンパー120等にて行う。
【0021】
また、熱分解に必要な熱は次の方法で供給する。即ち、熱分解により得られた熱分解生成油のうち、軽質油を高温蒸気とし、一部は槽のジャケット及び槽内の蛇管から与えられ、他は槽内へ直接吹き込むことにより与えることができる。溶融・脱塩化水素・熱分解の各工程は図2に示されるタイムスケジュールに従って行う。
【0022】
熱分解は一度に行うのでなく、低温度のマイルド熱分解と高温度のハード熱分解(熱分解温度約475°C、反応時間1時間)の2段階に分けて行うのが肝要である。即ち、図4に示されるように、マイルド熱分解は熱分解槽100にて行い、ハード熱分解はマイルド熱分解から得られる残渣を特殊な機器を設けて行う。特殊な機器とは外熱式の小型キルン炉140又は攪拌機付き槽であり、コークを剥離させるために、砂又はセラミックボールと混合させながら加熱することが必要である。なお、小型キルン炉140又は攪拌機付き槽には低圧スチーム又は温水のジャケット141を設けて加熱する一方、残渣はボールバルブ142を介して系外に排出する。
【0023】
塩化ビニルと異物(金属・木くず・熱硬化性樹脂・ゴム等)を含む廃プラスチックを熱分解した場合、熱分解残渣は流動性が低下し、系外への排出が困難となるので、次の手法にて機械的に排出させる。
1.図3に示されるように、熱分解槽100の底部とスクリューコンベア110との間にはバルブを設けず、槽底部のノズル径を6B以上とし、熱分解槽100とスクリューコンベア110とを一体型とする。
2.スクリューコンベア110のピッチ及び深さは異物の大きさを考慮して決定し、スクリューの出口側は熱膨張を吸収させるためにフリーとする。スクリュー本体にはジャケット113を設け、軽質油の高温蒸気を熱媒として利用して加熱する。
3.スクリューコンベア110の出口には径6B以上のボールバルブ112を設け、ボールバルブ112の閉塞を防止するために、エアーシリンダにて駆動される押し込み機111を取付ける。
4.熱分解残渣の受槽130には低圧スチーム又は温水のジャケット131を設け、槽底には径6B以上のボールバルブ132を取付け、ボールバルブ132の閉塞を防止するため、エアーシリンダにて駆動される押し込み機133を設け、温度150°C以下で系外へ排出する。
【0024】
【作用及び発明の効果】
本発明によれば次の効果が得られる。
1.回分式の効果
(1).前処理(破砕、異物等の分割、乾燥)設備の仕様が緩和される。
(2).原料条件(種類、形状等)が緩和される。
(3).脱塩化水素処理において塩化水素の高い除去率が安定して得られる。
(4).装置がシンプルとなり、運転が特に容易となる。
(5).製品性状に対する信頼性が確保される。
(6).連続式に比べて装置容量は大きくなるが、機器数が少なく、設備費はほとんど同じにできる。
(7).タイムスケジュールを作成することにより熱と製品ロスは最小にできる。
【0025】
2.熱供給法の効果
(1).1回分当りの溶融・脱塩化水素・熱分解の各時間を大幅に短縮できる。本件発明者らの実験によれば、従来の熱供給法では1回の操作あたり12時間必要であったのが、9.5時間で済むことが確認された。
(2).廃プラスチックの投入量に対し、2倍の重量の高温半熱分解油を混合するので、溶融物の粘性が迅速に低下し、又熱分解槽でのショートパスがないので、高い脱塩化水素率が安定して得られる。
(3).熱分解槽には温和な方法で熱を供与しているので、コーキングが起こりにくい。
(4).高価な熱媒油と設備が不要にできる。
【0026】
3.残渣抜き出し法の効果
(1).異物の最も厳しい一般廃棄物から分別された廃プラスチックに対しても十分に対応できる。
(2).前処理設備の仕様及び原料条件を緩和できる。
【0027】
4.マイルド熱分解及びハード熱分解による効果
(1).未分解油が残渣中に存在しても、後工程で残渣油をハード熱分解するので、油化収率が向上する。
(2).熱分解槽ではマイルド熱分解のみを行うので、コーキングは大幅に抑制できる。
【0028】
【発明の実施の形態】
以下、本発明を図面に示す具体例に基づいて詳細に説明する。図1は本発明に係る廃プラスチックの熱分解法の好ましい実施形態を示す。処理原料は一般廃棄物から廃プラスチックを分別収集したものであり、異物としては砂、小石、金属、木くず、熱硬化性樹脂、合成ゴム等が含まれている。この廃プラスチックは公知の前処理装置10にて破袋、異物分離、乾燥、圧縮梱包される。
【0029】
熱分解槽12には廃プラスチックの投入前に約380°Cの希釈用熱分解残油が原料投入量の2倍の重量残され、熱分解槽12のジャケット及び蛇管には約460°Cの熱分解軽質油の高温蒸気が熱媒油として循環されている。
【0030】
投入原料の溶融及び脱塩化水素に必要な熱量の大部分は熱分解槽12に残された約380°Cの熱分解残油の保有熱によって与えられ、不足する熱は熱分解槽12のジャケット及び蛇管から与えられる。
【0031】
原料はスライドダンパー11によって熱分解槽12に投入されるが、その投入時からバルブ31は開とし、バルブ32は閉とする。この状態で熱分解槽12では投入原料が溶解され、約300°Cで脱塩化水素が行われる。原料の投入後、約3時間保持すると、投入原料は溶融されて脱塩化水素処理される。
【0032】
塩化水素を含む混合ガスは液中燃焼等の廃ガス処理装置によってダイオキシンを抑制しながら、焼却処理される。3時間経過すると、バルブ32及びバルブ33は開とし、バルブ31は閉とする。
【0033】
熱分解反応に必要な熱量は熱分解軽質油を加熱炉28にて約460°Cに加熱し、その一部を熱分解槽12内に直接吹き込むとともに、熱分解槽12のジャケット及び蛇管に流通させることにより与え、熱分解槽12の温度が約400°Cになるように制御する。
【0034】
熱分解槽12の槽内温度が400°Cに達すると、反応時間約1.5時間で、かつ熱分解槽12の槽レベルが一定値まで低下した時に、第1段階の熱分解(マイルド熱分解)が終了したと判断し、バルブ33を閉とする。
【0035】
次に、熱分解槽12に残った異物を含む流動性の乏しい残油は、スクリューコンベア13出口に設けたバルブ42を開とし、かつ押し込み機14を駆動させながら残渣受槽15に移送する。残油は残渣受槽15内にて約150°Cまで冷却した後、バルブ43を開にし、押し込み機16を駆動させて残渣物を系外へ排出する。
【0036】
廃プラスチックの油収率を向上させる場合には残渣受槽16に代え、小型外熱式キルン炉又は攪拌機付槽を用い、内壁に成長するコークを剥離させるための砂又はセラミックボールと混合し、温度約475°C、滞留時間約1時間の条件にてハード熱分解を行わせる。気化された熱分解蒸気は蒸留塔18へ送る。
【0037】
残渣受槽15への移送が完了した時点で、熱分解槽12には次の原料を投入される。
【0038】
また、熱分解槽12で熱分解された熱分解生成油は抽出されて蒸留塔18へ吹き込まれる。蒸留塔18は塔頂部にクーラ21、塔底部に加熱用蛇管19が設けられている。
【0039】
蒸留塔18の塔頂温度は通常は塔頂部クーラ21によって約150°Cにコントロールされ、熱分解軽質油のみが熱交換器20及び冷却器22を経由して凝縮冷却され、軽質油受槽23に溜められる。また、熱分解生成油のうち、中質油・重質油はそのまま蒸留塔18の塔底部に溜められる。
【0040】
熱分解軽質油受槽23の軽質油はポンプ39によって熱交換器20及び熱交換器26を経て加熱炉28に送られ、約460°Cに加熱される。この高温蒸気は上述のように溶融・脱塩化水素及び熱分解に必要な熱量として使用される。
【0041】
熱分解槽12や外熱式小型キルン炉等での熱分解が終了すると、バルブ35を開にし、蒸留塔18の塔底部蛇管19に約460°Cの高温蒸気を流し、蒸留塔18の塔底部に溜まっている中質重質油の蒸留操作に入る。蒸留塔18の塔頂温度を変化させることにより、中質油を抜き出し、熱交換器20と冷却器22で凝縮冷却した後、バルブ36を閉に、バルブ37を開にして、活性白土付きの中質油受槽24へ送り込んで溜める。以上は蒸留系も回分式としたが、蒸留系を連続式とする事も可能である。
【0042】
蒸留塔18の塔底部に残った重質油はポンプ38によって冷却器29を経て活性白土付きの重質油受槽30へ送る。
【0043】
スライドダンパー11にて原料を熱分解槽12に投入する際に、熱分解槽12の液温が380°C以上ある場合には380°C以下に冷却した後、原料を投入することが望ましい。
【図面の簡単な説明】
【図1】 本発明に係る廃プラスチックの熱分解法の好ましい実施形態を模式的に示す図である。
【図2】 上記実施形態の操作のタイミングチャートを示す図である。
【図3】 課題を解決するめの手段を説明するための図である。
【図4】 課題を解決するめの手段を説明するための図である。
【図5】 発明が解決しようとする課題を説明するための図である。
【符号の説明】
12 熱分解槽
13 スクリューコンベア
14 押し込み機
42 スクリューコンベア出口のバルブ
[0001]
BACKGROUND OF THE INVENTION
TECHNICAL FIELD The present invention relates to a thermal decomposition method for waste plastics containing vinyl chloride. In particular, the waste plastics containing vinyl chloride can be efficiently oiled by melting, dehydrochlorination, and thermal decomposition in a single pyrolysis tank. Relates to the thermal decomposition method.
[0002]
[Prior art]
When converting plastic waste containing vinyl chloride into oil, it is processed through pretreatment including crushing and foreign matter separation, melting, dehydrochlorination, pyrolysis and reformed distillation, but these are continuously processed. It is common. The heat necessary for such melting, dehydrochlorination and thermal decomposition was supplied by the following method.
1. The heat required for melting and dehydrochlorination is set by an extruder and a heating medium heating section, introduced by heating medium oil and supplied by indirect heating.
2. The heat required for melting and pyrolysis is supplied by directly heating the outer wall of the tank with an electric heater or combustion gas.
3. The heat required for pyrolysis is obtained by extracting a certain amount of residual oil from the pyrolysis tank with a pump, circulating it through the heating section to the pyrolysis tank, and giving the heat necessary for pyrolysis in the heating section. Supply.
4). Heat is supplied by directly heating the fraction containing the pyrolysis product oil to a pyrolysis tank after heating at a high temperature in a heating furnace.
[0003]
Moreover, the following two methods were employ | adopted when extracting the thermal decomposition residue.
1. The pyrolysis residual oil is introduced into the gravity separation tank at a high temperature, periodically dropped into a cylindrical cylindrical tank with a jacket provided at the bottom, and cooled and discharged out of the system.
2. A screw conveyor is provided at the bottom of the pyrolysis tank via a ball valve, a ball valve is also installed at the outlet of the screw conveyor, and the outside is discharged out of the system while being cooled by the screw conveyor.
[0004]
Moreover, in order to discharge the coke precursor produced at the time of thermal decomposition to the outside of the system, gravity sedimentation separation or centrifugal separation has been adopted.
[0005]
By the way, when thermally decomposing mixed waste plastics, the thermal decomposition rate of each plastic differs depending on the temperature. Especially, vinyl chloride, polystyrene and polypropylene are thermally decomposed at a lower temperature than polyethylene, but the processing speed of the entire mixed waste plastic is increased. Therefore, the treatment temperature is set to a temperature corresponding to the thermal decomposition rate of polyethylene, which takes the longest time for decomposition.
[0006]
[Problems to be solved by the invention]
However, the conventional thermal decomposition method of waste plastic has the following problems.
1. In the method of heating with heat transfer oil, the limit temperature of commercially available heat transfer oil is as low as about 300 ° C and can only be used for melting waste plastic, while the temperature of dehydrochlorination is 300 ° C to 320 ° C. Since the temperature difference ΔT is small, it cannot be heated efficiently, and if the temperature of the heat transfer oil is raised to a temperature higher than the limit temperature, the heat deteriorates and the life is shortened.
2. In-pipe coking occurs when the pyrolysis residue is circulated and heated.
3. When heat is supplied only by heating the pyrolysis product oil at a high temperature and blowing it into the tank, the heating furnace becomes large.
4). In the method of directly heating the outer wall of the tank with an electric heater or high-temperature combustion gas, coking is likely to be generated on the inner wall of the tank.
5). In particular, if heat is retained in each tank or each device with a heat medium device or the like during batch processing, the cost increases.
[0007]
In addition, when the waste plastic to be pyrolyzed is only polyethylene, polypropylene and polystyrene in the conventional waste plastic pyrolysis method, the residue can be discharged out of the system relatively easily, but the waste collected separately from general waste is collected. Plastics contain vinyl chloride, thermosetting resin, wood chips, rubber, metal, earth and stone, etc. When waste plastic containing these is pyrolyzed, the residual fluidity is poor, and the conventional method is stable outside the system. It cannot be discharged.
[0008]
Furthermore, in the conventional waste plastic pyrolysis method, the pyrolysis temperature is set high in order to improve the processing speed, especially when pyrolyzing mixed waste plastic, it is set to the pyrolysis temperature and reaction time of polyethylene which is most difficult to decompose. Therefore, plastics that are more easily decomposed than polyethylene are decomposed and vaporized earlier, and the resulting residue is exposed to a high-temperature atmosphere within the reaction time of polyethylene, so that it is transformed into asphalt, pitch, and even coke.
[0009]
Here, FIG. 5 shows thermal decomposition characteristics of various plastics when the temperature is raised by 300 ° C. per hour in an N 2 atmosphere. In the figure, PVC is vinyl chloride resin, UF is urea resin, UR is polyurethane resin, PF is phenol resin, PMMA is methacrylic resin, PS is polystyrene resin, ABS is ABS resin, PP is polypropylene resin, PE is polyethylene resin, PET Is a PET resin.
[0010]
In addition, it is desirable that the coke precursor produced by the pyrolysis reaction is concentrated early and discharged out of the system, but in reality, many foreign substances may be entangled and fluidity may be reduced, making it difficult to discharge. Maybe there. Therefore, in the conventional thermal decomposition method of waste plastic, discharging is performed in a state before concentration, and since the amount of thermal decomposition is small, the oil yield is reduced.
[0011]
Further, in the conventional thermal decomposition method of waste plastic, there are the following problems when continuously converting the mixed waste plastic containing vinyl chloride into oil.
1. Since the dehydrochlorination treatment is carried out continuously with an extruder, pretreatment facilities such as crushing, fractionation and drying are expensive.
2. Since the raw material is waste, clogging of each device or piping is likely to occur. In the continuous method, it is difficult to cope with the occurrence of a blockage, and the number of devices is increased and complicated, and advanced operation techniques are required.
3. Since dehydrochlorination is performed continuously, short paths are likely to occur, the dehydrochlorination rate is not stable, and as a result, the physical properties of the product are adversely affected.
[0012]
In view of such conventional problems, the present invention is a waste plastic in which waste plastic containing vinyl chloride can be efficiently liquefied by performing batch, melting, dehydrochlorination, and thermal decomposition in one pyrolysis tank. It is an object of the present invention to provide a thermal decomposition method.
[0013]
[Means for Solving the Problems]
Therefore, in the method for pyrolyzing waste plastic according to the present invention, the waste plastic containing vinyl chloride is melted in a batch in a thermal decomposition tank, dehydrochlorinated, and then thermally decomposed. The waste plastic is pyrolyzed at a temperature as low as 400 ° C within the decomposable temperature range, and half of the waste plastic is liquefied. The residue is extracted from the pyrolysis tank, and the waste plastic is pyrolyzed. The residue is pyrolyzed at a high temperature within the temperature range, and the residue is converted to oil. On the other hand, of the semi-pyrolytic oil at low temperature, the semi-pyrolytic oil is twice as heavy as the amount of waste plastic input. It is made to remain in a cracking tank, and the amount of heat required for melting and dehydrochlorination of the next input waste plastic is supplied by the retained heat of the remaining semi-pyrolytic oil.
[0014]
One of the features of the present invention is that the amount of heat required for melting and dehydrochlorination of the next input waste plastic is left in the pyrolysis tank with semi-pyrolytic oil twice the weight of the amount of waste plastic input. However, if the amount of heat is simply supplied by the retained heat of the semi-pyrolytic oil, the amount of heat necessary for melting and dehydrochlorination may be insufficient. In this case, as shown in FIG. 3, among the pyrolysis product oil extracted from the pyrolysis tank, the light oil fraction is heated to form high-temperature steam V, and the high-temperature steam V1, V2 is converted into the pyrolysis tank 100. By flowing through the jacket and the serpentine tube, it is possible to supply a shortage of heat necessary for melting and dehydrochlorination of the next input waste plastic.
[0015]
In addition, the high temperature steam of the light oil fraction is circulated through the jacket and serpentine of the pyrolysis tank to supply the shortage of heat necessary for melting and dehydrochlorination. Of the pyrolysis product oil extracted from the tank, the light oil fraction is heated to form high-temperature steam, part V1, V2 of which is circulated through the jacket and serpentine of the pyrolysis tank 100, and the remaining part V3 is the pyrolysis tank. The amount of heat necessary for thermal decomposition can be supplied by blowing directly into 100.
[0016]
As mentioned above, waste plastic is mildly pyrolyzed at a low temperature in a pyrolysis tank, and the amount of heat required for melting and dehydrochlorination is supplied with the semi-pyrolytic oil, but when mild pyrolysis is adopted, Oil conversion efficiency decreases. Therefore, if the residue after mild pyrolysis is extracted from the pyrolysis tank and subjected to high-temperature hard pyrolysis, the oil conversion efficiency can be improved. That is, according to the present invention, it is possible to provide a method for pyrolyzing waste plastic in which the waste plastic is pyrolyzed in two stages, mild pyrolysis and hard pyrolysis.
[0017]
The method for pyrolyzing waste plastics according to the present invention is a method in which waste plastics containing vinyl chloride are melted and dehydrochlorinated in batches in a pyrolysis tank, and then thermally decomposed to oily waste plastics. The waste plastic is mildly pyrolyzed at a low temperature within the temperature range in which the waste plastic can be pyrolyzed, and half of the waste plastic is liquefied, and the residue is extracted from the melting, dehydrochlorination, and pyrolysis tank. In addition, the residue is hard pyrolyzed at a high temperature within a temperature range in which the waste plastic can be pyrolyzed, thereby converting the residue into oil.
[0018]
Since the hard pyrolysis is performed by extracting the residue from the pyrolysis tank, it is necessary to perform it with the equipment for hard pyrolysis. That is, hard pyrolysis is performed by introducing the residue together with sand or ceramic balls into a kiln furnace or a tank equipped with a stirrer. The conditions for hard pyrolysis are appropriately selected according to the type of waste plastic to be input. However, considering the type of waste plastic to be actually recovered, hard pyrolysis is performed by reacting at a temperature of about 475 ° C. for about 1 hour. Can be.
[0019]
According to the tank-type batch experiment conducted by the present inventors, the waste plastic was melted at 300 ° C, and the vinyl chloride was heated at 300 ° C for about 3 hours to obtain a dehydrochlorination rate of 95%. It was confirmed that the pyrolysis of major plastics except polyethylene was completed in about 4 hours.
[0020]
In the present invention, heat necessary for melting, dehydrochlorination and thermal decomposition is supplied by the following method. That is, the heat twice the weight of about 380 ° C thermal decomposition residue oil of the required heat amount to the molten-dehydrochlorination of (semi pyrolysis oil) waste plastics charged amount leaving the pyrolysis chamber, leaving the By mixing the cracked residue and waste plastic, the necessary heat is supplied by the retained heat of the pyrolyzed residue. The waste plastic melts in a short time due to the retained heat of the pyrolysis residual oil and reaches a dehydrochlorination temperature of 300 ° C. When the amount of heat is insufficient, out of the pyrolysis product oil from the jacket of the pyrolysis tank and the tub tube in the tank, light oil is converted into high-temperature steam at the heating section, and this is used as a heat medium to supply the shortage of heat. it can. At that time, vaporized hydrogen chloride, moisture, light hydrocarbons, phthalic acid and the like are treated in a neutralization or hydrochloric acid recovery step. Further, the waste plastic is charged with a slide damper 120 as shown in FIG.
[0021]
Moreover, the heat required for thermal decomposition is supplied by the following method. That is, of the pyrolysis product oil obtained by pyrolysis, light oil is used as high-temperature steam, a part is given from the jacket of the tank and the serpentine in the tank, and the other can be given by blowing directly into the tank. . Each step of melting, dehydrochlorination, and thermal decomposition is performed according to the time schedule shown in FIG.
[0022]
It is important not to carry out pyrolysis at once, but to divide it into two stages: mild pyrolysis at low temperature and hard pyrolysis at high temperature (thermal decomposition temperature of about 475 ° C., reaction time of 1 hour). That is, as shown in FIG. 4, mild pyrolysis is performed in the pyrolysis tank 100, and hard pyrolysis is performed using a special device for the residue obtained from mild pyrolysis. The special equipment is an external heat type small kiln furnace 140 or a tank with a stirrer, and it is necessary to heat while mixing with sand or ceramic balls in order to peel off the coke. A small kiln furnace 140 or a tank with a stirrer is provided with a low-pressure steam or warm water jacket 141 and heated, while the residue is discharged out of the system via a ball valve 142.
[0023]
When waste plastic containing vinyl chloride and foreign matter (metal, wood scrap, thermosetting resin, rubber, etc.) is pyrolyzed, the pyrolysis residue will be less fluid and difficult to discharge out of the system. Discharge mechanically by the method.
1. As shown in FIG. 3, no valve is provided between the bottom of the pyrolysis tank 100 and the screw conveyor 110, the nozzle diameter of the tank bottom is 6B or more, and the pyrolysis tank 100 and the screw conveyor 110 are integrated. And
2. The pitch and depth of the screw conveyor 110 are determined in consideration of the size of the foreign matter, and the screw outlet side is free to absorb thermal expansion. The screw body is provided with a jacket 113 and heated using a high temperature steam of light oil as a heat medium.
3. A ball valve 112 having a diameter of 6B or more is provided at the outlet of the screw conveyor 110, and a pusher 111 driven by an air cylinder is attached to prevent the ball valve 112 from being blocked.
4). The pyrolysis residue receiving tank 130 is provided with a low pressure steam or hot water jacket 131, and a ball valve 132 having a diameter of 6B or more is attached to the bottom of the tank. In order to prevent the ball valve 132 from being blocked, it is driven by an air cylinder. A machine 133 is provided and discharged outside the system at a temperature of 150 ° C. or lower.
[0024]
[Operation and effect of the invention]
According to the present invention, the following effects can be obtained.
1. Batch effect
(1). The specifications of the pretreatment (crushing, dividing of foreign matter, drying) equipment will be relaxed.
(2). Raw material conditions (type, shape, etc.) are relaxed.
(3) A high removal rate of hydrogen chloride can be stably obtained in the dehydrochlorination treatment.
(4) The equipment is simple and operation is particularly easy.
(5). Reliability is ensured for product properties.
(6) The equipment capacity is larger than the continuous type, but the number of equipment is small and the equipment cost can be made almost the same.
(7) Heat and product loss can be minimized by creating a time schedule.
[0025]
2. Effect of heat supply method
(1). The melting, dehydrochlorination, and thermal decomposition times per batch can be greatly reduced. According to the experiments by the present inventors, it was confirmed that the conventional heat supply method required 9.5 hours instead of 12 hours per operation.
(2). High temperature semi-pyrolysis oil twice the weight of waste plastic input is mixed, so the viscosity of the melt quickly decreases and there is no short path in the pyrolysis tank. A stable dehydrochlorination rate can be obtained.
(3) Since heat is supplied to the pyrolysis tank in a mild manner, coking is unlikely to occur.
(4). Expensive heat transfer oil and equipment can be eliminated.
[0026]
3. Effect of residue extraction method
(1). It can sufficiently deal with waste plastics separated from general waste with the most severe foreign matters.
(2). Pretreatment equipment specifications and raw material conditions can be relaxed.
[0027]
4). Effects of mild and hard pyrolysis
(1) Even if undecomposed oil is present in the residue, since the residual oil is hard pyrolyzed in a later step, the oil yield is improved.
(2) Since only pyrolysis is performed in the pyrolysis tank, coking can be greatly suppressed.
[0028]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the present invention will be described in detail based on specific examples shown in the drawings. FIG. 1 shows a preferred embodiment of the waste plastic pyrolysis method according to the present invention. The processing raw material is a waste plastic separately collected from general waste, and foreign substances include sand, pebbles, metal, wood scrap, thermosetting resin, synthetic rubber and the like. The waste plastic is subjected to bag breaking, foreign matter separation, drying, and compression packaging in a known pretreatment device 10.
[0029]
Before the waste plastic is charged, about 380 ° C residual thermal cracking residue for dilution is left in the pyrolysis tank 12 twice as much as the amount of raw material input, and the jacket and the serpentine tube of the pyrolysis tank 12 are about 460 ° C. High-temperature steam of pyrolysis light oil is circulated as a heat transfer oil.
[0030]
Most of the heat required for melting and dehydrochlorination of the input material is provided by the retained heat of the pyrolysis residual oil of about 380 ° C. left in the pyrolysis tank 12, and the insufficient heat is the jacket of the pyrolysis tank 12. And given from the serpentine.
[0031]
The raw material is charged into the thermal decomposition tank 12 by the slide damper 11, and the valve 31 is opened and the valve 32 is closed from the time of loading. In this state, the input raw material is dissolved in the thermal decomposition tank 12, and dehydrochlorination is performed at about 300 ° C. After the raw material is charged, if it is held for about 3 hours, the raw material is melted and dehydrochlorinated.
[0032]
The mixed gas containing hydrogen chloride is incinerated while suppressing dioxins by a waste gas treatment device such as submerged combustion. After 3 hours, the valve 32 and the valve 33 are opened, and the valve 31 is closed.
[0033]
The amount of heat required for the pyrolysis reaction is that the pyrolysis light oil is heated to about 460 ° C. in the heating furnace 28, and a part thereof is directly blown into the pyrolysis tank 12 and distributed to the jacket and the serpentine of the pyrolysis tank 12 And the temperature of the pyrolysis tank 12 is controlled to be about 400 ° C.
[0034]
When the internal temperature of the pyrolysis tank 12 reaches 400 ° C., when the reaction time is about 1.5 hours and the tank level of the pyrolysis tank 12 decreases to a certain value, the first stage of pyrolysis (mild heat) It is determined that (disassembly) has been completed, and the valve 33 is closed.
[0035]
Next, residual oil having poor fluidity including foreign matters remaining in the pyrolysis tank 12 is transferred to the residue receiving tank 15 while the valve 42 provided at the outlet of the screw conveyor 13 is opened and the pusher 14 is driven. After the residual oil is cooled to about 150 ° C. in the residue receiving tank 15, the valve 43 is opened and the pusher 16 is driven to discharge the residue out of the system.
[0036]
In order to improve the oil yield of waste plastic, instead of the residue receiving tank 16, a small external heat kiln furnace or a tank with a stirrer is used, mixed with sand or ceramic balls for peeling off the coke growing on the inner wall, and the temperature Hard pyrolysis is performed under conditions of about 475 ° C. and a residence time of about 1 hour. The vaporized pyrolysis vapor is sent to the distillation column 18.
[0037]
When the transfer to the residue receiving tank 15 is completed, the next raw material is charged into the pyrolysis tank 12.
[0038]
The pyrolysis product oil pyrolyzed in the pyrolysis tank 12 is extracted and blown into the distillation tower 18. The distillation column 18 is provided with a cooler 21 at the top and a heating serpentine 19 at the bottom.
[0039]
The tower top temperature of the distillation tower 18 is normally controlled to about 150 ° C. by the tower top cooler 21, and only the pyrolysis light oil is condensed and cooled via the heat exchanger 20 and the cooler 22, and is sent to the light oil receiving tank 23. Can be stored. Of the pyrolysis product oil, medium oil and heavy oil are stored as they are at the bottom of the distillation column 18.
[0040]
Light oil in the pyrolysis light oil receiving tank 23 is sent to the heating furnace 28 via the heat exchanger 20 and the heat exchanger 26 by the pump 39, and is heated to about 460 ° C. As described above, this high-temperature steam is used as the amount of heat necessary for melting / dehydrochlorination and thermal decomposition.
[0041]
When the thermal decomposition in the thermal decomposition tank 12 or the external heat type small kiln furnace is completed, the valve 35 is opened, high temperature steam of about 460 ° C. is allowed to flow through the bottom tube of the distillation column 18, and The distillation operation of medium heavy oil accumulated at the bottom begins. By changing the temperature at the top of the distillation column 18, the medium oil is extracted and condensed and cooled by the heat exchanger 20 and the cooler 22, then the valve 36 is closed and the valve 37 is opened so that the activated clay is attached. It is sent to the medium oil tank 24 and collected. Although the distillation system is batch-wise as described above, the distillation system can be continuous.
[0042]
The heavy oil remaining at the bottom of the distillation tower 18 is sent by a pump 38 to a heavy oil receiving tank 30 with activated clay through a cooler 29.
[0043]
Raw materials in the slide damper 11 when projected input to the thermal decomposition tank 1 2, after cooling to below 380 ° C if the liquid temperature of the thermal decomposition tank 12 is not less than 380 ° C, placing the raw material Is desirable.
[Brief description of the drawings]
FIG. 1 is a diagram schematically showing a preferred embodiment of a method for pyrolyzing waste plastic according to the present invention.
FIG. 2 is a diagram illustrating a timing chart of operations according to the embodiment.
FIG. 3 is a diagram for explaining means for solving the problem.
FIG. 4 is a diagram for explaining means for solving the problem.
FIG. 5 is a diagram for explaining a problem to be solved by the invention.
[Explanation of symbols]
12 Pyrolysis tank 13 Screw conveyor 14 Pusher 42 Valve at the screw conveyor outlet

Claims (3)

塩化ビニルを含む廃プラスチックを熱分解槽にて回分で溶融し脱塩化水素処理した後、熱分解するにあたり、
熱分解槽において廃プラスチックを熱分解しうる温度範囲のうちの400°Cまでの低温度で廃プラスチックの熱分解を行わせて廃プラスチックの半部を油化し、その残渣を熱分解槽から抽出し、廃プラスチックを熱分解しうる温度範囲のうちの高温度で残渣の熱分解を行わせて残渣を油化させる一方、
低温度における半熱分解油のうち、次に投入する廃プラスチック投入量の2倍の重量の半熱分解油を熱分解槽内に残留させ、該残留した半熱分解油の保有熱によって次の投入廃プラスチックの溶融及び脱塩化水素に必要な熱量を供給するようにしたことを特徴とする廃プラスチックの熱分解法。
Waste plastic containing vinyl chloride is melted in batches in a thermal decomposition tank, dehydrochlorinated, and then thermally decomposed.
Waste plastic is pyrolyzed at a temperature as low as 400 ° C of the temperature range in which the waste plastic can be pyrolyzed in the pyrolysis tank, and half of the waste plastic is converted to oil, and the residue is extracted from the pyrolysis tank. And the residue is pyrolyzed at a high temperature within the temperature range in which the waste plastic can be pyrolyzed,
Of the semi-pyrolytic oil at low temperature, the semi-pyrolytic oil having a weight twice as much as the amount of waste plastic to be charged next is left in the pyrolysis tank, and the following heat is retained by the retained heat of the remaining semi-pyrolytic oil. A method for thermal decomposition of waste plastic, characterized in that the amount of heat required for melting and dehydrochlorination of the input waste plastic is supplied.
熱分解槽から抽出された熱分解生成油のうち、軽質油留分を加熱して高温蒸気となし、高温蒸気を熱分解槽のジャケット及び蛇管に流通させることにより、次の投入廃プラスチックの溶融及び脱塩化水素に必要な熱量の不足分を供給するようにした請求項1記載の廃プラスチックの熱分解法。  Of the pyrolysis product oil extracted from the pyrolysis tank, the light oil fraction is heated to form high-temperature steam, and the high-temperature steam is circulated through the jacket and the serpentine of the pyrolysis tank to melt the next input waste plastic. 2. The method for pyrolyzing waste plastics according to claim 1, wherein a shortage of heat necessary for dehydrochlorination is supplied. 熱分解槽から抽出された熱分解生成油のうち、軽質油留分を加熱して高温蒸気となし、その一部を熱分解槽のジャケット及び蛇管に流通させ、残部を熱分解槽内に直接吹き込むことにより、熱分解に必要な熱量を供給するようにした請求項1記載の廃プラスチックの熱分解法。  Among the pyrolysis product oil extracted from the pyrolysis tank, the light oil fraction is heated to form high-temperature steam, a part of which is circulated through the jacket and serpentine of the pyrolysis tank, and the remainder is directly in the pyrolysis tank. The waste plastic thermal decomposition method according to claim 1, wherein the amount of heat necessary for thermal decomposition is supplied by blowing.
JP23210699A 1999-08-19 1999-08-19 Thermal decomposition of waste plastic Expired - Fee Related JP4485621B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23210699A JP4485621B2 (en) 1999-08-19 1999-08-19 Thermal decomposition of waste plastic

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23210699A JP4485621B2 (en) 1999-08-19 1999-08-19 Thermal decomposition of waste plastic

Publications (2)

Publication Number Publication Date
JP2001055583A JP2001055583A (en) 2001-02-27
JP4485621B2 true JP4485621B2 (en) 2010-06-23

Family

ID=16934109

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23210699A Expired - Fee Related JP4485621B2 (en) 1999-08-19 1999-08-19 Thermal decomposition of waste plastic

Country Status (1)

Country Link
JP (1) JP4485621B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4768920B2 (en) * 2001-01-24 2011-09-07 アースリサイクル株式会社 Thermal decomposition of waste plastic
JP2004175917A (en) * 2002-11-27 2004-06-24 Blest:Kk Oil-liquefaction apparatus
JP2006002116A (en) * 2004-06-21 2006-01-05 Mugen System Kk Method and apparatus for purifying regenerated oil and device
JP2006152175A (en) * 2004-11-30 2006-06-15 Matsuda Kensetsu Kk Apparatus for conversion into oil
JP5144020B2 (en) * 2006-03-16 2013-02-13 アースリサイクル株式会社 Waste oiling method
KR101507017B1 (en) 2007-09-14 2015-03-30 어스 리사이클 가부시키가이샤 Method for emulsifying waste matter

Also Published As

Publication number Publication date
JP2001055583A (en) 2001-02-27

Similar Documents

Publication Publication Date Title
JP5819607B2 (en) Low pressure pyrolysis equipment and continuous oil carbonization equipment
US9376632B2 (en) Apparatus for conducting thermolysis of plastic waste and method of thermolysis in continuous manner
KR101125844B1 (en) Continuous processing method for producing recycled fuel oil from waste plastic
US3841992A (en) Method for retorting hydrocarbonaceous solids
CN102439122A (en) Method and system for performing chemical processes
JP4485621B2 (en) Thermal decomposition of waste plastic
JP4768920B2 (en) Thermal decomposition of waste plastic
JP3585637B2 (en) Catalytic cracking apparatus for synthetic polymer and method for producing oil using the same
JPH0789900A (en) Method for recovering high-quality monomer from plastic
KR20060001397A (en) Oil making apparatus of waste plastics
WO2009130524A1 (en) Pyrolytic apparatus and method
JP2000309781A (en) Apparatus for continuous conversion of plastic into oil by carbonization and heat decomposition
JP3372509B2 (en) Oil recovery device for waste plastic
JP3529502B2 (en) Decomposition tank for waste plastic oil liquefaction equipment
CN211497500U (en) Waste rubber continuous pyrolysis and discharging system
JP3654833B2 (en) Oil plasticizing method and apparatus for waste plastic
KR100817738B1 (en) Method and apparatus for producing oil from waste plastic
JP5558261B2 (en) Round horizontal pyrolysis tank
KR101327169B1 (en) A Drain Sweeping Device
RU2348470C1 (en) Method and installation for production of bitumen from old roof materials
KR101357013B1 (en) A Expansion Joint Sweeping Device
KR102340371B1 (en) Continuous apparatus and method for thermal cracking of macromolecule waste
KR102068337B1 (en) System for producing bio-oil from pyrolysis of biomass and plastics
JP4796288B2 (en) Wet multistage polymer cracking oil recovery system
JPH115984A (en) Method for melting and dehydrochlorinating waste plastic

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060818

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080903

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081104

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091216

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091216

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100224

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100325

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130402

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140402

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees