JPH0788543B2 - Contact alloy for vacuum valve - Google Patents

Contact alloy for vacuum valve

Info

Publication number
JPH0788543B2
JPH0788543B2 JP61232310A JP23231086A JPH0788543B2 JP H0788543 B2 JPH0788543 B2 JP H0788543B2 JP 61232310 A JP61232310 A JP 61232310A JP 23231086 A JP23231086 A JP 23231086A JP H0788543 B2 JPH0788543 B2 JP H0788543B2
Authority
JP
Japan
Prior art keywords
contact
alloy
amount
resistance
vacuum valve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP61232310A
Other languages
Japanese (ja)
Other versions
JPS6386835A (en
Inventor
功 奥富
誠司 千葉
薫旦 関口
幹夫 大川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP61232310A priority Critical patent/JPH0788543B2/en
Publication of JPS6386835A publication Critical patent/JPS6386835A/en
Publication of JPH0788543B2 publication Critical patent/JPH0788543B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H1/00Contacts
    • H01H1/02Contacts characterised by the material thereof
    • H01H1/0203Contacts characterised by the material thereof specially adapted for vacuum switches
    • H01H1/0206Contacts characterised by the material thereof specially adapted for vacuum switches containing as major components Cu and Cr

Landscapes

  • Manufacture Of Switches (AREA)
  • High-Tension Arc-Extinguishing Switches Without Spraying Means (AREA)
  • Contacts (AREA)

Description

【発明の詳細な説明】 〔発明の目的〕 (産業上の利用分野) 本発明は、真空バルブに係り、特に温度上昇特性ならび
に接触抵抗特性の双方が改良された真空バルブ用接点合
金に関する。
The present invention relates to a vacuum valve, and more particularly to a contact alloy for a vacuum valve having improved temperature rising characteristics and contact resistance characteristics.

(従来の技術) 真空バルブ用接点材料に要求される特性としては、耐溶
着、耐電圧、しゃ断に対する各性能で示される基本三要
件とこの他に温度上昇、接触抵抗が低く安定しているこ
とが重要な要件となっている。しかしながら、これらの
要件の中には相反するものがある関係上、単一の金属種
によって全ての要件を満足させることは不可能である。
このため、実用されている多くの接点材料においては、
不足する性能を相互に補えるような2種以上の元素を組
合せ、かつ大電流用あるいは高電圧用等のように特定の
用途に合った接点材料の開発が行なわれ、それなりに優
れた特性を有するものが開発されているが、さらに強ま
る高耐圧化および大電流化の要求を充分満足する真空バ
ルブ用接点材料は未だ得られていないのが実情である。
(Prior Art) The characteristics required for a contact material for a vacuum valve are that there are three basic requirements indicated by each performance against welding resistance, withstand voltage, and breaking, and that temperature rise and contact resistance are low and stable. Is an important requirement. However, due to conflicting requirements, it is not possible to meet all requirements with a single metal species.
Therefore, in many practical contact materials,
We have developed contact materials that combine two or more elements that complement each other's lacking performance and that are suitable for specific applications such as for large currents or high voltages, and have excellent characteristics as such. Although materials have been developed, the reality is that no contact material for vacuum valves has yet been obtained that sufficiently satisfies the requirements for higher breakdown voltage and higher current.

たとえば、大電流化を指向した接点材料として、Biのよ
うな溶着防止成分を5%以下の量で含有するCu−Bi合金
が知られている(特公昭41−12131号公報)が、Cu母相
に対するBiの溶解度が極めて低いため、しばしば偏析を
生じ、しゃ断後の表面荒れが大きく、加工成形が困難で
ある等の問題点を有している。
For example, a Cu-Bi alloy containing an anti-fusing component such as Bi in an amount of 5% or less is known as a contact material aimed at increasing the current (Japanese Patent Publication No. 41-12131). Since the solubility of Bi in the phase is extremely low, segregation often occurs, surface roughness after cutting is large, and work forming is difficult.

また、大電流化を指向した他の接点材料として、Cu−Te
合金も知られている(特公昭44−23751号公報)。この
合金は、Cu−Bi系合金が持つ上記問題点を緩和してはい
るが、Cu−Bi系合金に比較して雰囲気に対し、より敏感
なため接触抵抗等の安定性に欠ける。さらに、これらCu
−Te、Cu−Bi等の接点の共通的特徴として、耐溶着性に
優れているものの、耐電圧特性が従来の中電圧クラスへ
の適用には充分であるとしても、これ以上高い電圧分野
への応用に対しては、必ずしも満足できないことが明ら
かとなってきた。
In addition, as another contact material aimed at increasing the current, Cu-Te
Alloys are also known (Japanese Patent Publication No. 44-23751). Although this alloy alleviates the above problems of the Cu-Bi alloy, it is more sensitive to the atmosphere than the Cu-Bi alloy and lacks stability such as contact resistance. In addition, these Cu
-As a common feature of contacts such as Te, Cu-Bi, etc., although it has excellent welding resistance, even if the withstand voltage characteristics are sufficient for application to the conventional medium voltage class, It has become clear that the above application is not always satisfactory.

一方、高耐圧化を指向した接点材料として、Cu(または
Ag)等の高導電成分とCrとの焼結合金が知られている。
しかしながら、Crは極めて酸化しやすい金属であるた
め、粉末あるいは成形体の管理が重要であることはいう
までもないが、仮焼結、溶浸時の雰囲気の条件も材料特
性を左右する。例えば、仮焼結、溶浸時の温度や時間を
充分管理して得られたCu−Cr合金でも、接触抵抗或いは
温度上昇特性にばらつきや不安定性があるのが実情であ
り、これらのばらつきをなくし安定性のあるものが望ま
れている。
On the other hand, Cu (or
Sintered alloys of highly conductive components such as Ag) and Cr are known.
However, since Cr is a metal that is extremely easily oxidized, it is needless to say that the control of the powder or the molded body is important, but the conditions of the atmosphere during calcination and infiltration also influence the material properties. For example, even in the case of Cu-Cr alloys obtained by adequately controlling the temperature and time during pre-sintering and infiltration, there are variations and instabilities in the contact resistance or temperature rise characteristics. Those that are stable are desired.

これらの問題の解決手段として、従来、Cu−Cr合金接点
の接触面にCuまたはAgなどからなる薄層をメッキなどに
よって形成する技術、或いは、同接点の接触面表面に露
出しているCr粒子を取除く技術などが行なわれている。
As a means for solving these problems, conventionally, a technique of forming a thin layer of Cu or Ag on the contact surface of a Cu-Cr alloy contact by plating, or Cr particles exposed on the contact surface of the contact. Techniques for removing such are being implemented.

(発明が解決しようとする問題点) 従来の接点の表面にCuなどの薄層を形成する技術に於い
ては、その厚さが充分なときには安定した接触抵抗特性
が得られるものの、薄層の形成のみでは、温度上昇特性
の安定化を得ることはできない。
(Problems to be solved by the invention) In the conventional technique of forming a thin layer of Cu or the like on the surface of a contact, stable contact resistance characteristics can be obtained when the thickness is sufficient, but Stabilization of temperature rise characteristics cannot be achieved only by formation.

上記知見及び特性の不安定性がCu−Cr素材の製造ロット
との相関も認められているので、これらを併考すると、
接点素材の影響度が大きいことが示唆される。
Since the above-mentioned findings and instability of properties are also found to be correlated with the production lot of Cu-Cr material, considering these together,
It is suggested that the contact material has a great influence.

本発明は、上記事情に鑑みてなされたものであり、接触
抵抗特性および温度上昇特性の双方を安定させ得る真空
バルブ用接点合金材料を提供することを目的としてい
る。
The present invention has been made in view of the above circumstances, and an object thereof is to provide a contact alloy material for a vacuum valve, which can stabilize both contact resistance characteristics and temperature rise characteristics.

〔発明の構成〕[Structure of Invention]

(問題点を解決するための手段および作用) 本発明に係る真空バルブ用接点合金は、Mo、W、V、N
b、Taから選ばれる少なくとも1種を50重量%以下含むC
rと、残部Cuまたは/およびAgからなり、前記Cuまたは
/およびAgに固溶しているCrの量が前記Cuまたは/およ
びAgを100重量%として0.01〜0.35重量%であることを
特徴としている。
(Means and Actions for Solving Problems) The contact alloy for a vacuum valve according to the present invention is Mo, W, V, N.
C containing at least 50% by weight of at least one selected from b and Ta
r and the balance Cu or / and Ag, and the amount of Cr solid-dissolved in the Cu or / and Ag is 0.01 to 0.35 wt% based on 100 wt% of the Cu or / and Ag. There is.

このように本発明に係る接点合金は、Cu(又は/及びA
g)−Cr基(Crに対して50wt%以下、0.2wt%以上のMo、
W、V、Nb、Taの少なくとも1種を含有)合金中のCu
(又は/及びAg)相中に固溶しているCr量を0.01〜0.35
wt%の範囲に限定したので、この合金を真空バルブ用接
点合金として使用したとき安定した温度上昇特性及び接
触抵抗特性が得られる。
As described above, the contact alloy according to the present invention is Cu (or / and A
g) -Cr group (50 wt% or less with respect to Cr, 0.2 wt% or more of Mo,
Cu in the alloy containing at least one of W, V, Nb and Ta)
(Or / and Ag) 0.01 ~ 0.35
Since the content is limited to the wt% range, stable temperature rise characteristics and contact resistance characteristics can be obtained when this alloy is used as a contact alloy for vacuum valves.

更に本発明においては、原料Cr中のAl、Si、V及びCa量
を、夫々10ppm以下、20ppm以下、10ppm以下及び10ppm以
下含有するCrを使用することによって、上記特性の安定
化を一層促進することができる。
Furthermore, in the present invention, the use of Cr containing 10 ppm or less, 20 ppm or less, 10 ppm or less, and 10 ppm or less of Al, Si, V, and Ca in the raw material Cr further promotes the stabilization of the above characteristics. be able to.

(発明の具体的説明) 以下、本発明に係る真空バルブ用接点合金につき更に詳
細に説明する。
(Specific Description of the Invention) The contact alloy for a vacuum valve according to the present invention will be described in more detail below.

尚、本発明に於いては、Mo、W、V、Nb、Taの少なくと
も1種を所定量含有したCu(又は/及びAg)−Cr合金を
総称してCu(又は/及びAg)−Cr基接点材料とする。
In the present invention, Cu (or / and Ag) -Cr alloys containing at least one of Mo, W, V, Nb and Ta in a predetermined amount are collectively referred to as Cu (or / and Ag) -Cr. Use as the base contact material.

研究によれば、Cu−Cr基接点材料の上記不安定性は、
Cu−Cr基合金中の組成の変動、Cr粒子の粒径、粘度分
布、偏析の程度、前記合金中に存在する空孔の程度に
依存することが判明した。そして、これらの解決は原料
Crの選択と焼結技術の管理が有効であることを認めた
が、より一層の安定性の維持を向上させるためには上
記、、、に加えて更に細かな素材及び焼結技術の
管理が必要であることが判った。すなわち上記特性の不
安定性はCu相中にわずかに含まれるCrの量の差異と相関
性があることを見出した。つまりCu−Cr基合金中のCu部
分に含まれるCrの量を後述する方法による半定量法によ
って推定すると前記特性が不安定な値を示したCu−Cr基
合金では、一般に0.5〜0.2重量%の範囲にばらついてい
るのに対し後述する本発明に係る安定した特性を示すCu
−Cr基合金のそれは、0.2%近傍の値を示していた。こ
の数値すなわちMo、W、V、Nb、Taの少なくとも1つを
所定量含有したCu(又は/及びAg)−Cr基接点材料中の
Cu部分に固溶するCr量を所定範囲内すなわち0.01〜0.35
重量%に厳密に制限することが、温度上昇特性並びに接
触抵抗特性の向上或いは、ばらつき幅の縮少化に極めて
有効であることが見出された。
Studies have shown that the instability of Cu-Cr based contact materials is
It was found to depend on the compositional variation in the Cu-Cr based alloy, the particle size of Cr particles, the viscosity distribution, the degree of segregation, and the degree of vacancies present in the alloy. And these solutions are raw materials
Although it was recognized that the selection of Cr and the control of the sintering technology are effective, in order to improve the maintenance of stability further, in addition to the above ,,, and more detailed material and sintering technology management I found it necessary. That is, it was found that the instability of the above properties is correlated with the difference in the amount of Cr slightly contained in the Cu phase. That is, the amount of Cr contained in the Cu portion in the Cu-Cr-based alloy is estimated by a semi-quantitative method by the method described below, the Cu-Cr-based alloy showed an unstable value of the characteristics, generally 0.5 ~ 0.2 wt% Cu that exhibits stable characteristics according to the present invention described later, while varying in the range of
That of the --Cr-based alloy showed a value near 0.2%. In a Cu (or / and Ag) -Cr-based contact material containing a predetermined amount of at least one of Mo, W, V, Nb and Ta
The amount of Cr that forms a solid solution in the Cu portion is within the specified range, that is, 0.01 to 0.35
It has been found that the strict limitation to the weight% is extremely effective for improving the temperature rise characteristic and the contact resistance characteristic or reducing the variation width.

すなわち真空バルブの再点弧現象、再発弧現象の軽減化
に対して、合金中のAl、Si量の抑制が効果があり注目を
浴びているが、これらの数値を一定の水準例えば10ppm
〜20ppm以下に保ったとしても、尚真空バルブのトータ
ルの信頼性として、前記温度上昇特性、並びに接触抵抗
特性の安定化に対しては不安が残り、本発明者らは、従
来見落され勝ちであった合金中のCu相中に含まれる他の
主成分元素であるCrの量の影響について注目した、すな
わち合金中に含まれるCrの全体の量(20〜80wt%)に注
目するのでは充分な特性が得られず、むしろ前述したCu
相中に微量に存在するこれらの主成分元素Crの量に注目
することが重要であるという知見を得た。合金中のCu相
中のCr量は、本発明者らの知見によれば使用する原料
Cu中に初めから含まれているCr、他の主成分であるCr
からCu中へ侵入するCrに依存する。Cu相中のこれらCrを
極力少なくする施策として、前者に対しては、不純物
元素の含有の極力少ない原料Cuを採用するか、或いは、
通常の原料Cuに対しては、事前に、帯溶融法によって高
純度化することが効果的であり、後者に対しては、Cu
とCrとの合金化過程での高温処理の温度を低くするか、
時間を短くすることが有効であり又、合金化過程後の冷
却過程を合理的に制御することが有効である。
In other words, the reduction of re-ignition phenomenon and re-ignition phenomenon of the vacuum valve has been attracting attention because of the effect of suppressing the amount of Al and Si in the alloy, but these values are kept at a certain level, for example, 10 ppm.
Even if kept at ~ 20ppm or less, the total reliability of the vacuum valve still remains uncertain about the stabilization of the temperature rise characteristic and the contact resistance characteristic, and the present inventors have been overlooked in the past. The attention was paid to the influence of the amount of Cr, which is the other main element contained in the Cu phase in the alloy, that is, to the total amount of Cr (20 to 80 wt%) contained in the alloy. Sufficient properties were not obtained, rather the above-mentioned Cu
We have found that it is important to pay attention to the amounts of these main component elements, Cr, which are present in trace amounts in the phase. According to the knowledge of the present inventors, the amount of Cr in the Cu phase in the alloy is the raw material used.
Cr originally contained in Cu, other main component Cr
Depends on Cr penetrating into Cu from Cu. As a measure to reduce these Cr in the Cu phase as much as possible, for the former, adopt a raw material Cu containing as few impurity elements as possible, or
For ordinary raw material Cu, it is effective to make it highly purified in advance by the zone melting method, and for the latter, Cu
Whether to lower the temperature of high temperature treatment in the alloying process of Cr and Cr,
It is effective to shorten the time and it is effective to rationally control the cooling process after the alloying process.

真空バルブでは、一般に所定の電流値を与えたときの、
バルブ端子部での温度上昇が一定値以下であることが望
まれ、これが重要特性の1つに挙げられている。
With a vacuum valve, generally, when a predetermined current value is given,
It is desired that the temperature rise at the valve terminal portion be below a certain value, which is mentioned as one of the important characteristics.

温度上昇値は、主として通電電流値、主回路の熱伝導
率、放熱効率、電気抵抗などで決まるが、特に電気抵抗
値は重要な因子である。電気抵抗は、導電軸の抵抗(通
常はCu、比抵抗=1.7μΩcm)及び接点の抵抗(本発明
に於いては、20〜80%Cu−Cr合金)によって構成される
が、接点表面に皮膜などがある場合の接触抵抗、選択す
る荷重に依存する接触抵抗などを加える必要があり、更
に磁界発生コイル(通常はCu)が存在する場合にはこの
抵抗も加えたものが、主回路の電気抵抗となる。ここ
で、導電軸の抵抗は設計上の寸法によって定まり一定値
とすることが出来、又接触抵抗も充分な接触荷重を与え
るなら、安定した一定値を得ることが出来、更に磁界発
生コイルも設計上の寸法によって定まり一定値とするこ
とが出来る。従って主回路間の電気抵抗は、特に本発明
の接点材料自体の素材の抵抗のばらつきの過度がポイン
トと考えられ、このばらつきの程度が先に述べたCu−Cr
基接点材料中のCu相中のCrの量に相関することが、本発
明者らの実験によって判明した。
The temperature rise value is mainly determined by the energization current value, the thermal conductivity of the main circuit, the heat radiation efficiency, the electric resistance, etc., but the electric resistance value is an important factor. The electrical resistance is composed of the resistance of the conductive shaft (usually Cu, specific resistance = 1.7 μΩcm) and the resistance of the contact (in the present invention, 20-80% Cu-Cr alloy), but a film is formed on the contact surface. It is necessary to add the contact resistance when there is such a thing, the contact resistance depending on the load to be selected, etc. If there is a magnetic field generating coil (usually Cu), this resistance is also added It becomes resistance. Here, the resistance of the conductive shaft can be set to a fixed value depending on the design size, and the contact resistance can also be a stable fixed value if a sufficient contact load is applied, and the magnetic field generating coil can also be designed. It depends on the above dimensions and can be a constant value. Therefore, the electrical resistance between the main circuits is considered to be due to the excessive variation in the resistance of the material of the contact material itself of the present invention, and the degree of this variation is the Cu-Cr value described above.
It has been found by experiments by the present inventors that it correlates with the amount of Cr in the Cu phase in the base contact material.

(実施例) 次に、本発明の実施例に係る接点合金を製造法も含めて
更に具体的に説明する。
(Example) Next, a contact alloy according to an example of the present invention will be described more specifically including a manufacturing method.

本発明に於いて使用する原料は、充分脱ガスされかつ表
面に洗浄化されたCrならびにMo、W、V、NbまたはTaか
らなる耐弧材料と、CuおよびAgの両方またはいずれか一
方からなる導電性材料とから成る。なお、これらCr、C
u、Agの他に接点用途に応じ10%程度以下のTe、Bi、Sb
などからなる耐溶着性材料あるいはFe、Coを補助成分と
して添加してもよい。Crの粒径は、250μmを越えると
純Cu、Ag部同志の接触の確率が高くなり、耐溶着性の点
で好ましくないが、本発明の効果を発揮させる上での粒
径の下限は存在せず、むしろ活性度の増加等の取扱上の
観点で下限が決定され得る。
The raw material used in the present invention comprises an arc-resistant material consisting of Cr and Mo, W, V, Nb or Ta which has been thoroughly degassed and whose surface has been cleaned, and / or Cu and / or Ag. And a conductive material. In addition, these Cr, C
In addition to u, Ag, Te, Bi, Sb of about 10% or less depending on the contact application
A welding resistant material such as or Fe or Co may be added as an auxiliary component. If the grain size of Cr exceeds 250 μm, the probability of contact between pure Cu and Ag parts is high, which is not preferable from the viewpoint of welding resistance, but there is a lower limit of grain size for exhibiting the effect of the present invention. Instead, the lower limit may be determined from the viewpoint of handling such as increase in activity.

また、接点合金を得る為の加熱条件は、Cu、Agの溶融点
以下で完了する方式と、Cu、Agの溶融点以上に加熱しこ
れを溶浸させる方式のいずれをもとり得るが、いずれの
方法においても、合金中のCu部材(又はAg部材)中のCr
の量を制御することは、前述した本発明目的を達成する
ために極めて重要である。
Further, the heating conditions for obtaining the contact alloy may be either a method of completing at a melting point of Cu or Ag or lower, and a method of heating at a melting point of Cu or Ag or higher and infiltrating it. Also in the method, Cr in the Cu member (or Ag member) in the alloy
Controlling the amount of is very important for achieving the above-mentioned object of the present invention.

一方、スケルトはMo、W、V、Nb、Taの少なくとも一種
を含有したCrよりなる場合又は、これらにあらかじめ少
量のCu又は/及びAgを配合した場合のいずれであって
も、本発明接点材料としては同様の効果が得られる。
On the other hand, the skeleton is made of Cr containing at least one of Mo, W, V, Nb, and Ta, or is mixed with a small amount of Cu or / and Ag in advance, and the contact material of the present invention A similar effect can be obtained.

原料Cuは、例えば電解Cuをアルゴンガス中などの不活性
雰囲気中で破砕、篩いわけを行なったものを使用するの
が好ましい。
As the raw material Cu, it is preferable to use, for example, electrolytic Cu that has been crushed and sieved in an inert atmosphere such as argon gas.

原料Cr、Mo、W、V、Nb、Taについても混入する不純
物、例えばAl、Si、Caなどが極力少ないものを使用する
ことが好ましい。
Regarding the raw materials Cr, Mo, W, V, Nb, and Ta, it is preferable to use impurities containing as little impurities as possible, such as Al, Si, and Ca.

なお、本発明における接触抵抗特性および温度上昇特性
は次のようにして求めている。
The contact resistance characteristic and the temperature rise characteristic in the present invention are obtained as follows.

接触抵抗特性は、表面荒さを5μmに仕上げた直径50mm
のフラット電極と同じ表面荒さを持つ曲率半径100Rの凸
状電極とを対向させ、両電極を開閉機構を持つ10-5Torr
の電極の着脱可能な真空容器内に取付け3kgの荷重を与
える。そして両電極10Aの交流を与えたときの電位効果
から接触抵抗を求める。なお、接触抵抗値は測定回路を
構成する配線材、開閉器、測定器などの抵抗又は接触抵
抗を回路定数として含んだ値である。
The contact resistance is 50mm in diameter with a surface roughness of 5μm.
10 -5 Torr with a flat electrode and a convex electrode with the same surface roughness and a radius of curvature of 100 R facing each other
Attach the electrode in the inside of the detachable vacuum container and apply a load of 3 kg. Then, the contact resistance is obtained from the potential effect when an alternating current is applied to both electrodes 10A. The contact resistance value is a value that includes the resistance or contact resistance of the wiring material, switch, measuring instrument, etc. that form the measurement circuit as a circuit constant.

一方、温度上昇特性は、上記と同じ電極条件の電極を対
向させ、10-5Torrの真空容器のなかで、接触力500kgで4
00Aを1時間連続通電させたときの最高温度を可動軸部
で求めた。尚、温度は周囲温度約25℃を含んだものであ
り、かつ電極を取りつけるホルダーの熱容量の影響も含
んだ比較値である。
On the other hand, the temperature rise characteristics are as follows: electrodes with the same electrode conditions as above facing each other and a contact force of 500 kg in a vacuum container of 10 -5 Torr
The maximum temperature when 00A was continuously energized for 1 hour was determined at the movable shaft. The temperature is a comparative value including the ambient temperature of about 25 ° C. and the influence of the heat capacity of the holder to which the electrode is attached.

また、接触抵抗の値は、着脱式真空開閉装置自体の軸部
の抵抗1.8〜2.5μΩ、磁界発生用コイル部の抵抗5.2〜
6.0μΩを含むもので、残部が接点部(接点合金の抵
抗、同接触抵抗)値である。
In addition, the contact resistance values are 1.8 to 2.5 μΩ for the shaft of the removable vacuum switchgear itself and 5.2 for the magnetic field generating coil.
It contains 6.0 μΩ, and the rest is the contact point (contact alloy resistance, same contact resistance) value.

また、Cu−Cr基接点材料中のCu相中のCrの含有量は下記
のようにして求めた(尚、各Cu−Cr基接点材料ともほぼ
同じ手法で求めたので、ここでは代表例を示す)。
In addition, the content of Cr in the Cu phase in the Cu-Cr-based contact material was determined as follows (note that since each Cu-Cr-based contact material was determined by almost the same method, a typical example is shown here). Shown).

すなわち、Cu−Cr基接点材料を切削して粉状に調製しそ
の1gをビーカに入れ3Nの硝酸50mlを加えて100℃におい
て30分間加熱し、冷却後、溶液を濾過し未分解Cr粒とCu
相を分離し、さらに瀘液は蒸留水で希釈してCu相中の不
純物定量用試液とし、これを誘導結合プラズマ発光分光
法を用いて下記第1表の条件によって定量した。第1表 (誘導結合プラズマ発光分光法の測定条件) 周 波 数 27.12MHz 高周波出力 1.3KW 冷却ガス 16.5l/min ネブライザガス 0.4l/min プラズマガス 0.8l/min 測定波長 Cr:267.7nm まず、接点合金を製造する全工程として、平均125μm
のCrを2トン/cm2の圧力で成型して得られた成型体をカ
ーボン容器に収納し真空中1000℃、1時間で仮焼結を行
なう。この仮焼結体の下側にCu(無酸素銅)からなる溶
浸材を配置し、この後、真空1200℃、1時間で行なう溶
浸工程に移す。次に溶浸工程終了後、接点合金素材を12
00℃より0.6〜6℃/minで冷却する。
That is, Cu-Cr base contact material was cut to prepare powder, 1g of which was placed in a beaker and 50 ml of 3N nitric acid was added and heated at 100 ° C for 30 minutes, and after cooling, the solution was filtered to obtain undecomposed Cr particles. Cu
The phases were separated, and the filtrate was diluted with distilled water to obtain a test solution for determining impurities in the Cu phase, which was determined by inductively coupled plasma emission spectroscopy under the conditions shown in Table 1 below. Table 1 (Measurement conditions of inductively coupled plasma emission spectroscopy) Frequency 27.12MHz High frequency output 1.3KW Cooling gas 16.5l / min Nebulizer gas 0.4l / min Plasma gas 0.8l / min Measurement wavelength Cr: 267.7nm First, contact 125 μm on average for the entire alloy manufacturing process
A molded body obtained by molding Cr at a pressure of 2 ton / cm 2 is housed in a carbon container and temporarily sintered at 1000 ° C. for 1 hour in vacuum. An infiltrant made of Cu (oxygen-free copper) is placed under the temporary sintered body, and then the infiltration process is performed at a vacuum temperature of 1200 ° C. for 1 hour. Next, after completing the infiltration process, contact alloy material 12
Cool from 00 ° C at 0.6 to 6 ° C / min.

約40wt%程度のCr及び約10wt%程度のMoを含有するCu−
Cr基接点材料に於いて、Cu相中のCrの量を種々選出し、
所定接点形状に加工後前記着脱式試験装置に各合金試料
を取りつけ、前記所定条件の通電テストに供した。下記
第2表の結果からわかるように、Cu相中のCr量が増加す
るに従い、温度の上昇が見られるが、特にCr量が0.35%
以下(実施例1〜4)では、その可動軸部の温度上昇値
が70℃以下であるのに対し、6.5℃/minの速度で冷却し
た場合には、0.59%(比較例2)であり、温度上昇値も
70℃を越えることが判った(第2表)。ここで70℃で区
別する厳密な説明は困難であるが、本実験に供した組立
式の開閉装置は、一般の真空バルブに極く近い熱的構成
(部材の配置及び熱容量など)を有していることから、
或る程度の対応が得られてるものとみなし得る。すなわ
ち、通常の真空バルブでは、65℃の上昇を一つの目安と
しており、実験的換算によれば、本着脱式開閉装置の70
℃が略対応する。
Cu containing about 40 wt% Cr and about 10 wt% Mo-
In the Cr-based contact material, various amounts of Cr in the Cu phase are selected,
After processing into a predetermined contact shape, each alloy sample was attached to the detachable test device and subjected to an electrification test under the predetermined conditions. As can be seen from the results in Table 2 below, as the Cr content in the Cu phase increases, the temperature rises, but especially the Cr content is 0.35%.
In the following (Examples 1 to 4), the temperature rise value of the movable shaft portion was 70 ° C. or lower, whereas it was 0.59% (Comparative Example 2) when cooled at a rate of 6.5 ° C./min. , The temperature rise value
It was found to exceed 70 ° C (Table 2). Although it is difficult to make a precise explanation to distinguish at 70 ° C, the assembled switchgear used in this experiment has a thermal configuration (arrangement of members and heat capacity, etc.) that is very close to that of a general vacuum valve. Because
It can be considered that a certain degree of correspondence has been obtained. In other words, with a normal vacuum valve, an increase of 65 ° C is one standard, and according to the experimental conversion, it is 70% of this detachable switchgear.
C corresponds approximately.

上記傾向は、Cu−Cr基接点材料中の全Crが略40%の接点
についての調査結果であるが、Cr量が55.2%、かつMoが
ほぼ10%(実施例5)、69.2%かつMoがほぼ10%(実施
例6)に増加しても、Cu相中のCrの量が略0.35%以内の
場合には、安定した温度上昇特性が見られるが、Cu−Cr
基接点材料中の全Crの量が80.7%かつMoがほぼ10%(比
較例3)の接点合金では、例えCu部材中のCrの量が0.35
%以下(比較例3)であっても、安定な温度特性は確保
出来ない。接触抵抗特性も、Cu相中のCrの量が0.35%以
下(実施例1〜4)のときには低い接触抵抗値を維持し
ているが、0.35%以上の比較例2では、高い接触抵抗特
性を示す。
The above tendency is the result of investigation on the contact in which the total Cr in the Cu—Cr based contact material is about 40%, but the amount of Cr is 55.2%, and the amount of Mo is almost 10% (Example 5), 69.2% and Mo. Is increased to about 10% (Example 6), when the amount of Cr in the Cu phase is within about 0.35%, a stable temperature rise characteristic is seen, but Cu-Cr
In the contact alloy in which the total amount of Cr in the base contact material is 80.7% and the amount of Mo is almost 10% (Comparative Example 3), the amount of Cr in the Cu member is 0.35.
% Or less (Comparative Example 3), stable temperature characteristics cannot be secured. Regarding the contact resistance characteristics, the low contact resistance value is maintained when the amount of Cr in the Cu phase is 0.35% or less (Examples 1 to 4), but in Comparative Example 2 with 0.35% or more, high contact resistance characteristics are obtained. Show.

尚、Cr量が約40%、Mo量が約10%である実施例1〜4、
及び比較例2に示したCu−Cr基接点材料の耐電圧特性
は、Moを含有しないCu−Cr接点材料(比較例1)より約
30%過度、優位である。この傾向は、実施例5、6(Cr
量が約50〜70%、Mo量が約10%)との対比でも認められ
る。更に実施例7のようにCo量が0.1%過度であっても
優位性が認められ、本発明では、耐電圧の観点から耐ア
ーク材料中でのMoの存在は有効であり、Co量が実施例9
のように更に多量に存在するCu−Cr基接点材料に於いて
も有効である(第2表)。
In addition, Examples 1 to 4 in which the amount of Cr is about 40% and the amount of Mo is about 10%,
And the withstand voltage characteristics of the Cu-Cr based contact material shown in Comparative Example 2 are about the same as those of the Cu-Cr contact material containing no Mo (Comparative Example 1).
30% excessive, superior. This tendency is shown in Examples 5 and 6 (Cr
The amount is about 50-70%, and the amount of Mo is about 10%). Further, as in Example 7, the superiority is recognized even if the Co amount is excessive by 0.1%. In the present invention, the presence of Mo in the arc resistant material is effective from the viewpoint of withstand voltage, and the Co amount is Example 9
It is also effective for Cu-Cr-based contact materials that are present in larger amounts as shown in (Table 2).

上記は、Cu−Cr−Mo接点材料につき示したものであった
が、本発明接点材料の主旨であるCu又は/及びAg相中の
Cr相中のCr量を所定値以内すなわち0.35wt%以内に抑制
する場合には、他のCu−Cr基接点材料すなわち、第3表
に示すようにCu−Cr−W(実施例10)、Cu−Cr−Ta(実
施例13)系の接点材料に於いても同様の効果が認められ
ている(実施例10〜18)。
Although the above was shown for the Cu-Cr-Mo contact material, the main point of the contact material of the present invention is that the Cu or / and Ag phases
When suppressing the Cr content in the Cr phase within a predetermined value, that is, within 0.35 wt%, another Cu—Cr-based contact material, that is, as shown in Table 3, Cu—Cr—W (Example 10), The same effect was observed in Cu-Cr-Ta (Example 13) -based contact materials (Examples 10 to 18).

また、高導電性材料としてAgを使用してもAg相中のCr量
を所定量以内に制御するとき同等の効果が得られる(実
施例17〜18)。
Further, even if Ag is used as the highly conductive material, the same effect can be obtained when the amount of Cr in the Ag phase is controlled within a predetermined amount (Examples 17 to 18).

以上述べたように、本発明のCu−Cr基及びAg−Cr基の接
点合金材料では、温度上昇特性、接触抵抗特性とも、高
導電性材料(Cu又は/及びAg相)中のCr量を所定量以内
に制御することによって良好な特性が発現する。耐アー
ク性材料の下限量は、接点の耐消耗性、耐溶着性しゃ断
特性など他の面から決定される場合が多いが、特に、Cu
又は/及びAgの高導電性材料は、20%未満の場合では、
十分なしゃ断特性が確保出来ず、また80%以上では、耐
消耗性、耐電圧特性の観点で、不十分となる。
As described above, in the Cu-Cr-based and Ag-Cr-based contact alloy materials of the present invention, the amount of Cr in the high-conductivity material (Cu or / and Ag phase) is high in both temperature rise characteristics and contact resistance characteristics. Good characteristics are exhibited by controlling within a predetermined amount. The lower limit of the amount of arc resistant material is often determined from other aspects such as contact wear resistance and welding resistance and cutoff characteristics, but especially Cu
Or / and Ag highly conductive material, if less than 20%,
Sufficient cut-off characteristics cannot be secured, and if it is 80% or more, it becomes insufficient from the viewpoint of wear resistance and withstand voltage characteristics.

また、Crと他の耐アーク性材料(すなわちW、Mo、V、
Nb、Ta)の量は、前述高導電性材料(Cu又は/及びAg)
の残余の量であるが、これらの比率(W、Mo、V、Nb、
Nb、Taの少なくとも1つとCrとの比率)は、特に大容量
しゃ断性能の確保の観点からCrが50%以上存在すること
が必須である。
Also, Cr and other arc resistant materials (ie W, Mo, V,
The amount of Nb, Ta) is the above-mentioned highly conductive material (Cu or / and Ag).
Is the residual amount of these, but these ratios (W, Mo, V, Nb,
As for the ratio of at least one of Nb and Ta to Cr), it is essential that Cr is present in an amount of 50% or more, particularly from the viewpoint of securing a large capacity breaking performance.

以上によってCu又は/及びAg−Cr基接点材料に於いてCu
又は/及びAg相中のCr量の上限は、0.35wt%が妥当であ
り、その下限量はより低い方が好ましいが製造時(焼結
又は/及び溶浸時)に或る程度の侵入が避けられず、0.
01wt%程度は不可避的に存在し、これが実質上の下限と
考えられる。
Due to the above, Cu in Cu and / or Ag-Cr based contact materials
Or, and / or the upper limit of the amount of Cr in the Ag phase is 0.35 wt%, and the lower limit is preferably lower, but some intrusion during production (sintering and / or infiltration) Inevitable, 0.
About 01 wt% exists inevitably, and this is considered to be the practical lower limit.

尚、原料Cr中のAl、Si及びCa量も、再点弧特性の軽減に
対し重要な影響を持ち、例えば本実施例に使用したCr中
のAlは100ppm以下、好ましくは10ppm以下、Siは20ppm以
下、Caは10ppm以下のものであり、このような上限を設
けることにより本発明の効果が一層促進される。
Incidentally, Al in the raw material Cr, the amount of Si and Ca also has an important influence on the reduction of re-ignition characteristics, for example Al in Cr used in this example is 100 ppm or less, preferably 10 ppm or less, Si is 20 ppm or less and Ca is 10 ppm or less, and the effect of the present invention is further promoted by setting such an upper limit.

〔発明の効果〕〔The invention's effect〕

上記実施例の結果らも理解されるように、本発明に係る
真空バルブ溶接点合金は、接触抵抗特性および温度上昇
特性の双方の安定化においてすぐれた効果を有してい
る。
As can be understood from the results of the above examples, the vacuum valve welding point alloy according to the present invention has an excellent effect in stabilizing both contact resistance characteristics and temperature rise characteristics.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 大川 幹夫 東京都府中市東芝町1 株式会社東芝府中 工場内 (56)参考文献 特開 昭61−124542(JP,A) 特開 昭61−6218(JP,A) 特開 昭60−197840(JP,A) ─────────────────────────────────────────────────── ─── Continuation of front page (72) Inventor Mikio Okawa 1 Toshiba-cho, Fuchu-shi, Tokyo Inside the Fuchu factory, Toshiba Corp. (56) Reference JP 61-124542 (JP, A) JP 61-6218 ( JP, A) JP 60-197840 (JP, A)

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】Mo、W、V、Nb、Taから選ばれる少なくと
も1種を50重量%以下含むCrと、残部Cuまたは/および
Agからなり、前記Cuまたは/およびAgに固溶しているCr
の量が前記Cuまたは/およびAgを100重量%として0.01
〜0.35重量%であることを特徴とする真空バルブ用接点
合金。
1. A Cr containing 50% by weight or less of at least one selected from Mo, W, V, Nb, and Ta, and the balance Cu or / and
Cr made of Ag and solid-dissolved in the above Cu and / or Ag
Is 0.01 based on the Cu or / and Ag as 100% by weight.
Contact alloy for vacuum valves, characterized in that it is ~ 0.35% by weight.
【請求項2】Cuまたは/およびAgが全重量の20重量%以
上80重量%未満である特許請求の範囲第1項記載の真空
バルブ用接点合金。
2. The contact alloy for a vacuum valve according to claim 1, wherein Cu and / or Ag is 20% by weight or more and less than 80% by weight of the total weight.
JP61232310A 1986-09-30 1986-09-30 Contact alloy for vacuum valve Expired - Fee Related JPH0788543B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61232310A JPH0788543B2 (en) 1986-09-30 1986-09-30 Contact alloy for vacuum valve

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61232310A JPH0788543B2 (en) 1986-09-30 1986-09-30 Contact alloy for vacuum valve

Publications (2)

Publication Number Publication Date
JPS6386835A JPS6386835A (en) 1988-04-18
JPH0788543B2 true JPH0788543B2 (en) 1995-09-27

Family

ID=16937198

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61232310A Expired - Fee Related JPH0788543B2 (en) 1986-09-30 1986-09-30 Contact alloy for vacuum valve

Country Status (1)

Country Link
JP (1) JPH0788543B2 (en)

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3406535A1 (en) * 1984-02-23 1985-09-05 Doduco KG Dr. Eugen Dürrwächter, 7530 Pforzheim Powder metallurgical process for fabricating electrical contact pieces from a copper-chromium composite material for vacuum switches
JPS60197840A (en) * 1984-03-21 1985-10-07 Toshiba Corp Sintered alloy for contact point of vacuum circuit breaker
JPS61124542A (en) * 1984-11-21 1986-06-12 Toshiba Corp Electric contact point material and its production

Also Published As

Publication number Publication date
JPS6386835A (en) 1988-04-18

Similar Documents

Publication Publication Date Title
JPH0760623B2 (en) Contact alloy for vacuum valve
US5480472A (en) Method for forming an electrical contact material
US2983996A (en) Copper-tungsten-molybdenum contact materials
JPH04311543A (en) Ag-sno-ino electrical contact material and production thereof
JPH0788543B2 (en) Contact alloy for vacuum valve
EP0460680B1 (en) Contact for a vacuum interrupter
JPH0788544B2 (en) Contact alloy for vacuum valve
JP2000235825A (en) Electrode member for vacuum circuit-breaker and manufacture thereof
JPH10324934A (en) Production of electrode material for vacuum breaker
JP4249356B2 (en) Electrical contact material
JP2878787B2 (en) Contact for vacuum valve
JP3245690B2 (en) Ag-Sn-In alloy internal oxidation electrical contact material
JPH01258330A (en) Manufacture of contact material for vacuum bulb
JPS62150618A (en) Manufacture of contact alloy for vacuum valve
JP2937620B2 (en) Manufacturing method of contact alloy for vacuum valve
JP2878718B2 (en) Contact material for vacuum valve
US4249944A (en) Method of making electrical contact material
JP3833519B2 (en) Vacuum circuit breaker
JP4084298B2 (en) Electrical contact material with excellent arc resistance
CN1035139A (en) Super perforance silver base alloy for electric contact
JPH08209268A (en) Copper-chromium-nickel composite material and its production
JPH0586426A (en) Electrical contact material of silver oxide series
JPH0623418B2 (en) Silver-oxide contact material
JPS61147415A (en) Manufacture of contact material for vacuum breaker
JPH03281070A (en) Copper-based welding electrode material and electric contact material and manufacture thereof

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees