JP2003321571A - Method for recovering monomer from acrylic resin - Google Patents

Method for recovering monomer from acrylic resin

Info

Publication number
JP2003321571A
JP2003321571A JP2002130666A JP2002130666A JP2003321571A JP 2003321571 A JP2003321571 A JP 2003321571A JP 2002130666 A JP2002130666 A JP 2002130666A JP 2002130666 A JP2002130666 A JP 2002130666A JP 2003321571 A JP2003321571 A JP 2003321571A
Authority
JP
Japan
Prior art keywords
monomer
acrylic resin
distillation
heating
recovered
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002130666A
Other languages
Japanese (ja)
Inventor
Junichiro Shin
純一郎 新
Toru Takezawa
亨 竹澤
Hiroshi Amitani
弘 網谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Rayon Co Ltd
Original Assignee
Mitsubishi Rayon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Rayon Co Ltd filed Critical Mitsubishi Rayon Co Ltd
Priority to JP2002130666A priority Critical patent/JP2003321571A/en
Publication of JP2003321571A publication Critical patent/JP2003321571A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/62Plastics recycling; Rubber recycling

Landscapes

  • Separation, Recovery Or Treatment Of Waste Materials Containing Plastics (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for recovering high purity monomer which produces an acrylic resin product with extremely reduced impurity and high transparency, without decomposition of the monomer gas produced by pyrolysis in a recovery process recovering the monomer from an acrylic resin waste or the like mainly comprising methyl methacrylate monomer in dry distillation using a heating vessel with an agitator. <P>SOLUTION: The method comprises thermally decomposing the acrylic resin into a gas state by dry distillation in the heating vessel with the agitator, liquefying the gas state pyrolysis product, and then purifying the liquefied pyrolysis product by distillation to recover the monomer, where the tip speed of the agitator is set at 0.1 to 35 m/min. <P>COPYRIGHT: (C)2004,JPO

Description

【発明の詳細な説明】 【0001】 【発明の属する技術分野】本発明はアクリル系樹脂の廃
材あるいは加工時の端材等から極めて高度な透明性を有
するアクリル樹脂製品の製造を可能とする高純度モノマ
ーを回収する方法に関する。 【0002】 【従来の技術】近年、地球環境保護及び省資源の立場か
らプラスチック廃材の再利用が強く要請されている。プ
ラスチック廃材の再利用は種々の方法により行われてい
るが、特に有力な方法として乾留、すなわち実質的に酸
素の存在しない状態において、プラスチックを加熱分解
し低分子量のモノマーに還元し、回収したモノマーを再
利用することが行われている。 【0003】メチルメタクリレートを主成分とするアク
リル系樹脂は、乾留によって樹脂を構成する原料モノマ
ーとして高収率で回収することが可能である。そこで、
アクリル系樹脂からなる不良成形品や、成形時に生じる
端材、あるいはその成形品を製品として使用した後に回
収されたもの等の廃材などに対し、乾留法によりモノマ
ーを工業的に回収する方法が行われている。 【0004】ここで、モノマー回収のためのアクリル系
樹脂の乾留は、一般的に、樹脂原料を加熱釜に投入し、
必要に応じて不活性ガス雰囲気中で実質的に酸素が存在
しない状態において350〜800℃の温度に加熱して
行われ、生成したガス状の加熱分解物は、釜から取り出
された後、熱交換器タイプの冷却器等により凝縮液化さ
れ、さらに、この凝縮液化物を蒸留精製してモノマーが
回収される。 【0005】しかしながら、加熱釜による乾留において
は、加熱分解で生じたモノマーガスがさらに熱履歴を受
けることでさらに分解が進みモノマーの回収率を低下さ
せると同時に不純物の増加により品質を低下させる。あ
るいは、カーボンにまで至り乾留釜の内壁に付着して熱
伝導を低下させ全体の熱効率を悪化させてしまう。 【0006】一般にメチルメタクリレートを主成分とす
るアクリル系樹脂においては、加熱分解で生じた不飽和
結合を有するモノマーがさらに熱履歴を受けることで飽
和結合に変化したイソ酪酸メチルが不純物として主に生
成する。イソ酪酸メチルは重合に寄与しないために、こ
れを多く含んだ回収モノマーを原料にして得られた樹脂
製品中に残存し熱変形温度の低下、耐溶剤性の低下、あ
るいは加熱成形時に発泡しやすくなる等、多くの不具合
を生じてしまう。 【0007】また、イソ酪酸メチルはメチルメタクリレ
ートと構造が類似のため沸点差は少なく、蒸留等で完全
に除去することは実質的に不可能である。 【0008】そこで樹脂廃材の乾留法によるモノマー回
収装置においては、分解生成ガスのさらなる分解を抑制
するために種々検討されている。 【0009】例えば特開昭60−49086号公報に
は、ジャケット構造を有する乾留釜構造としジャケット
内に熱媒体を充填、熱媒体を通じた加熱とすることで乾
留釜内部と側面との温度差を小さくして過熱を防止する
方法が開示されている。しかし、この方法では、設備に
要する費用が高くなるとともに、熱媒体を加熱するため
の余分なエネルギーを必要とするので経済的に難があ
る。 【0010】また、特開平3−285987号公報に
は、乾留釜の上部を断熱材によって加熱炉の火炎で直接
加熱されないようにするとともに、加熱炉上部に外部に
突出した冷却フィンを設けることで加熱乾留釜上部の温
度を低く抑える方法が開示されている。しかしながら、
乾留釜上部の温度を低く抑えると加熱分解で生じたガス
が不必要に冷却されるために液化し加熱乾留釜内部で還
流する為、加熱分解で生じたガス成分の加熱乾留釜内部
の滞在時間が長くなり、多くの熱履歴を受けることで得
られる回収モノマーの品質低下を招くことになり好まし
くない。さらに、冷却フィンからの放熱は周囲の環境温
度の影響が大きく、実質的に適温に保つことは困難であ
る。 【0011】特開平4−50293号公報には、乾留釜
に取り付ける内部攪拌装置に溶融樹脂攪拌用の下部攪拌
翼だけでなく、加熱分解で生じたガスの過熱を抑制する
ために上部ガス部の攪拌を行う上部攪拌翼を設けること
で、ガス気相部の部分過熱を防止して分解が進み過ぎる
ことを抑える方法が示されている。ところが、ひとつの
攪拌軸に上部攪拌用の攪拌翼と下部攪拌用の攪拌翼を設
けたのでは、ある一定の回転でしか攪拌出来ないため
に、溶融樹脂のような粘調なものを攪拌するに適した攪
拌回転数と、上部ガス部の過熱防止を実現し得るに十分
な攪拌回転数とを同時に得ることは困難である。また、
攪拌軸を二重化し個々に攪拌翼を取り付け別個の駆動系
とした場合はそれぞれに適した攪拌回転数を得ることは
出来るけれども、複雑な設備が必要となるために多額な
費用が必要となり経済的に劣るものである。 【0012】それの加えて、従来の方法はいずれもオイ
ル成分として回収することに視点を置くもので、樹脂原
料として再利用できる高純度のモノマーを回収する視点
が薄い点も問題である。 【0013】 【発明が解決しようとする課題】本発明の目的は、メチ
ルメタクリレート単位を主成分とするアクリル系樹脂廃
材等からモノマーを回収するに際して、攪拌装置を有す
る加熱釜を用いた乾留方式において、加熱分解で生じた
モノマーガスがさらに分解変化をすることなく、不純物
の少ない極めて高度な透明性を有するアクリル樹脂製品
の製造が可能な高純度なモノマーを回収する方法を提供
することにある。 【0014】 【課題を解決するための手段】本発明者らは、アクリル
系樹脂を攪拌機を有する加熱釜で乾留することによりガ
ス状に加熱分解して、しかる後そのガス状加熱分解物を
液化し、次いで、その液化した加熱分解物を蒸留精製し
てモノマーを回収するに際し、加熱乾留の際の攪拌翼先
端速度を0.1〜35m/分の範囲内にすることで、不
純物の少ない高純度なモノマーを回収できることを見出
し、本発明を完成するに至った。 【0015】 【発明の実施の形態】以下、本発明の好適な実施の形態
を詳細に説明する。 【0016】本発明において用いられるアクリル系樹脂
は、乾留による加熱分解時に高収率で重合前の原料であ
るモノマーに戻るメチルメタクリレート単位を40質量
%以上含む重合体からなる。モノマーの回収効率の観点
からは、メチルメタクリレートの単独重合体が最も好ま
しいが、他の単量体単位を含む共重合体であってもよ
い。その場合、80質量%以上のメチルメタクリレート
と20質量%以下のアルキルメタクリレートもしくはア
ルキルアクリレートとの共重合体からなるものが好まし
く、90質量%以上のメチルメタクリレートと10質量
%以下のアルキルメタクリレートもしくはアルキルアク
リレートとの共重合体からなるものがより好ましい。ま
たこれらの樹脂に10質量%以下程度の安定剤または着
色剤等が含有されていても良い。更に、アクリル系ゴム
等の物性改良剤が含有されていても良い。 【0017】本発明において、攪拌装置を有する加熱釜
に入れるアクリル系樹脂の形状は、20mm角あるいは
20mm立方内に収まる大きさに破砕して使用すること
が取り扱いの面から好ましいが、削り屑状、片状、粒
状、粉末状、チップ状の形状であっても差し支えなく、
また単独の形状を持つものであっても、異なる形状をも
つものの組み合わせであってもよい。 【0018】乾留はアクリル系樹脂を加熱釜に投入し、
不活性ガス雰囲気中で実質的に酸素の存在しない状態に
おいて加熱することにより行う。その場合、酸素濃度は
1体積%以下であることが好ましい。また、加熱釜内を
減圧することによって、実質的に酸素が存在しない状態
にして加熱することにより、乾留することもできる。そ
の場合、酸素分圧は1kPa以下であることがより好ま
しい。 【0019】アクリル系樹脂の加熱釜への投入方法は、
予めアクリル系樹脂を加熱釜に仕込んでおいてもよい
し、加熱釜内に連続的に投入してもよい。 【0020】本発明において、加熱釜としては、攪拌機
能を有する加熱釜であればよい。 【0021】本発明において、加熱釜の温度は乾留に適
した温度、一般には350〜800℃の温度に維持すれ
ばよいが、高純度なモノマーを回収するには400〜7
50℃の範囲が好ましく、450〜700℃の範囲がよ
り好ましい。温度が低すぎる場合は、乾留速度が遅く分
解に長時間を要するため経済性に劣るばかりでなく、2
量体、3量体の生成が多くなるので好ましくなく、温度
が高すぎると生成したガス状加熱分解物が熱履歴を受け
てさらに分解が進み回収率の低下、回収モノマー中の不
純物の増加を招いてしまう恐れがある。 【0022】乾留の際の加熱については、加熱釜内壁の
全体が加熱されても良いが、アクリル系樹脂が接する内
壁が加熱されていれば良く、加熱釜下面のみが加熱され
ていてもよい。 【0023】本発明の攪拌翼の翼先端速度は、0.1〜
35m/分、好ましくは0.7〜30m/分である。3
5m/分を超える翼先端速度においては、加熱分解で生
じたモノマーガスがさらに熱履歴を受けやすくなり分解
の進行が進み回収モノマー中の不純物増加を招くことに
なる。 【0024】一方、翼先端速度が低いと乾留速度が低下
する傾向となり、0.1m/分未満の場合は、熱履歴に
よる分解の進行で回収モノマー中の不純物が増加するこ
とはないものの、加熱釜底部に熱分解残渣物が堆積し、
ガス状加熱分解物収量の急激な低下を招くためにモノマ
ーを経済的に回収することが困難となってしまう。 【0025】以上のようにしてアクリル系樹脂を加熱す
ることによって生成したガス状加熱分解物は、加熱釜か
ら取り出された後、熱交換器タイプの冷却器等を用い、
公知の方法により凝縮液化され、凝縮液化物を蒸留法等
で精製してモノマーが回収される。 【0026】 【実施例】次に、本発明を実施例及び比較例により説明
するが、本発明はこれによって限定されるものではな
い。 【0027】アクリル系樹脂粉砕体 以下の実施例1〜3、比較例1〜3において、メチルメ
タクリレート単独重合体(重量平均分子量700,00
0(ポリスチレン換算値))からなる厚さ3mmのアク
リルシートを粉砕し、目開き20mm角のふるいを通過
したアクリル系樹脂粉砕体Aを使用した。 【0028】また、実施例4においては、メチルメタク
リレートとn−ブチルアクリレートの共重合物(質量比
で95/5、重量平均分子量200,000(ポリスチ
レン換算値))の厚さ3mmのアクリルシートを粉砕
し、目開き20mm角のふるいを通過したアクリル系樹
脂粉砕体Bを使用した。 【0029】回収モノマーの分析 得られた回収メチルメタクリレートモノマーの純度測定
はガスクロマトグラフ法にて行った。また、不純物につ
いては多成分であり、不明な成分も存在することから、
主な成分であるイソ酪酸メチルの含有量をガスクロマト
グラフ法で測定し、不純物含有量とした。 【0030】実施例1 図1に示すような、高さ250mm、内径φ200mm
であり、回転半径95mm、翼高さ20mm、2枚翼タ
イプのアンカー型攪拌翼を内蔵したステンレス製円筒竪
型加熱釜を用意した。攪拌翼先端速度を30m/分に調
節して回転させ、加熱釜の加熱面温度を600℃とし、
加熱釜内部にパージ用窒素ガスを5L/hrで供給し、
加熱釜内の酸素濃度を1体積%以下とした。 【0031】次に、加熱釜上面の原料投入口からアクリ
ル系樹脂粉砕体A2kgを投入し、以降はアクリル系樹
脂の分解によって生成したモノマー蒸気を加熱釜の上蓋
面にあるモノマー蒸気取り出し口から回収し、−5℃の
冷水を通した外部の冷却凝縮器で凝縮液化させ、得られ
た乾留液の重量に見合う重量のアクリル系樹脂粉砕体A
を100g/回ずつ投入し、加熱釜内の滞在量がほぼ一
定になるように保持した。この乾留操作を8時間継続
し、乾留液を得た。アクリル系樹脂粉砕体Aの全投入量
は17.5kgであった。また、得られた乾留液は1
5.1kgであった。次いで、その乾留液を内径46m
mのガラス製オールダショウ型30段の蒸留塔に仕込み
40kPaの減圧状態で、還流比を3として蒸留した。
初留分5重量%をカットした後、メチルメタクリレート
モノマーの回収を始め、最終的に15重量%の高沸点物
を残して蒸留を終了した。純度99.7%、不純物(イ
ソ酪酸メチル)0.20%の高純度なメチルメタクリレ
ートモノマー12.1kgが回収できた。 【0032】実施例2 実施例1において、攪拌翼先端速度を10m/分とした
以外は実施例1と同様な操作を行った。なお、アクリル
系樹脂粉砕体Aの全投入量は16.8kgであった。ま
た、得られた乾留液は14.4kgであった。蒸留によ
り、純度99.8%、不純物(イソ酪酸メチル)0.1
7%の高純度なメチルメタクリレートモノマー11.5
kgが回収できた。 【0033】実施例3 実施例1において、攪拌翼先端速度を1.0m/分とし
た以外は実施例1と同様な操作を行った。なお、アクリ
ル系樹脂粉砕体Aの全投入量は17.3kgであった。
また、得られた乾留液は14.9kgであった。蒸留に
より、純度99.8%、不純物としてイソ酪酸メチル
0.16%の高純度なメチルメタクリレートモノマー1
1.9kgが回収できた。実施例4実施例1において、
アクリル系樹脂粉砕体Aに代えてアクリル系樹脂粉砕体
Bを用いた以外は実施例1と同様な操作を行った。アク
リル系樹脂粉砕体Bの全投入量は16.9kgであっ
た。また、得られた乾留液は14.5kgであった。蒸
留により、純度99.7%、不純物としてイソ酪酸メチ
ル0.19%の高純度なメチルメタクリレートモノマー
11.6kgが回収できた。 【0034】比較例1 実施例1において、攪拌翼先端速度を40m/分とした
以外は実施例1と同様な操作を行った。なお、アクリル
系樹脂粉砕体Aの全投入量は18.1kgであった。ま
た、得られた乾留液は15.6kgであった。蒸留によ
り、純度99.3%、不純物(イソ酪酸メチル)0.5
3%のメチルメタクリレートモノマー12.5kgが回
収できた。回収メチルメタクリレートモノマーの純度が
十分に満足できるものでなく、初留分をよりカットする
必要がある。 【0035】比較例2 実施例1において、攪拌翼先端速度を50m/分とした
以外は実施例1と同様な操作を行った。なお、アクリル
系樹脂粉砕体Aの全投入量は18.1kgであった。ま
た、得られた乾留液は15.5kgであった。蒸留によ
り、純度99.0%、不純物(イソ酪酸メチル)0.8
6%のメチルメタクリレートモノマー12.4kgが回
収できた。回収メチルメタクリレートモノマーの純度が
比較例1よりもさらに悪化し、初留分のカットをさらに
増す必要がある。 【0036】比較例3 実施例1において、攪拌翼を全く回転させない以外は実
施例1と同様な操作を行った。なお、アクリル系樹脂粉
砕体Aの全投入量は13.6kgであった。また、得ら
れた乾留液は11.4kgであった。蒸留により、純度
99.7%、不純物(イソ酪酸メチル)0.19%のメ
チルメタクリレートモノマー9.1kgが回収できた。
回収メチルメタクリレートモノマーは高純度であった
が、回収量が低下した。 【0037】実施例1〜4および比較例1〜3の結果を
表1に示した。 【0038】 【表1】【0039】表1より、攪拌装置を有する加熱釜で乾留
することにより加熱分解してモノマーを回収する方法に
おいて、攪拌翼先端速度を0.1〜35m/分にするこ
とにより、アクリル系樹脂から高純度なメチルメタクリ
レートモノマーが回収できることがわかる。 【0040】 【発明の効果】本発明によれば、アクリル系樹脂の廃材
等から極めて高度な透明性を有するアクリル樹脂製品の
製造を可能とするモノマーを回収する事ができる。この
ことは、工場等から排出される廃材や看板等で利用され
た後の廃材の有効利用を促進し、省資源効果により地球
環境の保護に資するものである。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing an acrylic resin product having a very high degree of transparency from waste acrylic resin or offcuts during processing. The present invention relates to a method for recovering a purity monomer. 2. Description of the Related Art In recent years, there has been a strong demand for recycling plastic waste from the standpoint of protecting the global environment and saving resources. Recycling of plastic waste is carried out by various methods, but one of the most effective methods is dry distillation, that is, in the absence of oxygen, the plastic is thermally decomposed and reduced to low molecular weight monomers, and the recovered monomers are recovered. Reusing has been done. [0003] An acrylic resin containing methyl methacrylate as a main component can be recovered in a high yield as a raw material monomer constituting the resin by dry distillation. Therefore,
Industrial methods for recovering monomers by dry distillation are used for defective molded products made of acrylic resin, scraps generated during molding, or waste materials collected after using the molded products as products. Have been done. Here, the dry distillation of an acrylic resin for monomer recovery is generally carried out by charging a resin raw material into a heating kettle,
If necessary, heating is performed at a temperature of 350 to 800 ° C. in an inert gas atmosphere in a state in which substantially no oxygen is present. The condensed liquid is condensed and liquefied by an exchanger type cooler or the like, and the condensed liquefied product is purified by distillation to recover the monomer. [0005] However, in dry distillation using a heating oven, the monomer gas generated by the thermal decomposition is further subjected to a thermal history to further decompose, thereby lowering the recovery rate of the monomer and at the same time deteriorating the quality due to an increase in impurities. Alternatively, even the carbon reaches the carbon and adheres to the inner wall of the dry still to lower heat conduction, thereby deteriorating the overall thermal efficiency. [0006] Generally, in an acrylic resin containing methyl methacrylate as a main component, methyl isobutyrate, which is converted into a saturated bond due to a monomer having an unsaturated bond generated by thermal decomposition and further subjected to heat history, is mainly produced as an impurity. I do. Since methyl isobutyrate does not contribute to polymerization, it remains in the resin product obtained from the recovered monomer containing a large amount of it and lowers the heat distortion temperature, lowers the solvent resistance, or easily foams during heat molding. And many other problems. Further, methyl isobutyrate has a similar boiling point to that of methyl methacrylate and thus has a small difference in boiling point, and it is substantially impossible to completely remove it by distillation or the like. Therefore, various studies have been made on a monomer recovery apparatus based on the dry distillation method of resin waste material in order to suppress further decomposition of the decomposition product gas. For example, Japanese Patent Application Laid-Open No. Sho 60-49086 discloses a dry distillation tank structure having a jacket structure, in which a heating medium is filled in the jacket, and heating is performed through the heating medium to reduce the temperature difference between the inside and the side surface of the drying tank. A method for reducing overheating to prevent overheating is disclosed. However, in this method, the cost required for the equipment is increased, and extra energy for heating the heat medium is required, which is economically difficult. Japanese Patent Application Laid-Open No. 3-285987 discloses that an upper portion of a dry distillation tank is prevented from being directly heated by a flame of a heating furnace by a heat insulating material, and a cooling fin protruding outside is provided at an upper portion of the heating furnace. A method is disclosed in which the temperature in the upper part of the heating still is kept low. However,
If the temperature in the upper part of the still is kept low, the gas generated by thermal decomposition is cooled unnecessarily and liquefied and refluxed inside the still. , And the quality of the recovered monomer obtained by receiving a large amount of heat history is reduced, which is not preferable. Furthermore, the heat radiation from the cooling fins is greatly affected by the surrounding environmental temperature, and it is difficult to keep the temperature at an appropriate temperature. Japanese Patent Application Laid-Open No. 4-50293 discloses that an internal agitator attached to a dry still has not only a lower stirring blade for stirring a molten resin but also an upper gas portion for suppressing overheating of gas generated by thermal decomposition. A method is disclosed in which an upper stirring blade for stirring is provided to prevent partial overheating of a gaseous gas phase portion and to suppress excessive decomposition. However, if one stirring shaft is provided with a stirring blade for upper stirring and a stirring blade for lower stirring, stirring can be performed only at a certain rotation, so that a viscous material such as a molten resin is stirred. It is difficult to simultaneously obtain a stirring rotation speed suitable for the above and a stirring rotation speed sufficient to realize overheating prevention of the upper gas portion. Also,
If the stirring shaft is duplicated and individual stirring blades are attached to separate drive systems, it is possible to obtain a suitable stirring rotation speed, but complicated equipment is required, so a large amount of cost is required and economical It is inferior to. In addition, all of the conventional methods focus on recovery as an oil component, and there is also a problem in that the viewpoint of recovering high-purity monomers that can be reused as resin raw materials is thin. SUMMARY OF THE INVENTION An object of the present invention is to provide a method for recovering monomers from waste acrylic resin containing a methyl methacrylate unit as a main component in a dry distillation system using a heating kettle having a stirring device. It is another object of the present invention to provide a method for recovering a high-purity monomer capable of producing an acrylic resin product having a very high degree of transparency and having a small amount of impurities without further changing the monomer gas generated by thermal decomposition. Means for Solving the Problems The present inventors pyrolyze an acrylic resin into a gaseous state by dry-distilling it in a heating kettle having a stirrer, and then liquefy the gaseous heat-decomposed product. Then, when recovering the monomer by distilling and purifying the liquefied heat decomposition product, the tip speed of the stirring blade at the time of heating and distillation is within the range of 0.1 to 35 m / min. The inventors have found that a monomer having high purity can be recovered, and have completed the present invention. Hereinafter, preferred embodiments of the present invention will be described in detail. The acrylic resin used in the present invention comprises a polymer containing at least 40% by mass of a methyl methacrylate unit which returns to a monomer which is a raw material before polymerization in a high yield during thermal decomposition by dry distillation. From the viewpoint of monomer recovery efficiency, a homopolymer of methyl methacrylate is most preferable, but a copolymer containing another monomer unit may be used. In this case, it is preferable to use a copolymer of 80% by mass or more of methyl methacrylate and 20% by mass or less of alkyl methacrylate or alkyl acrylate, and 90% by mass or more of methyl methacrylate and 10% by mass or less of alkyl methacrylate or alkyl acrylate. And those comprising a copolymer of These resins may contain about 10% by mass or less of a stabilizer or a coloring agent. Further, a physical property improving agent such as an acrylic rubber may be contained. In the present invention, the shape of the acrylic resin to be put into a heating pot having a stirrer is preferably crushed to a size within 20 mm square or 20 mm cubic from the viewpoint of handling. , Flakes, granules, powders, chips, etc.
Further, they may have a single shape or a combination of different shapes. In the dry distillation, an acrylic resin is charged into a heating pot,
Heating is performed in an inert gas atmosphere in a state where oxygen is not substantially present. In that case, the oxygen concentration is preferably 1% by volume or less. In addition, it is also possible to dry-distill by heating in a state where oxygen is not substantially present by reducing the pressure in the heating pot. In that case, the oxygen partial pressure is more preferably 1 kPa or less. The method of charging the acrylic resin into the heating pot is as follows.
The acrylic resin may be charged in the heating pot in advance, or may be continuously charged into the heating pot. In the present invention, the heating pot may be any heating pot having a stirring function. In the present invention, the temperature of the heating kettle may be maintained at a temperature suitable for dry distillation, generally at a temperature of 350 to 800 ° C.
A range of 50 ° C is preferable, and a range of 450 to 700 ° C is more preferable. When the temperature is too low, the carbonization speed is slow and the decomposition takes a long time, so that not only is the economy inferior, but also
If the temperature is too high, the generated gaseous heat decomposition product undergoes thermal history and is further decomposed, resulting in a decrease in the recovery rate and an increase in the impurities in the recovered monomer. There is a risk of inviting. As for the heating at the time of carbonization, the entire inner wall of the heating pot may be heated, but it is sufficient that the inner wall in contact with the acrylic resin is heated, and only the lower surface of the heating pot may be heated. The tip speed of the stirring blade of the present invention is 0.1 to
It is 35 m / min, preferably 0.7 to 30 m / min. 3
At a blade tip speed exceeding 5 m / min, the monomer gas generated by thermal decomposition is more susceptible to heat history, and the progress of decomposition proceeds, resulting in an increase in impurities in the recovered monomer. On the other hand, when the blade tip speed is low, the carbonization speed tends to decrease. When the blade tip speed is less than 0.1 m / min, impurities in the recovered monomer do not increase due to the progress of decomposition due to heat history. Pyrolysis residues accumulate on the bottom of the kettle,
A sharp decrease in the yield of the gaseous thermal decomposition product causes a difficulty in economically recovering the monomer. The gaseous thermally decomposed product generated by heating the acrylic resin as described above is taken out of the heating pot, and then used with a heat exchanger type cooler or the like.
The condensed liquid is condensed and liquefied by a known method, and the condensed liquid is purified by distillation or the like, and the monomer is recovered. Next, the present invention will be described with reference to examples and comparative examples, but the present invention is not limited to these examples. Pulverized Acrylic Resin In Examples 1 to 3 and Comparative Examples 1 to 3, a homopolymer of methyl methacrylate (weight average molecular weight 700,00
0 (polystyrene equivalent value), an acrylic sheet having a thickness of 3 mm was pulverized, and an acrylic resin pulverized product A passed through a sieve having 20 mm square openings was used. In Example 4, an acrylic sheet having a thickness of 3 mm made of a copolymer of methyl methacrylate and n-butyl acrylate (weight ratio: 95/5, weight average molecular weight: 200,000 (in terms of polystyrene)) was prepared. Acrylic resin pulverized body B that had been pulverized and passed through a sieve having an opening of 20 mm square was used. Analysis of Recovered Monomer Purity of the obtained recovered methyl methacrylate monomer was measured by gas chromatography. In addition, impurities are multi-component, and there are unknown components.
The content of methyl isobutyrate, which is a main component, was measured by gas chromatography and defined as the impurity content. Example 1 As shown in FIG. 1, a height of 250 mm and an inner diameter of 200 mm
A stainless steel cylindrical vertical heating pot having a rotating radius of 95 mm, a blade height of 20 mm, and a two-blade type anchor-type stirring blade was prepared. The tip speed of the stirring blade is adjusted to 30 m / min and rotated, and the heating surface temperature of the heating pot is set to 600 ° C.
Supply nitrogen gas for purging at 5 L / hr into the heating kettle,
The oxygen concentration in the heating pot was set to 1% by volume or less. Next, 2 kg of the acrylic resin pulverized material A is charged from the raw material charging port on the upper surface of the heating furnace, and thereafter, the monomer vapor generated by the decomposition of the acrylic resin is recovered from the monomer vapor outlet on the upper lid surface of the heating furnace. And then condensed and liquefied in an external cooling condenser through which cold water at -5 ° C is passed, and the crushed acrylic resin A having a weight corresponding to the weight of the obtained dry distillation liquid.
Was charged at a rate of 100 g / time, and the amount kept in the heating kettle was kept substantially constant. This carbonization operation was continued for 8 hours to obtain a carbonized liquid. The total amount of the crushed acrylic resin A was 17.5 kg. Moreover, the obtained dry distillation liquid is 1
The weight was 5.1 kg. Next, the dry distillate was used for an inner diameter of 46 m.
Then, the mixture was charged into a 30-stage glass-made Oldershaw distillation column, and distilled under a reduced pressure of 40 kPa at a reflux ratio of 3.
After cutting the first distillate 5% by weight, the recovery of methyl methacrylate monomer was started, and finally the distillation was terminated leaving 15% by weight of high-boiling substances. 12.1 kg of a high-purity methyl methacrylate monomer having a purity of 99.7% and an impurity (methyl isobutyrate) of 0.20% could be recovered. Example 2 The same operation as in Example 1 was performed except that the tip speed of the stirring blade was changed to 10 m / min. The total input amount of the crushed acrylic resin A was 16.8 kg. Further, the obtained dry distillate was 14.4 kg. By distillation, purity 99.8%, impurity (methyl isobutyrate) 0.1
7% high purity methyl methacrylate monomer 11.5
kg was collected. Example 3 The same operation as in Example 1 was performed, except that the tip speed of the stirring blade was changed to 1.0 m / min. The total amount of the crushed acrylic resin A was 17.3 kg.
Further, the obtained dry distillate was 14.9 kg. High-purity methyl methacrylate monomer 1 having a purity of 99.8% and an impurity of methyl isobutyrate 0.16% by distillation
1.9 kg could be recovered. Example 4 In Example 1,
The same operation as in Example 1 was performed except that the acrylic resin pulverized body B was used instead of the acrylic resin pulverized body A. The total amount of the crushed acrylic resin B was 16.9 kg. Further, the obtained dry distillate was 14.5 kg. By distillation, 11.6 kg of a high-purity methyl methacrylate monomer having a purity of 99.7% and methyl isobutyrate of 0.19% as impurities was recovered. Comparative Example 1 The same operation as in Example 1 was performed except that the tip speed of the stirring blade was changed to 40 m / min. The total input amount of the crushed acrylic resin A was 18.1 kg. Further, the obtained dry distillate was 15.6 kg. By distillation, purity: 99.3%, impurity (methyl isobutyrate): 0.5
12.5 kg of 3% methyl methacrylate monomer could be recovered. The purity of the recovered methyl methacrylate monomer is not sufficiently satisfactory, and it is necessary to further cut the initial fraction. Comparative Example 2 The same operation as in Example 1 was performed, except that the tip speed of the stirring blade was changed to 50 m / min. The total input amount of the crushed acrylic resin A was 18.1 kg. Further, the obtained dry distillate was 15.5 kg. By distillation, purity 99.0%, impurity (methyl isobutyrate) 0.8
12.4 kg of 6% methyl methacrylate monomer could be recovered. The purity of the recovered methyl methacrylate monomer is further worse than in Comparative Example 1, and it is necessary to further increase the cut of the first fraction. Comparative Example 3 The same operation as in Example 1 was performed, except that the stirring blade was not rotated at all. The total input amount of the crushed acrylic resin A was 13.6 kg. Further, the obtained dry distillate was 11.4 kg. By distillation, 9.1 kg of a methyl methacrylate monomer having a purity of 99.7% and an impurity (methyl isobutyrate) of 0.19% could be recovered.
The recovered methyl methacrylate monomer was of high purity, but the recovered amount was reduced. The results of Examples 1 to 4 and Comparative Examples 1 to 3 are shown in Table 1. [Table 1] According to Table 1, in the method of recovering monomers by pyrolysis by dry distillation in a heating kettle having a stirrer, the speed of the stirring blade tip is set to 0.1 to 35 m / min. It can be seen that high-purity methyl methacrylate monomer can be recovered. According to the present invention, a monomer capable of producing an acrylic resin product having extremely high transparency can be recovered from waste acrylic resin and the like. This promotes the effective use of waste materials discharged from factories and the like and waste materials used in signboards and the like, and contributes to the protection of the global environment by the resource saving effect.

【図面の簡単な説明】 【図1】図1は加熱乾留釜の1例を示す模式断面図であ
る。 【符号の説明】 1 加熱釜 2 アクリル系樹脂投入口 3 モノマー蒸気取り出し口 4 釜蓋 5 アンカー型撹拌翼 6 鏡部 7 加熱炉
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a schematic cross-sectional view showing an example of a heating and drying still. [Description of Signs] 1 Heating pot 2 Acrylic resin inlet 3 Monomer vapor outlet 4 Pot lid 5 Anchor-type stirring blade 6 Mirror unit 7 Heating furnace

───────────────────────────────────────────────────── フロントページの続き (72)発明者 網谷 弘 富山県富山市海岸通3番地 三菱レイヨン 株式会社富山事業所内 Fターム(参考) 4F301 AA20 CA09 CA27 CA34 CA52 CA71 4H006 AA02 AC91 AD11 BC50 KC14 KE00    ────────────────────────────────────────────────── ─── Continuation of front page    (72) Inventor Hiroshi Amitani             Mitsubishi Rayon 3 Kaigandori, Toyama City, Toyama Prefecture             Toyama Works Co., Ltd. F term (reference) 4F301 AA20 CA09 CA27 CA34 CA52                       CA71                 4H006 AA02 AC91 AD11 BC50 KC14                       KE00

Claims (1)

【特許請求の範囲】 【請求項1】 アクリル系樹脂を攪拌装置を有する加熱
釜内で乾留することによりガス状に加熱分解して、しか
る後そのガス状加熱分解物を液化し、次いでその液化し
た加熱分解物から蒸留精製してモノマーを回収する方法
において、 加熱乾留の際の攪拌翼先端速度を0.1〜35m/分と
することを特徴とするモノマー回収方法。
Claims 1. An acrylic resin is pyrolyzed into a gaseous state by dry distillation in a heating vessel having a stirrer, and then the gaseous thermally decomposed product is liquefied and then liquefied. A method for recovering a monomer by distillation and purification from the heat decomposed product, wherein a tip speed of a stirring blade at the time of heating and distillation is 0.1 to 35 m / min.
JP2002130666A 2002-05-02 2002-05-02 Method for recovering monomer from acrylic resin Pending JP2003321571A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002130666A JP2003321571A (en) 2002-05-02 2002-05-02 Method for recovering monomer from acrylic resin

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002130666A JP2003321571A (en) 2002-05-02 2002-05-02 Method for recovering monomer from acrylic resin

Publications (1)

Publication Number Publication Date
JP2003321571A true JP2003321571A (en) 2003-11-14

Family

ID=29543629

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002130666A Pending JP2003321571A (en) 2002-05-02 2002-05-02 Method for recovering monomer from acrylic resin

Country Status (1)

Country Link
JP (1) JP2003321571A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100883365B1 (en) 2007-10-12 2009-02-11 제일모직주식회사 Recycling method of waste acrylic resin and a composition for acrylic artificial marble using recycled (meth)acrylic monomer
KR101022512B1 (en) 2010-05-19 2011-03-16 (주)알앤이 Recycling method of waste scagliola
KR101048268B1 (en) 2010-10-06 2011-07-08 최상근 Recycling method of waste acrylic resin
WO2024125803A1 (en) * 2021-12-16 2024-06-20 Organik Kimya Sanayi Ve Tic. A.S. Waterborne polymer composition and preparation method thereof

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100883365B1 (en) 2007-10-12 2009-02-11 제일모직주식회사 Recycling method of waste acrylic resin and a composition for acrylic artificial marble using recycled (meth)acrylic monomer
KR101022512B1 (en) 2010-05-19 2011-03-16 (주)알앤이 Recycling method of waste scagliola
WO2011145774A1 (en) * 2010-05-19 2011-11-24 (주)알앤이 Method for processing waste scagliola
JP2013531088A (en) * 2010-05-19 2013-08-01 アールアンドイー カンパニー リミテッド Disposal of artificial marble
KR101048268B1 (en) 2010-10-06 2011-07-08 최상근 Recycling method of waste acrylic resin
WO2012046967A2 (en) * 2010-10-06 2012-04-12 주식회사 에이치알테크놀로지 Method of recycling a waste acrylic resin
WO2012046967A3 (en) * 2010-10-06 2012-08-30 주식회사 에이치알테크놀로지 Method of recycling a waste acrylic resin
WO2024125803A1 (en) * 2021-12-16 2024-06-20 Organik Kimya Sanayi Ve Tic. A.S. Waterborne polymer composition and preparation method thereof

Similar Documents

Publication Publication Date Title
KR101461687B1 (en) Process technology for recovering brominated styrenic polymers from reaction mixtures in which they are formed and/or converting such mixtures into pellets or into granules or pastilles
JP3610067B2 (en) Method for recovering glycol from dimethyl terephthalate
AU725055B2 (en) Process for decomposing a polymer to its monomer or monomers
WO1995011218A1 (en) Process for separating cyclohexane dimethanol from dimethyl terephthalate
CN1137079C (en) Method for preparing acrylic acid and acrylic acid esters
JPH0789900A (en) Method for recovering high-quality monomer from plastic
JP2003321571A (en) Method for recovering monomer from acrylic resin
KR20230013238A (en) How to recycle waste polystyrene products
JP7364817B1 (en) Vinyl polymer production equipment and vinyl polymer production method
JP3709014B2 (en) Method for recovering monomer from waste acrylic resin
JP2002060537A (en) Method for recovering raw material of foamed polystyrene
KR101149320B1 (en) Continuous reactor for thermal degradation of polystyrene and method for recovery of styrene using it
JP2009173554A (en) Method for recovering dimethyl terephthalate having improved hue from pet bottle waste
JP4255554B2 (en) Method for recovering dimethyl terephthalate and ethylene glycol
JPH11192469A (en) Treatment of plastics, and solid fuel and reducing agent for ore obtained by the treatment
CN200963586Y (en) Chemical industry waste material regenerating device
JP5558261B2 (en) Round horizontal pyrolysis tank
JP7484001B1 (en) Apparatus for producing vinyl polymer and method for producing vinyl polymer
JP2010043165A (en) Recovery method for decomposed product of resin, and recovery system of decomposed product of resin
JP2005112722A (en) Apparatus and method of recovering methyl methacrylate monomer
JP2003113125A (en) Method for producing monomer from polyester
JP2005132802A (en) Method for recovery of styrene and apparatus therefor
JP3027155B1 (en) An Improved Recycling Method for Waste Plastics Based on PVC Polymer
JP2002322121A (en) Method and device for recovering monomer from acrylic resin
CN201883130U (en) Vacuum distillation device