JPH0788998A - Fiber-reinforced thermoplastic resin laminated body - Google Patents

Fiber-reinforced thermoplastic resin laminated body

Info

Publication number
JPH0788998A
JPH0788998A JP23963393A JP23963393A JPH0788998A JP H0788998 A JPH0788998 A JP H0788998A JP 23963393 A JP23963393 A JP 23963393A JP 23963393 A JP23963393 A JP 23963393A JP H0788998 A JPH0788998 A JP H0788998A
Authority
JP
Japan
Prior art keywords
fiber
thermoplastic resin
reinforced thermoplastic
resin
linear expansion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP23963393A
Other languages
Japanese (ja)
Inventor
Hideo Sakai
英男 坂井
Satoshi Kishi
智 岸
Katsuyuki Morita
勝幸 盛田
Hiroshi Tanabe
浩史 田邉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Toatsu Chemicals Inc
Original Assignee
Mitsui Toatsu Chemicals Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Toatsu Chemicals Inc filed Critical Mitsui Toatsu Chemicals Inc
Priority to JP23963393A priority Critical patent/JPH0788998A/en
Publication of JPH0788998A publication Critical patent/JPH0788998A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To provide a fiber-reinforced thermoplastic resin laminated body wherein it has light-weight, high strength and the coefficient of linear expansion which is lower than that of a metal, therefore, combination use with various metallic materials is possible and suitable for use of parts for which high dimensional accuracy is required. CONSTITUTION:A plurality of sheets of fiber-reinforced thermoplastic resin prepregs are laminated so that arrangement directions of fibers are identical with each other or met at right angles with each other, the coefficient of linear expansion of an arrangement direction of a fiber or the coefficient of linear expansion of a direction meeting at right angles with the arrangement direction of the fiber is taken as 0.6X10<-5>/ deg.C. It is recommendable that as a fiber of the fiber-reinforced thermoplastic resin prepreg, it is allowed to contain, for example, a glass fiber within a range of at least 40% and not exceeding 85% in volume.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は軽量で機械的強度及び耐
衝撃性に優れ、自動車、住宅の内装等の産業資材として
好適に使用される繊維強化熱可塑性樹脂積層体に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a fiber-reinforced thermoplastic resin laminate which is lightweight, has excellent mechanical strength and impact resistance and is suitably used as an industrial material such as automobiles and interiors of houses.

【0002】[0002]

【従来の技術】繊維強化樹脂積層成形体は、金属に比し
て、錆が出ず軽量で成形加工が容易である等の理由で自
動車や住宅などの内装材として用いられており、特に自
動車の内装材には燃費改善策として使用範囲が拡大して
いる。
2. Description of the Related Art Fiber-reinforced resin laminated moldings are used as interior materials for automobiles, houses, etc., because they are lighter in weight, easier to mold, and easier to mold than metal. The range of use of the interior materials is expanding as a fuel efficiency improvement measure.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、従来の
繊維強化樹脂成形体は不飽和ポリエステル樹脂、ビニル
エステル樹脂、エポキシ樹脂等の熱硬化性樹脂を使用し
ている。
However, the conventional fiber-reinforced resin molding uses a thermosetting resin such as unsaturated polyester resin, vinyl ester resin, or epoxy resin.

【0004】通常、繊維強化樹脂成形体は補強繊維に樹
脂を含浸させたものを所定枚数積層して製造するが、熱
硬化性樹脂を使用した繊維強化樹脂成形体は衝撃荷重が
加わると層間が剥離して形状破壊を起こす。線膨張係数
を小さくするために繊維含有率を上げるほど層間剥離し
易くなる傾向がある。これは熱硬化性樹脂が強靭性に乏
しいためと言われている。耐衝撃性を向上させる試みと
して、熱硬化性樹脂に比べて強靭性の高い熱可塑性樹脂
の使用が検討されている。
Usually, a fiber-reinforced resin molded body is manufactured by laminating a predetermined number of reinforcing fibers impregnated with a resin. However, a fiber-reinforced resin molded body using a thermosetting resin causes a gap between layers when an impact load is applied. It peels off and causes shape destruction. Increasing the fiber content to reduce the linear expansion coefficient tends to facilitate delamination. This is said to be due to the poor toughness of the thermosetting resin. As an attempt to improve impact resistance, use of a thermoplastic resin having higher toughness than a thermosetting resin has been studied.

【0005】ところが、従来までの繊維強化熱可塑性樹
脂成形体は、熱可塑性樹脂の粘度が高いため、連続繊維
の直線性を保って繊維含有率を高くすることが困難であ
り、線膨張係数が2.5×10-5/℃以上と高く、線膨張
係数の低い鉄、アルミ、銅などの金属や、低熱膨張係数
材料との組合せ使用や、一体化使用には限度があった。
However, in conventional fiber-reinforced thermoplastic resin moldings, it is difficult to maintain the linearity of continuous fibers and increase the fiber content because the thermoplastic resin has a high viscosity, and the linear expansion coefficient is There was a limit to the combination use with metals such as iron, aluminum, and copper having a low linear expansion coefficient of 2.5 × 10 −5 / ° C. or higher and low thermal expansion coefficient materials, and the integrated use.

【0006】更にまた、温度変化があるところでの部品
等への使用にも、その寸法精度維持のため制限があり、
金属板またはそれ以下の線膨張係数を有する繊維強化熱
可塑性樹脂製品の開発が強く望まれていた。本発明はこ
のような要請に応ずることを目的としてなされたもので
ある。
Furthermore, there is a limitation in maintaining the dimensional accuracy even when it is used in parts where temperature changes,
The development of a fiber reinforced thermoplastic resin product having a linear expansion coefficient of a metal plate or less has been strongly desired. The present invention has been made for the purpose of meeting such a demand.

【0007】[0007]

【課題を解決するための手段】本発明者等は、鋭意検討
した結果、これらの課題を解決するために繊維強化熱可
塑性樹脂板を積層成形することにより上記目的を達成し
得ることを見い出し、本発明を完成した。
Means for Solving the Problems As a result of intensive studies, the present inventors have found that the above objects can be achieved by laminating and molding a fiber-reinforced thermoplastic resin plate in order to solve these problems. The present invention has been completed.

【0008】即ち、本発明は、複数枚の繊維強化熱可塑
性樹脂プリプレグを、繊維の配列方向が同一もしくは直
交するように積層し、繊維の配列方向(以下『0度方
向』という。)の線膨張係数もしくは繊維の配列方向
(0度方向)及びこれと直交する方向(以下『90度方
向』という。)の線膨張係数を0.6×10-5/℃以下と
したことを特徴とする繊維強化熱可塑性樹脂積層体を提
供するものである。
That is, according to the present invention, a plurality of fiber-reinforced thermoplastic resin prepregs are laminated so that the arrangement direction of the fibers is the same or orthogonal to each other, and a line in the arrangement direction of fibers (hereinafter referred to as "0 degree direction"). The expansion coefficient or the linear expansion coefficient in the fiber array direction (0 degree direction) and the direction orthogonal thereto (hereinafter referred to as "90 degree direction") is set to 0.6 x 10 -5 / ° C or less. A fiber-reinforced thermoplastic resin laminate is provided.

【0009】本発明に係る繊維強化熱可塑性樹脂板のた
めの熱可塑性樹脂として用いられる樹脂の種類として
は、ポリエチレン、ポリプロピレン等のポリオレフィ
ン、ポリアミド、ポリカーボネート、塩化ビニル、ポリ
エチレンテレフタレート等のポリエステル、ポリスチレ
ン、ポリアセタール、ナイロン等の他種々の熱可塑性樹
脂を用いることができるが、強度、耐摩耗性、価格や廃
棄物になったときの再生の容易さなどの観点から最も望
ましい樹脂としては、ポリプロピレン樹脂が推奨され
る。
The types of resin used as the thermoplastic resin for the fiber-reinforced thermoplastic resin plate according to the present invention include polyolefins such as polyethylene and polypropylene, polyamides, polycarbonates, vinyl chloride, polyesters such as polyethylene terephthalate, polystyrene, Various other thermoplastic resins such as polyacetal and nylon can be used, but polypropylene resin is the most desirable resin from the viewpoints of strength, abrasion resistance, price and easiness of recycling when it becomes waste. Recommended.

【0010】また、本発明繊維強化熱可塑性樹脂プリプ
レグに用いられる繊維としては、アラミド繊維等の合成
樹脂繊維、天然の有機質繊維、チタン、ボロン、ステン
レス等の金属繊維、ガラス、炭素、炭化ケイ素等の無機
繊維が挙げられるが、強度、価格、熱膨張係数の面から
最も望ましい繊維としてはガラス繊維を用いることが推
奨される。
The fibers used in the fiber-reinforced thermoplastic resin prepreg of the present invention include synthetic resin fibers such as aramid fibers, natural organic fibers, metal fibers such as titanium, boron and stainless steel, glass, carbon and silicon carbide. Inorganic fibers can be mentioned, but it is recommended to use glass fibers as the most desirable fibers in terms of strength, price and coefficient of thermal expansion.

【0011】熱可塑性樹脂とこの繊維の配合比として
は、繊維配合比を容積比40%以上85%以下とするの
が望ましい。85%以上となると必要な靭性が低下する
うえ、成形加工が困難となる。また、40%以下では必
要な剛性と耐摩耗性が得られない。なお、これらの繊維
は一定方向に配列されていることが推奨される。
The blending ratio of the thermoplastic resin and the fibers is preferably such that the blending ratio of the fibers is 40% or more and 85% or less by volume. If it is 85% or more, the required toughness is lowered and the molding process becomes difficult. If it is 40% or less, the required rigidity and wear resistance cannot be obtained. It is recommended that these fibers be arranged in a fixed direction.

【0012】一方向に配列した繊維に熱可塑性樹脂を含
浸してなる繊維強化熱可塑性樹脂板は、通常太さ3〜2
5μmのモノフィラメントを200〜12000本集束
したヤーンもしくは、ロービングを、所定本数一方向に
並べたものに熱可塑性樹脂を含浸させたものを用いる。
A fiber-reinforced thermoplastic resin plate obtained by impregnating fibers arranged in one direction with a thermoplastic resin usually has a thickness of 3 to 2.
A yarn obtained by bundling 200 to 12000 5 μm monofilaments or a roving in which a predetermined number of rovings are arranged in one direction is impregnated with a thermoplastic resin.

【0013】ガラス繊維は通常各種の表面処理を行い、
樹脂との密着性を向上させることが行われる。表面処理
は集束剤とカップリング剤を組み合わせて行う。集束剤
は組み合わせる熱可塑性樹脂により選択する必要があ
る。一般的には、組み合わせる熱可塑性樹脂の溶融温度
で軟化して、熱可塑性樹脂が繊維束中に含浸し易いもの
を選択する。そのため、組み合わせる熱可塑性樹脂と同
種の樹脂を主成分とする集束剤を使用する場合が多い。
Glass fiber is usually subjected to various surface treatments,
The adhesion with the resin is improved. The surface treatment is performed by combining a sizing agent and a coupling agent. The sizing agent needs to be selected depending on the thermoplastic resin to be combined. Generally, a thermoplastic resin that is softened at the melting temperature of the combined thermoplastic resin and is easily impregnated into the fiber bundle by the thermoplastic resin is selected. Therefore, a sizing agent containing a resin of the same type as the thermoplastic resin to be combined as a main component is often used.

【0014】繊維強化熱可塑性樹脂板の繊維として使用
するガラス繊維は、シラン系、チタネート系、ジルコニ
ウム系のカップリング剤で処理し、樹脂との密着性を向
上させたものを用いる。ガラス繊維の場合のカップリン
グ剤は、組み合わせる樹脂に応じて最適なものを選ぶ必
要があり、以下その具体例を列挙する。
The glass fiber used as the fiber of the fiber reinforced thermoplastic resin plate is one which has been treated with a silane-based, titanate-based or zirconium-based coupling agent to improve the adhesion to the resin. In the case of glass fiber, it is necessary to select the optimum coupling agent according to the resin to be combined, and specific examples thereof will be listed below.

【0015】ナイロン樹脂であれば、γ−アミノプロピ
ル−トリメトキシシラン、N−β−(アミノエチル)−
γ−アミノプロピル−トリメトキシシラン等を使用す
る。ポリカーボネート樹脂であれば、γ−アミノプロピ
ル−トリメトキシシラン、N−β−(アミノエチル)−
γ−アミノプロピル−トリメトキシシラン等を使用す
る。
In the case of nylon resin, γ-aminopropyl-trimethoxysilane, N-β- (aminoethyl)-
γ-aminopropyl-trimethoxysilane or the like is used. If it is a polycarbonate resin, γ-aminopropyl-trimethoxysilane, N-β- (aminoethyl)-
γ-aminopropyl-trimethoxysilane or the like is used.

【0016】ポリエチレンテレフタレートまたはポリブ
チレンテレフタレートであれば、β−(3,4−エポキ
シシクロヘキシル)エチル−トリメトキシシラン、γ−
グリシドキシ−プロピルトリメトキシシラン、γ−アミ
ノプロピル−トリメトキシシラン等を使用する。
In the case of polyethylene terephthalate or polybutylene terephthalate, β- (3,4-epoxycyclohexyl) ethyl-trimethoxysilane, γ-
Glycidoxy-propyltrimethoxysilane, γ-aminopropyl-trimethoxysilane and the like are used.

【0017】ポリエチレンまたはポリプロピレンであれ
ば、ビニルトリメトキシシラン、ビニル−トリス−(2
−メトキシエトキシ)シラン、γ−メタクリロキシ−プ
ロピルトリメトキシシラン等を使用する。
For polyethylene or polypropylene, vinyltrimethoxysilane, vinyl-tris- (2
-Methoxyethoxy) silane, γ-methacryloxy-propyltrimethoxysilane and the like are used.

【0018】ポリフェニレンオキシド、ポリフェニレン
スルフィド、ポリスルフォン、ポリエーテルサルフォ
ン、ポリエーテルケトン、ポリエーテルエーテルケト
ン、ポリイミド、ポリアリレートまたはフッ素樹脂であ
れば、上述したカップリング剤も当然使用できるが、そ
の外に、N−(β−アミノエチル)−γ−アミノプロピ
ルメチルジメトキシシラン、γ−クロロプロピルメチル
ジメトキシシラン、γ−メルカプトプロピルトリメトキ
シシラン、p−アミノフェニルトリエトキシシラン等を
使用できる。
If polyphenylene oxide, polyphenylene sulfide, polysulfone, polyether sulfone, polyether ketone, polyether ether ketone, polyimide, polyarylate or fluororesin is used, the above-mentioned coupling agent can be used, but other than that. In addition, N- (β-aminoethyl) -γ-aminopropylmethyldimethoxysilane, γ-chloropropylmethyldimethoxysilane, γ-mercaptopropyltrimethoxysilane, p-aminophenyltriethoxysilane and the like can be used.

【0019】ガラス繊維以外を補強繊維として用いる場
合は、アミン硬化型のエポキシ樹脂をカップリング剤と
して処理する場合が多く、その具体例としてはビスフェ
ノール−A−エピクロルヒドリン樹脂、エポキシノボラ
ック樹脂、脂環式エポキシ樹脂、脂肪族エポキシ樹脂、
グリシジルエステル型樹脂を使用することができる。熱
可塑性樹脂の溶融温度が高く、通常のカップリング剤が
熱分解することが想定される場合は、全くカップリング
剤を使用しないこともある。
When a fiber other than glass fiber is used as the reinforcing fiber, an amine-curable epoxy resin is often treated as a coupling agent, and specific examples thereof include bisphenol-A-epichlorohydrin resin, epoxy novolac resin, alicyclic system. Epoxy resin, aliphatic epoxy resin,
Glycidyl ester type resins can be used. When the melting temperature of the thermoplastic resin is high and it is assumed that the ordinary coupling agent is thermally decomposed, the coupling agent may not be used at all.

【0020】カップリング剤を繊維表面に施す方法は以
下の通りである。即ち、一つの方法としては、繊維を溶
融してモノフィラメントを引き出す際に、集束剤とカッ
プリング剤に界面活性剤を添加して水溶液としたもの
を、モノフィラメントに噴霧した後、100℃程度の温
度で乾燥して処理する。他の方法としては、集束剤を除
去した繊維に、カップリング剤を0.1〜3重量%溶解し
た液を、浸漬、噴霧塗布等の手段により完全に含浸させ
る。
The method of applying the coupling agent to the fiber surface is as follows. That is, as one method, when the fibers are melted and the monofilament is pulled out, a surfactant is added to the sizing agent and the coupling agent to prepare an aqueous solution, which is sprayed on the monofilament, and then the temperature is about 100 ° C. Dry and process. As another method, the fiber from which the sizing agent has been removed is completely impregnated with a solution in which the coupling agent is dissolved by 0.1 to 3% by weight by means such as dipping or spray coating.

【0021】このカップリング剤溶液を含んだ繊維を6
0〜120℃で乾燥し、カップリング剤を繊維表面に反
応させる。乾燥時間は溶媒が揮散してしまう時間で充分
で、15〜20分位である。カップリング剤を溶解する
溶媒は、使用する表面処理剤に応じて、pH2.0〜1
2.0位に調整した水を用いる場合と、エタノール、トル
エンアセトン、キシレン等の有機溶剤を単独で、或いは
混合して使用する場合とがある。
6 fibers containing this coupling agent solution
It is dried at 0 to 120 ° C., and the coupling agent is reacted with the fiber surface. The drying time is sufficient for the solvent to evaporate, which is about 15 to 20 minutes. The solvent for dissolving the coupling agent has a pH of 2.0 to 1 depending on the surface treatment agent used.
There are cases where water adjusted to 2.0 is used, and cases where organic solvents such as ethanol, tolueneacetone and xylene are used alone or as a mixture.

【0022】熱可塑性樹脂を一方向に引き揃えた補強繊
維に含浸させて薄板とする方法としては種々の手段があ
るが、最も一般的な方法は以下の通りである。一つの方
法は、溶剤に可溶な樹脂であれば、その樹脂を溶液化し
て補強繊維に含浸させ、その後脱泡しながら溶媒を除去
し、薄板とする方法である。他の一つの方法は、樹脂を
加熱溶融して補強繊維に含浸し、脱泡し、冷却して薄板
とする方法である。
There are various methods for forming a thin plate by impregnating the reinforcing fibers unidirectionally aligned with the thermoplastic resin, but the most general method is as follows. One method is to make a thin plate by dissolving the resin in a solvent and impregnating the reinforcing fiber with the resin, and then removing the solvent while defoaming. Another method is to heat and melt the resin to impregnate the reinforcing fibers, degas, and cool to form a thin plate.

【0023】このようにして製造した薄板は、繊維と熱
可塑性樹脂の密着性に優れており、繊維含有率も30〜
90%と要求に応じて変えることができ、厚みも0.1〜
1.0mmと薄く製造することができるが、ガラス含有率
は40〜85%で、厚さ0.1〜0.6mmのところで使用
するのが望ましい。
The thin plate thus produced has excellent adhesion between the fiber and the thermoplastic resin, and the fiber content is 30 to 30.
It can be changed to 90% as required, and the thickness is 0.1-
Although it can be manufactured as thin as 1.0 mm, it is desirable to use it at a glass content of 40 to 85% and a thickness of 0.1 to 0.6 mm.

【0024】ガラス繊維含有率が40容量%以下では繊
維量が少ないので強度が低く、また85容量%以上では
繊維に対して樹脂量が少なく繊維と樹脂の密着性が低下
し強度が低くなるので好ましくない。
When the glass fiber content is 40% by volume or less, the amount of fibers is small and the strength is low. On the other hand, when the glass fiber content is 85% by volume or more, the amount of resin is small with respect to the fibers and the adhesion between the fibers and the resin is lowered, resulting in low strength. Not preferable.

【0025】本発明に於ける繊維強化熱可塑性樹脂プリ
プレグの好ましい連続製法は特公平2−48907号に
示された装置及び製造条件によってなされる。
A preferred continuous production method of the fiber reinforced thermoplastic resin prepreg in the present invention is carried out by the apparatus and production conditions shown in JP-B-2-48907.

【0026】補強繊維がガラス繊維の場合は、γ−メタ
クリロキシ−プロピルトリメトキシシランを表面処理し
た13μのモノフィラメントが1600集束されている
ヤーンを100本均一張力で引っ張りながら巾200m
mに引き揃えて、引っ張りながら熱溶融した熱可塑性樹
脂に接触させて熱ロールで樹脂をしごきながら含浸し製
造した。
When the reinforcing fiber is glass fiber, 100 yarns having 1600 bundles of 13μ monofilaments surface-treated with γ-methacryloxy-propyltrimethoxysilane are bundled together while pulling 100 yarns with a uniform tension of 200 m in width.
It was manufactured by impregnating the resin with a heat roller while squeezing the resin with a hot roll while bringing the resin into contact with a heat-melted thermoplastic resin while pulling.

【0027】繊維強化熱可塑性樹脂積層体は、上記繊維
強化熱可塑性樹脂プリプレグを繊維の配列方向が同一と
なるように積層、もしくは繊維の配列方向が互いに直交
するように積層して得られるが、積層の数については用
途に応じ任意である。
The fiber reinforced thermoplastic resin laminate is obtained by laminating the above fiber reinforced thermoplastic resin prepregs so that the fiber arranging directions are the same or the fiber arranging directions are orthogonal to each other. The number of laminated layers is arbitrary depending on the application.

【0028】積層体の成形の方法は任意の方法が採用で
き、例えば、前記積層体をオ−ブン中でその流動可能温
度以上に加熱した後、その積層体を、その樹脂のガラス
転移温度が30℃以上のものであれば少なくともそのガ
ラス転移温度以下に加熱されたプレス金型中に投入し、
樹脂のガラス転移温度が30℃未満であれば常温のプレ
ス金型中に投入し、金型を短時間で圧締し賦形、脱泡及
び冷却を同時に行う、いわゆるスタンピング成形法や、
また、積層体を、プレスに装着した金型中で樹脂の流動
可能温度以上に加熱しながら、成形物表面積1m2 当り
1〜300kgの圧力で、10秒〜60分間加圧し、樹
脂のガラス転移温度以下に冷却してから脱型する、いわ
ゆるプレス成形法、或いはまた、真空下で樹脂流動可能
温度以上に加熱した後、20kg/cm2 以下の圧力で
賦形、脱泡後、ガラス転移温度以下に冷却してから脱型
する、いわゆるオートクレーブ成形法等があげられる。
Any method can be used as a method for molding the laminate, for example, after heating the laminate above the flowable temperature in an oven, the laminate is heated to a glass transition temperature of the resin. If the temperature is 30 ° C. or higher, it is put into a press mold heated to at least the glass transition temperature,
If the glass transition temperature of the resin is less than 30 ° C., it is placed in a press mold at room temperature, and the mold is pressed in a short time to perform shaping, defoaming and cooling at the same time, a so-called stamping molding method,
Further, while heating the laminated body in a mold attached to a press to a temperature at which the resin cannot flow or more, the laminated body is pressed at a pressure of 1 to 300 kg per 1 m 2 of the surface area of the molded product for 10 seconds to 60 minutes to make a glass transition of the resin. A so-called press molding method in which the temperature is cooled to below the temperature and then demolding, or after heating to a temperature above the resin flowable temperature under vacuum, after shaping at a pressure of 20 kg / cm 2 or less, defoaming, the glass transition temperature The so-called autoclave molding method, in which the mold is cooled and then removed from the mold, is exemplified below.

【0029】このようにして作製された繊維強化熱可塑
性樹脂積層体は、軽量で強度が高い等の特徴に加え、こ
れまで得られなかった金属なみの線膨張係数を有するた
め、従来不可能であった鉄、アルミ、銅等の低線膨張係
数を有する材料との組合せが可能となり、用途が大幅に
拡大する。
The fiber-reinforced thermoplastic resin laminate produced in this manner has features such as light weight and high strength, and also has a linear expansion coefficient similar to that of a metal that has hitherto been obtained. It is possible to combine with existing materials with low linear expansion coefficient such as iron, aluminum, copper, etc., and the applications will be greatly expanded.

【0030】[0030]

【実施例】以下に実施例で本発明を詳細に説明する。 〔実施例1〕補強繊維としてγ−メタクリロキシ−プロ
ピルトリメトキシシランを表面処理したガラス繊維を用
い、樹脂としてマレイン酸をグラフト化させたポリプロ
ピレンを1重量部混合したポリプロピレン(PP)を使
用して、巾200mmで1m 2 当りの重さ250g、厚
さ180μm、繊維含有率40容量%の繊維強化熱可塑
性樹脂板Aを製造した。そして、この繊維強化熱可塑性
樹脂板Aを繊維方向に長さ200mmに切断したものを
32枚準備した。
EXAMPLES The present invention will be described in detail below with reference to examples. [Example 1] γ-methacryloxy-pro as reinforcing fiber
Uses glass fiber surface-treated with pyrtrimethoxysilane
Polypropylene grafted with maleic acid as resin
Use polypropylene (PP) mixed with 1 part by weight of pyrene.
1m at a width of 200mm 2Weight per 250g, thickness
180-μm fiber-reinforced thermoplastic with a fiber content of 40% by volume
A resin plate A was manufactured. And this fiber reinforced thermoplastic
A resin plate A cut into a length of 200 mm in the fiber direction
32 pieces were prepared.

【0031】この繊維強化熱可塑性樹脂板を、繊維方向
を0゜としたときに、上から順に90゜/0゜/90゜
/0゜/90゜/0゜/90゜/0゜/0゜/90゜/
0゜/90゜/0゜/90゜/0゜/90゜の向きに1
6層積み重ねたものを2組作製した。
This fiber-reinforced thermoplastic resin plate is 90 ° / 0 ° / 90 ° / 0 ° / 90 ° / 0 ° / 90 ° / 0 ° / 0 in order from the top when the fiber direction is 0 °. ° / 90 ° /
1 in the direction of 0 ° / 90 ° / 0 ° / 90 ° / 0 ° / 90 °
Two sets of 6 layers were prepared.

【0032】そのうちの一組の積層体を2枚のポリイミ
ドフィルムで挟み、240℃に加熱した熱板の間に投入
し、0.02kg/cm2 の圧力で5分間予熱した後、圧
力を解放し、図1に示す形状の積層板が成形できる60
℃に加熱した金型中に投入し、3kg/cm2 の圧力で
5分間冷却賦形し、線膨張係数測定用の積層板(1)を
成形した。
One set of the laminates was sandwiched between two polyimide films and placed between hot plates heated to 240 ° C., preheated at a pressure of 0.02 kg / cm 2 for 5 minutes, and then the pressure was released, A laminated plate having the shape shown in FIG. 1 can be molded 60
It was put into a mold heated to 0 ° C. and cooled and shaped at a pressure of 3 kg / cm 2 for 5 minutes to form a laminated plate (1) for measuring a linear expansion coefficient.

【0033】別の一組みの積層体を2枚のポリイミドフ
ィルムで挟み、240℃に加熱した熱板の間に投入し、
0.02kg/cm2 の圧力で5分間予熱した後、圧力を
解放し、図2に示す形状の積層板が成形できる60℃に
加熱した金型中に投入し、3kg/cm2 の圧力で5分
間冷却賦形し、衝撃試験用の成形体(2)を成形した。
Another set of laminates is sandwiched between two polyimide films and placed between hot plates heated to 240 ° C.,
After preheating at a pressure of 0.02 kg / cm 2 for 5 minutes, the pressure is released, and the mixture is put into a mold heated to 60 ° C. where a laminated plate having the shape shown in FIG. 2 can be molded, and a pressure of 3 kg / cm 2 is applied. After cooling and shaping for 5 minutes, a molded body (2) for impact test was molded.

【0034】次いで、図1に示す線膨張係数測定用の積
層板(1)から、線膨張係数測定用の試験片として、0
゜方向に切り出した試験片(1a,1a)と、90゜方
向に切り出した試験片(1b,1b)とを作成し、JI
S K6911に準じて線膨張係数を測定した。その結
果を表1に示した。
Next, from the laminated plate (1) for measuring the linear expansion coefficient shown in FIG. 1, 0 was obtained as a test piece for measuring the linear expansion coefficient.
Test pieces (1a, 1a) cut out in the ° direction and test pieces (1b, 1b) cut out in the 90 ° direction were prepared, and JI
The linear expansion coefficient was measured according to SK6911. The results are shown in Table 1.

【0035】また、図2に示す衝撃試験用の成形体
(2)のフランジ部分に孔(2a,2a)を明け、図3
に示すように厚さ3mmの鉄板(3)にボルト(4,
4)で固定した。このものを100℃の恒温槽に60分
放置後、繊維強化樹脂成形体の変形状態を観察したが常
温の状態に比べ著しく変形はしていなかった。
Further, holes (2a, 2a) are opened in the flange portion of the molded body (2) for impact test shown in FIG.
As shown in, the bolts (4,
Fixed in 4). After leaving this for 60 minutes in a constant temperature bath at 100 ° C., the deformation state of the fiber-reinforced resin molded body was observed, but it was not significantly deformed compared to the state at room temperature.

【0036】更に、このものを一晩室温で放置後、図3
のPの位置に、4kgの鋼球を50cmの高さから自然
落下させて2000Jの衝撃エネルギーを負荷し、外観
検査及び超音波探傷による層間剥離面積の測定を行っ
た。その結果を表1に示す。以上示したように、高温時
の著しい変形もなく耐衝撃性に優れた繊維強化熱可塑性
樹脂成形体が得られた。
Furthermore, after leaving this at room temperature overnight,
At the position of P, a 4 kg steel ball was naturally dropped from a height of 50 cm, an impact energy of 2000 J was applied, and a visual inspection and a measurement of the delamination area by ultrasonic flaw detection were performed. The results are shown in Table 1. As described above, a fiber-reinforced thermoplastic resin molded article having excellent impact resistance was obtained without significant deformation at high temperatures.

【0037】[0037]

【表1】 [Table 1]

【0038】〔実施例2〕繊維含有率60容量%、厚さ
150μmとする以外は実施例1と同様にして繊維強化
熱可塑性樹脂板Bを製造した。これを実施例1と同様に
裁断、積層、成形して、線膨張係数測定用積層板(1)
及び衝撃試験用の成形体(2)を成形し、試験を行っ
た。その結果を表1に示す。高温時の著しい変形もなく
耐衝撃性に優れた繊維強化熱可塑性樹脂成形体が得られ
た。
Example 2 A fiber-reinforced thermoplastic resin plate B was produced in the same manner as in Example 1 except that the fiber content was 60% by volume and the thickness was 150 μm. This was cut, laminated and molded in the same manner as in Example 1 to obtain a linear expansion coefficient measuring laminate (1).
And a molded product (2) for impact test was molded and tested. The results are shown in Table 1. A fiber-reinforced thermoplastic resin molded article having excellent impact resistance was obtained without significant deformation at high temperatures.

【0039】〔実施例3〕繊維含有率85容量%、厚さ
130μmとする以外は実施例1と同様にして繊維強化
熱可塑性樹脂板Cを製造した。実施例1と同様にして、
線膨張係数測定用積層板(1)及び衝撃試験用の成形体
(2)を成形し、試験を行った。その結果を表1に示
す。高温時の著しい変形もなく耐衝撃性に優れた繊維強
化熱可塑性樹脂成形体が得られた。
Example 3 A fiber-reinforced thermoplastic resin plate C was produced in the same manner as in Example 1 except that the fiber content was 85% by volume and the thickness was 130 μm. In the same manner as in Example 1,
A laminate (1) for measuring a linear expansion coefficient and a molded body (2) for impact test were molded and tested. The results are shown in Table 1. A fiber-reinforced thermoplastic resin molded article having excellent impact resistance was obtained without significant deformation at high temperatures.

【0040】〔比較例1〕繊維含有率35容量%、厚さ
200μmとする以外は実施例1と同様にして繊維強化
熱可塑性樹脂板Dを製造した。実施例1と同様にして、
線膨張係数測定用積層板及び衝撃試験用の成形体を成形
し、試験を行った。その結果を表1に示す。高温時に著
しく変形し、耐衝撃性に劣った繊維強化熱可塑性樹脂成
形体が得られた。
Comparative Example 1 A fiber reinforced thermoplastic resin plate D was produced in the same manner as in Example 1 except that the fiber content was 35% by volume and the thickness was 200 μm. In the same manner as in Example 1,
A laminate for measuring the coefficient of linear expansion and a molded body for impact test were molded and tested. The results are shown in Table 1. A fiber-reinforced thermoplastic resin molded product was obtained that was significantly deformed at high temperatures and had poor impact resistance.

【0041】〔比較例2〕繊維含有率90容量%、厚さ
120μmとする以外は実施例1と同様にして繊維強化
熱可塑性樹脂板Dを製造した。実施例1と同様にして、
線膨張係数測定用積層板及び衝撃試験用の成形体を成形
し、試験を行った。その結果を表1に示す。高温時に著
しく変形し、耐衝撃性に劣った繊維強化熱可塑性樹脂成
形体が得られた。
Comparative Example 2 A fiber-reinforced thermoplastic resin plate D was produced in the same manner as in Example 1 except that the fiber content was 90% by volume and the thickness was 120 μm. In the same manner as in Example 1,
A laminate for measuring the coefficient of linear expansion and a molded body for impact test were molded and tested. The results are shown in Table 1. A fiber-reinforced thermoplastic resin molded product was obtained that was significantly deformed at high temperatures and had poor impact resistance.

【0042】〔比較例3〕不飽和ポリエステル樹脂ML
3501(三井東圧化学株式会社製)100部にジター
シャリーブチルパーベンゾエート1部を加えた樹脂液
を、ガラス繊維に含浸させて、巾200mmで1m2
りの重さ250g、厚さ160μm、繊維含有率40容
量%の繊維強化樹脂板Eを製造した。この繊維強化樹脂
板Eを繊維方向に長さ200mmに切断し32枚の樹脂
板を得た。
[Comparative Example 3] Unsaturated polyester resin ML
A glass fiber is impregnated with a resin solution obtained by adding 100 parts of 3501 (manufactured by Mitsui Toatsu Chemicals, Inc.) to 1 part of ditertiary butyl perbenzoate, and having a width of 200 mm, a weight of 250 g per 1 m 2 , a thickness of 160 μm, and a fiber. A fiber reinforced resin plate E having a content rate of 40% by volume was manufactured. This fiber-reinforced resin plate E was cut into a length of 200 mm in the fiber direction to obtain 32 resin plates.

【0043】この繊維強化樹脂板を繊維方向を0゜とし
たときに、上から順に90゜/0゜/90゜/0゜/9
0゜/0゜/90゜/0゜/0゜/90゜/0゜/90
゜/0゜/90゜/0゜/90゜の向きに16層積み重
ねたものを2組作製した。そのうちの一組の積層体を図
1の形状が成形できる150℃に加熱した金型内に投入
し、5分間、70kg/cm2 の圧力で加圧し、線膨張
係数測定用の積層板を成形した。
When the fiber direction of this fiber-reinforced resin plate is set to 0 °, 90 ° / 0 ° / 90 ° / 0 ° / 9 in order from the top.
0 ° / 0 ° / 90 ° / 0 ° / 0 ° / 90 ° / 0 ° / 90
Two sets of 16 layers were prepared in the direction of ° / 0 ° / 90 ° / 0 ° / 90 °. One set of the laminated bodies is put into a mold heated to 150 ° C. capable of forming the shape shown in FIG. 1 and pressed at a pressure of 70 kg / cm 2 for 5 minutes to form a laminated plate for measuring a linear expansion coefficient. did.

【0044】また、他の一組の積層体を図2の形状が成
形できる150℃に加熱した金型内に投入し、5分間、
70kg/cm2 の圧力で加圧し、衝撃試験用の成形体
を成形した。実施例1と同様にして線膨張係数及び衝撃
試験を行った。その結果を表1に示す。高温時の変形は
なかったが、衝撃試験により破壊が発生した。
Further, another set of laminated bodies is put into a mold heated to 150 ° C. capable of forming the shape shown in FIG. 2 for 5 minutes.
It was pressed at a pressure of 70 kg / cm 2 to form a molded body for impact test. A linear expansion coefficient and an impact test were conducted in the same manner as in Example 1. The results are shown in Table 1. There was no deformation at high temperature, but the impact test caused fracture.

【0045】[0045]

【発明の効果】0度方向線膨張係数が0.6×10-5/℃
以下、もしくは0度及び90度方向線膨張係数が0.6×
10-5/℃以下であることを特徴とする本発明に係る繊
維強化熱可塑性樹脂積層成形体は、軽量で強度が高い等
の特徴に加え、これまで得られなかった金属以下の線膨
張係数を有するため、これまで不可能であった鉄、アル
ミ、銅等の材料との組合せが可能となるほか、寸法精度
を必要とする部品などへの用途が大幅に拡大する。な
お、本発明に係る積層成形体はリサイクルが可能で、省
資源の面でも有用である。
EFFECT OF THE INVENTION The coefficient of linear expansion in the 0 degree direction is 0.6 × 10 -5 / ° C
Below or 0 ° and 90 ° direction coefficient of linear expansion 0.6 ×
The fiber-reinforced thermoplastic resin laminate according to the present invention, which is characterized by having a temperature of 10 −5 / ° C. or less, has features such as light weight and high strength, and a linear expansion coefficient of metal or less which has not been obtained so far. Because of this, it is possible to combine with materials such as iron, aluminum, and copper, which were not possible until now, and the application to parts that require dimensional accuracy will be greatly expanded. The laminated molded body according to the present invention can be recycled and is useful in terms of resource saving.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に係る繊維強化熱可塑性樹脂積層板と、
これからその線膨張係数測定用試験片を切り出す状態を
示す説明図である。
FIG. 1 is a fiber-reinforced thermoplastic resin laminate according to the present invention,
It is explanatory drawing which shows the state which cuts out the test piece for linear expansion coefficient measurement from this.

【図2】本発明に係る繊維強化熱可塑性樹脂積層板によ
り作製した衝撃試験用成形品の説明図である。
FIG. 2 is an explanatory view of a molded article for impact test produced from the fiber-reinforced thermoplastic resin laminate according to the present invention.

【図3】図2に示した衝撃試験用成形品を鉄板に固定し
た状態を示す説明図である。
FIG. 3 is an explanatory view showing a state in which the molded article for impact test shown in FIG. 2 is fixed to an iron plate.

【符号の説明】[Explanation of symbols]

1 繊維強化熱可塑性樹脂積層板 1a 0゜方向線膨張係数測定用試験片 1b 90゜方向線膨張係数測定用試験片 2 衝撃試験用成形品 2a 孔 3 衝撃試験用成形品固定板 4 衝撃試験用成形品固定用ボルト 1 Fiber Reinforced Thermoplastic Resin Laminate 1a 0 ° Directional Expansion Coefficient Measurement Test Piece 1b 90 ° Directional Expansion Coefficient Measurement Test Piece 2 Impact Test Molded Product 2a Hole 3 Impact Test Molded Fixing Plate 4 Impact Test Molded product fixing bolts

─────────────────────────────────────────────────────
─────────────────────────────────────────────────── ───

【手続補正書】[Procedure amendment]

【提出日】平成6年3月2日[Submission date] March 2, 1994

【手続補正1】[Procedure Amendment 1]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】請求項4[Name of item to be corrected] Claim 4

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【手続補正2】[Procedure Amendment 2]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0011[Correction target item name] 0011

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0011】熱可塑性樹脂とこの繊維の配合比として
は、繊維配合比を容積比20%以上70%以下とするの
が望ましい。70%以上となると必要な靭性が低下する
うえ、成形加工が困難となる。また、20%以下では必
要な剛性と耐摩耗性が得られない。なお、これらの繊維
は一定方向に配列されていることが推奨される。
The blending ratio of the thermoplastic resin and this fiber is preferably such that the blending ratio of the fibers is 20% or more and 70% or less by volume. When it is 70% or more, the required toughness is lowered and the molding process becomes difficult. If it is 20% or less, the required rigidity and wear resistance cannot be obtained. It is recommended that these fibers be arranged in a fixed direction.

【手続補正3】[Procedure 3]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0039[Correction target item name] 0039

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0039】〔実施例3〕繊維含有率70容量%、厚さ
130μmとする以外は実施例1と同様にして繊維強化
熱可塑性樹脂板Cを製造した。実施例1と同様にして、
線膨張係数測定用積層板(1)及び衝撃試験用の成形体
(2)を成形し、試験を行った。その結果を表1に示
す。高温時の著しい変形もなく耐衝撃性に優れた繊維強
化熱可塑性樹脂成形体が得られた。
Example 3 A fiber reinforced thermoplastic resin plate C was produced in the same manner as in Example 1 except that the fiber content was 70% by volume and the thickness was 130 μm. In the same manner as in Example 1,
A laminate (1) for measuring a linear expansion coefficient and a molded body (2) for impact test were molded and tested. The results are shown in Table 1. A fiber-reinforced thermoplastic resin molded article having excellent impact resistance was obtained without significant deformation at high temperatures.

【手続補正4】[Procedure amendment 4]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0040[Correction target item name] 0040

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0040】〔比較例1〕繊維含有率15容量%、厚さ
200μmとする以外は実施例1と同様にして繊維強化
熱可塑性樹脂板Dを製造した。実施例1と同様にして、
線膨張係数測定用積層板及び衝撃試験用の成形体を成形
し、試験を行った。その結果を表1に示す。高温時に著
しく変形し、耐衝撃性に劣った繊維強化熱可塑性樹脂成
形体が得られた。
Comparative Example 1 A fiber-reinforced thermoplastic resin plate D was produced in the same manner as in Example 1 except that the fiber content was 15% by volume and the thickness was 200 μm. In the same manner as in Example 1,
A laminate for measuring the coefficient of linear expansion and a molded body for impact test were molded and tested. The results are shown in Table 1. A fiber-reinforced thermoplastic resin molded product was obtained that was significantly deformed at high temperatures and had poor impact resistance.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 田邉 浩史 神奈川県横浜市栄区笠間町1190番地 三井 東圧化学株式会社内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Hiroshi Tanabe 1190 Kasama-cho, Sakae-ku, Yokohama-shi, Kanagawa Mitsui Toatsu Chemical Co., Ltd.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】複数枚の繊維強化熱可塑性樹脂プリプレグ
を、繊維の配列方向が同一もしくは直交するように積層
し、繊維の配列方向の線膨張係数もしくは繊維の配列方
向及びこれと直交する方向の線膨張係数を0.6×10-5
/℃以下としたことを特徴とする繊維強化熱可塑性樹脂
積層体。
1. A plurality of fiber-reinforced thermoplastic resin prepregs are laminated so that the fiber arrangement directions are the same or orthogonal, and the linear expansion coefficient of the fiber arrangement direction or the fiber arrangement direction and the direction orthogonal thereto The linear expansion coefficient is 0.6 × 10 -5
/ ° C or less, a fiber-reinforced thermoplastic resin laminate.
【請求項2】繊維強化熱可塑性樹脂プリプレグの熱可塑
性樹脂がポリプロピレン系樹脂である請求項1に記載の
繊維強化熱可塑性樹脂積層体。
2. The fiber-reinforced thermoplastic resin laminate according to claim 1, wherein the thermoplastic resin of the fiber-reinforced thermoplastic resin prepreg is a polypropylene resin.
【請求項3】繊維強化熱可塑性樹脂プリプレグの繊維が
一方向に配列されたガラス繊維である請求項1または2
のいずれか1項に記載の繊維強化熱可塑性樹積層体。
3. The fiber of the fiber reinforced thermoplastic resin prepreg is a glass fiber in which the fibers are unidirectionally arranged.
The fiber-reinforced thermoplastic resin laminate according to any one of 1.
【請求項4】繊維強化熱可塑性樹脂プリプレグのガラス
含有率が容積含有率で40%以上、85%以下の範囲で
ある請求項3に記載の繊維強化熱可塑性樹脂積層体。
4. The fiber-reinforced thermoplastic resin laminate according to claim 3, wherein the glass content of the fiber-reinforced thermoplastic resin prepreg is in the range of 40% or more and 85% or less in terms of volume content.
JP23963393A 1993-09-27 1993-09-27 Fiber-reinforced thermoplastic resin laminated body Pending JPH0788998A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23963393A JPH0788998A (en) 1993-09-27 1993-09-27 Fiber-reinforced thermoplastic resin laminated body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23963393A JPH0788998A (en) 1993-09-27 1993-09-27 Fiber-reinforced thermoplastic resin laminated body

Publications (1)

Publication Number Publication Date
JPH0788998A true JPH0788998A (en) 1995-04-04

Family

ID=17047621

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23963393A Pending JPH0788998A (en) 1993-09-27 1993-09-27 Fiber-reinforced thermoplastic resin laminated body

Country Status (1)

Country Link
JP (1) JPH0788998A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11300870A (en) * 1998-04-20 1999-11-02 Mitsubishi Rayon Co Ltd Sandwich board made of fiber reinforced plastic
WO2000061362A1 (en) * 1999-04-14 2000-10-19 Mitsui Chemicals, Inc. Laminate
KR101310326B1 (en) * 2011-10-24 2013-09-23 서울대학교산학협력단 A plywood for lng storage tank and reinforcement method thereof

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11300870A (en) * 1998-04-20 1999-11-02 Mitsubishi Rayon Co Ltd Sandwich board made of fiber reinforced plastic
WO2000061362A1 (en) * 1999-04-14 2000-10-19 Mitsui Chemicals, Inc. Laminate
KR101310326B1 (en) * 2011-10-24 2013-09-23 서울대학교산학협력단 A plywood for lng storage tank and reinforcement method thereof

Similar Documents

Publication Publication Date Title
JP5706402B2 (en) Method for delivering a thermoplastic resin and / or a crosslinkable resin to a composite laminate structure
US5305601A (en) Solid fuel rocket motor assembly, and method of making the same
US6355133B1 (en) Forming reinforcing components
KR101513112B1 (en) Molding material, molding method using same, method for producing molding material, and method for producing fiber-reinforced composite material
CA1269601A (en) Method of producing shaped articles from reinforced composites
KR960005298B1 (en) Laminated molded product and the production thereof
US20030175520A1 (en) Formed composite structural members and methods and apparatus for making the same
US10974469B2 (en) Method for manufacturing a semifinished product or a part made of metal and fiber composite
JP2008279753A (en) Manufacturing method of fiber-reinforced plastics
Sharma et al. Polymer-based composite structures: processing and applications
JPH0462534B2 (en)
JPH0788998A (en) Fiber-reinforced thermoplastic resin laminated body
US5215813A (en) Ballistic materials
CN113728038A (en) Method for producing fiber-reinforced composite material molded article, reinforced fiber base material, and fiber-reinforced composite material molded article
JPH04259515A (en) Structure
JP3109197B2 (en) Automobile part molded product by laminate
KR20000015333A (en) Method and device for manufacturing fiber reinforcing complex material by drawing molding
JP2005126557A (en) Molding material for and manufacturing method of fiber-reinforced resin composite material
CN115322422B (en) Flexible thermoplastic prepreg, preparation method and application thereof
JP2004338270A (en) Method for producing fiber-reinforced resin composite material and fiber-reinforced resin composite material
JP3027172B2 (en) Fiber-reinforced plastic molding and method for producing the same
Park et al. Manufacture of carbon fiber composites
Ambrosio et al. Chapter 2 Composite Materials
Wicker Fabrication techniques for asbestos-reinforced plastics composites
JPH02173122A (en) Precursor for thermoplastic composite