JPH0788530B2 - Manufacturing method of non-oriented electrical steel sheet with high magnetic flux density - Google Patents

Manufacturing method of non-oriented electrical steel sheet with high magnetic flux density

Info

Publication number
JPH0788530B2
JPH0788530B2 JP62157411A JP15741187A JPH0788530B2 JP H0788530 B2 JPH0788530 B2 JP H0788530B2 JP 62157411 A JP62157411 A JP 62157411A JP 15741187 A JP15741187 A JP 15741187A JP H0788530 B2 JPH0788530 B2 JP H0788530B2
Authority
JP
Japan
Prior art keywords
temperature
annealing
flux density
magnetic flux
rolling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP62157411A
Other languages
Japanese (ja)
Other versions
JPS644425A (en
Inventor
裕義 屋鋪
輝雄 金子
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP62157411A priority Critical patent/JPH0788530B2/en
Publication of JPS644425A publication Critical patent/JPS644425A/en
Publication of JPH0788530B2 publication Critical patent/JPH0788530B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Manufacturing Of Steel Electrode Plates (AREA)
  • Soft Magnetic Materials (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、磁気特性の優れた、とくに磁束密度の高い
無方向性電磁鋼板の製造方法に関する。
Description: TECHNICAL FIELD The present invention relates to a method for producing a non-oriented electrical steel sheet having excellent magnetic properties, particularly a high magnetic flux density.

〔従来の技術〕[Conventional technology]

省エネルギーは分野を問わず重要な課題である。電気機
器分野においても近年、電力消費量の節減が叫ばれ、機
器特性の向上、機器の小型化等の要求がますます高まっ
てきている。
Energy saving is an important issue regardless of the field. In the electric equipment field as well, in recent years, there has been an increasing demand for reduction of electric power consumption, improvement of equipment characteristics, miniaturization of equipment, and the like.

無方向性電磁鋼板は、主に変圧器、安定器、電動機、発
電機等の鉄心材料として用いられるが、このような機器
の特性向上、小型化等の要求に対処するには、低鉄損で
かつ磁束密度の高い無方向性電磁鋼板が必要である。
Non-oriented electrical steel sheets are mainly used as iron core materials for transformers, ballasts, electric motors, generators, etc., but to meet the demands for improved characteristics and downsizing of such equipment, low iron loss is required. A non-oriented electrical steel sheet with high magnetic flux density is required.

ところで、無方向性電磁鋼板の製造方法としては、いわ
ゆる一回冷延法がよく知られている。これは熱間圧延鋼
帯を比較的大きな圧下率、具体的には70〜80%程度の圧
下率で一回冷間圧延し、次いで焼鈍を行うものである。
By the way, a so-called single cold rolling method is well known as a method for producing a non-oriented electrical steel sheet. This is one in which a hot-rolled steel strip is cold-rolled once with a relatively large reduction rate, specifically, a reduction rate of about 70 to 80%, and then annealed.

しかしながら通常の一回冷延法では、昨今の高度の要求
には到底応えられるものではない。
However, the conventional single cold rolling method cannot completely meet the recent high demands.

なお、鉄損についてはSiあるいはAlのような固有抵抗を
増加させる元素を添加して渦電流損を低下させる対策が
あるが、Si、Alは磁束密度を低下させる副作用があり、
このためこの種の対策でも低鉄損、高磁束密度の高レベ
ルでの両立は不可能である。
Regarding iron loss, there is a measure to reduce eddy current loss by adding an element that increases specific resistance such as Si or Al, but Si and Al have a side effect of reducing magnetic flux density,
Therefore, it is impossible to achieve both low iron loss and high magnetic flux density at a high level even with this kind of measure.

このようなことから、無方向性電磁鋼板については、従
来より低鉄損と高磁束密度の両立を図るべく種々研究が
進められ、その製造方法につき様々な提案が出されてい
る。例えば、特開昭58−204126号では、C0.02%以下、S
iもしくはSiとAlの合計量が1.5%以下、Mn1.0%以下、P
0.20%以下の素材を用い、圧延終了温度を600〜700℃、
巻取温度を500℃以上として熱間圧延を行い、ついでAr3
点以下の温度で30秒以上15分以下の焼鈍を施する方法が
提案されている。
Under such circumstances, various studies have been conducted on non-oriented electrical steel sheets in order to achieve both low iron loss and high magnetic flux density, and various proposals have been made regarding manufacturing methods thereof. For example, in JP-A-58-204126, C0.02% or less, S
i or the total amount of Si and Al is 1.5% or less, Mn is 1.0% or less, P
Using a material of 0.20% or less, rolling end temperature 600 ~ 700 ℃,
Hot rolling is performed at a coiling temperature of 500 ° C or higher, and then Ar 3
A method of annealing at a temperature below the point for 30 seconds or more and 15 minutes or less has been proposed.

〔発明が解決しようとする問題点〕[Problems to be solved by the invention]

この方法は600〜700℃という低温条件下で熱間圧延を行
うことが必要である。これは、熱間圧延後の焼鈍時に結
晶粒を粗大化させる上で必要とされるものである。
This method requires hot rolling under a low temperature condition of 600 to 700 ° C. This is necessary for coarsening the crystal grains during annealing after hot rolling.

ところがこのような低温での熱間圧延は、現状の熱間圧
延機ではミルパワーの観点から実現するのが難しい。
However, such hot rolling at low temperatures is difficult to realize from the viewpoint of mill power with the current hot rolling mills.

上記に鑑み本発明は、低温熱延を行うことなく、鉄損、
磁束密度がともにすぐれた無方向性電磁鋼板を安定して
製造することができる方法の提供を目的とする。
In view of the above, the present invention, without performing low temperature hot rolling, iron loss,
It is an object of the present invention to provide a method capable of stably producing a non-oriented electrical steel sheet having excellent magnetic flux density.

〔問題点を解決するための手段〕[Means for solving problems]

一般に無方向性電磁鉄板において、熱延板の粒径を粗大
化させると、その後の冷延・焼鈍を経た後の成品段階の
結晶粒径および集合組織に影響が出て、磁気特性(鉄
損、磁束密度)の改善がもたらされると考えられる。前
出の特開昭58−204126号に示された方法もこの考えに基
くもので、低温の熱間圧延と熱延板の焼鈍とを組合せ
て、熱延板の粒径の粗大化を図っているのである。
Generally, in a non-oriented electromagnetic iron plate, if the grain size of the hot rolled plate is coarsened, the grain size and texture of the product stage after the subsequent cold rolling / annealing will be affected and the magnetic properties (iron loss , Magnetic flux density). The method disclosed in the above-mentioned JP-A-58-204126 is also based on this idea, in which low temperature hot rolling and annealing of the hot rolled sheet are combined to increase the grain size of the hot rolled sheet. -ing

本発明者らは、著しい低温での熱延をせずに熱延板焼鈍
時に結晶粒を効果的に粗大化させる方法を見出すべく、
とくに素材鋼成分の面から種々実験、検討を行った結
果、素材中のSとMnをそれぞれ特定量以下に制限すれ
ば、熱延板焼鈍時の再結晶および粒成長が著しく早めら
れ、この段階で結晶粒が効果的に粗大化されるという事
実を知見した。
In order to find a method for effectively coarsening the crystal grains during annealing of a hot rolled sheet without hot rolling at a significantly low temperature, the present inventors,
In particular, as a result of various experiments and studies from the viewpoint of the steel composition of the raw material, if S and Mn in the raw material were each limited to a specific amount or less, recrystallization and grain growth during hot-rolled sheet annealing were significantly accelerated. It was found that the crystal grains are effectively coarsened by.

なお、この場合熱間圧延の圧延終了温度は、フェライト
領域温度とし、かつ巻取温度を600℃以下とすることが
条件となる。
In this case, the rolling end temperature of the hot rolling is set to the ferrite region temperature and the winding temperature is set to 600 ° C or lower.

本発明は以上の知見に基づくものであって、C0.010%以
下、Si0.1〜1.0%、Mn0.20%以下、P0.200%以下、S0.0
06%以下、Sol.Al0.002%未満か0.150〜1.0%で、残部F
eおよび不可避的不純物よりなる鋼素材、あるいは、こ
の鋼素材にさらにP0.050〜0.200%を含有させた鋼素材
を、圧延終了時間を700℃以上でかつフェライト域内の
温度として熱間圧延し、続いて600℃以下の温度で巻取
りを行い、次いで650〜950℃の温度で焼鈍を行うととも
に、その前または後、もしくはその双方で脱スケールを
行い、しかるのち冷間圧延、焼鈍を実施することを特徴
とする磁気特性の優れた無方向性電磁鋼板の製造方法を
要旨とする。
The present invention is based on the above findings, C0.010% or less, Si0.1-1.0%, Mn0.20% or less, P0.200% or less, S0.0
06% or less, Sol.Al less than 0.002% or 0.150 to 1.0%, balance F
Steel material consisting of e and unavoidable impurities, or a steel material containing P0.050 to 0.200% in addition to this steel material is hot-rolled at a rolling end time of 700 ° C or more and at a temperature in the ferrite region, Subsequently, it is wound at a temperature of 600 ° C. or lower, then annealed at a temperature of 650 to 950 ° C., descaled before or after or both, and then cold rolled and annealed. The gist is a method of manufacturing a non-oriented electrical steel sheet having excellent magnetic properties.

第1図は、低S下における鋼中Mn量と鉄損および磁束密
度との関係を示す実験データである。これは、C0.003
%、Si0.5%、P0.085%、S0.002%、Sol.Al0.0008%と
し、Mn量を0.05〜0.50%のレンジで種々に変化させた鋼
素材をフェライト領域温度(790℃)を圧延終了温度と
して熱間圧延を行って板厚を2.3mmとし、その後550℃で
巻取り、次いで脱スケール酸洗後、800℃で30分均熱の
箱焼鈍を行い、さらに0.5mmの板厚まで冷間圧延し、そ
の後760℃×20秒の連続焼鈍を実施し、こうして得たも
のについて磁気特性を調査した結果である。
FIG. 1 is experimental data showing the relationship between the amount of Mn in steel and the iron loss and magnetic flux density under low S. This is C0.003
%, Si0.5%, P0.085%, S0.002%, Sol.Al0.0008%, and the steel material with various Mn contents in the range of 0.05 to 0.50% has ferrite region temperature (790 ℃). At the end temperature of rolling to a plate thickness of 2.3 mm, then wound at 550 ° C, then descaled and pickled, and then annealed at 800 ° C for 30 minutes for box annealing, and then a 0.5 mm plate. The results are obtained by cold rolling to a thickness, then performing continuous annealing at 760 ° C. for 20 seconds, and investigating the magnetic properties of the thus obtained material.

図において、磁束密度については鋼中Mn量が低くなると
改善される傾向が認められ、とくにMn0.2%以下におい
てその傾向が著しい。
In the figure, the magnetic flux density tends to be improved as the Mn content in steel decreases, and this tendency is particularly remarkable when Mn is 0.2% or less.

一方鉄損は、Mn0.07〜0.50%の範囲においてさほど大き
な変化がない。これは、Mnの増加が比抵抗の増大を通し
て鉄損の低下をもたらす結果、高Mn域においても良好な
鉄損値が得られたためと考えられる。
On the other hand, iron loss does not change so much in the range of 0.07 to 0.50% Mn. It is considered that this is because an increase in Mn causes a decrease in iron loss through an increase in resistivity, and as a result, a good iron loss value was obtained even in the high Mn region.

ただし、Mnの増加は磁束密度に関しては低下させる方向
である。
However, the increase of Mn tends to decrease the magnetic flux density.

何れにしても本発明の条件を満たす低S、低Mn化によ
り、低鉄損と高磁束密度の両立が実現できるのである。
In any case, low iron loss and high magnetic flux density can both be achieved by lowering S and Mn satisfying the conditions of the present invention.

因みに従来においては、鋼中Mnは、Sによる鋼の熱間脆
性を抑制するために必要であり、更に鋼中介存物MnSの
粗大化のためにも必要であるとされ、少なくとも0.2%
は添加されるのが通例であった。
Incidentally, in the past, Mn in steel is required to suppress hot embrittlement of steel due to S, and is further required to coarsen MnS inclusions in steel, and at least 0.2%.
Was usually added.

なお、熱間脆性については、低Sの条件の下ではMn量を
低下させても実際上問題とならないことを、本発明者ら
は確認している。
Regarding the hot brittleness, the present inventors have confirmed that under the condition of low S, even if the amount of Mn is reduced, there is no practical problem.

以下、本発明の方法について更に詳しく説明する。Hereinafter, the method of the present invention will be described in more detail.

○ まず使用する鋼素材の成分限定理由は次のとおりで
ある。
○ First, the reasons for limiting the ingredients of the steel materials used are as follows.

C:Cは鉄損低下の観点から、少ない方がよい。Cが0.010
%をこえると磁気時効による鉄損増加がとくに顕著とな
ることから、0.010%を上限とした。なお、下限につい
てはCは少ないほど好ましいので、とくに限定しない。
C: C is preferably as small as possible from the viewpoint of reducing iron loss. C is 0.010
%, The iron loss increase due to magnetic aging becomes particularly remarkable, so the upper limit was made 0.010%. It should be noted that the lower limit is not particularly limited because the smaller C is, the more preferable.

Si:Siは固有抵抗を増加させ、鉄損低下に有効に寄与す
る元素であるが、反面磁束密度の低下をもらたす。1%
をこえると、この磁束密度の低下が著しく、本発明の目
的である高磁束密度が達成できない。また0.1%未満で
は、鉄損の面で十分な効果が期待できない。よって、0.
1〜1.0%の範囲とした。
Si: Si is an element that increases the specific resistance and effectively contributes to the reduction of iron loss, but it also causes the reduction of the magnetic flux density. 1%
Above this, the magnetic flux density is significantly reduced, and the high magnetic flux density, which is the object of the present invention, cannot be achieved. If it is less than 0.1%, a sufficient effect cannot be expected in terms of iron loss. Therefore, 0.
The range was 1 to 1.0%.

Mn:本発明において最も重要な意味をもつ元素である。
先に述べたとおり従来はSによる熱間脆性の防止および
MnSの粗大化の観点から0.2%をこえて添加するのが普通
であったが、本発明で0.2%以下にする。
Mn: An element having the most important meaning in the present invention.
As described above, conventionally, S is used to prevent hot brittleness and
From the viewpoint of coarsening MnS, it was usual to add more than 0.2%, but in the present invention, it is 0.2% or less.

低Sの条件の下において、Mn量を0.2%以下にすれば、
前出第1図で説明したように低鉄損とともにきわめて高
い磁束密度が実現されるのである。これは、熱延板焼鈍
時の再結晶および結晶粒の粗大化が促進されることによ
る。なお、低S、低Mn化により再結晶、粒成長が加速さ
れる理由は、未だ不明な点も多いが、固溶Mn、MnSの量
がともに著しく低くなることが関与しているものと考え
られる。なお、Mn0.2%ごえでは、第1図に明らかなよ
うにとくに磁束密度が低下を来すことになる。このよう
なことから本発明では、Mnの上限を0.2%としたのであ
る。
Under low S condition, if Mn content is 0.2% or less,
As explained with reference to FIG. 1 above, a very high magnetic flux density is realized together with a low iron loss. This is because recrystallization at the time of hot-rolled sheet annealing and coarsening of crystal grains are promoted. The reason why recrystallization and grain growth are accelerated by lowering S and Mn is still unclear, but it is considered that the reason is that the amounts of solute Mn and MnS are both extremely low. To be At a Mn of around 0.2%, the magnetic flux density is particularly reduced, as is apparent from FIG. Therefore, in the present invention, the upper limit of Mn is set to 0.2%.

なお、Mnの下限については熱間脆性の観点からMn/Sで10
以上が望ましいが、とくに規定しない。
The lower limit of Mn is 10 in terms of Mn / S from the viewpoint of hot brittleness.
The above is desirable, but not specified.

P:Pは磁気特性を悪化させずに硬度を上昇させ打抜性を
改善することができる元素で、必要により添加される。
Si量が低いと、鋼の硬度は低くなりがちであるが、Pの
添加はこのような場合に有効である。
P: P is an element capable of increasing hardness and improving punchability without deteriorating magnetic properties, and is added as necessary.
When the amount of Si is low, the hardness of steel tends to be low, but the addition of P is effective in such a case.

Pの硬度上昇の効果は、少なくも0.050%含有されない
と発現しない。ただし、0.200%をこえると鋼板が脆化
し、冷延破断を生じやすくなる。よって、Pを積極添加
する場合、添加量は0.050〜0.200%の範囲とする必要が
ある。
The effect of increasing the hardness of P does not appear unless it is contained at least 0.050%. However, if it exceeds 0.200%, the steel sheet becomes brittle, and cold rolling fracture tends to occur. Therefore, when P is positively added, the addition amount needs to be in the range of 0.050 to 0.200%.

なお、Pは不可避的不純物レベル(0.001〜0.030%)の
量でも、硬度上昇がないだけで、とくに問題を生じるこ
とはない。
Even if the amount of P is an unavoidable impurity level (0.001 to 0.030%), the hardness does not increase and no particular problem occurs.

S:Mnとの間でMnSを形成し、焼鈍時の粒成長を妨げ、鉄
損の低下を阻む方向に作用するとともに、多量に存在す
ると熱間脆性を惹起する。また、熱延鋼板の再結晶、粒
成長の促進上、有害である。このような悪影響は本発明
が対象とするような低Mn鋼において特に著しく、このこ
とからS量の管理は特に厳しくすることが求められる。
It forms MnS with S: Mn, acts to hinder grain growth during annealing and hinders reduction of iron loss, and causes a hot brittleness when present in a large amount. It is also harmful in promoting recrystallization and grain growth of the hot rolled steel sheet. Such an adverse effect is particularly remarkable in the low Mn steel targeted by the present invention, and therefore, it is required to strictly control the S content.

このような観点からSは、0.006%以下とした。このS0.
006%以下は、現在の清浄鋼の溶製技術では、十分に可
能なレベルである。
From such a viewpoint, S is set to 0.006% or less. This S0.
The level of 006% or less is a level that is sufficiently possible with the current clean steel melting technology.

なおSについては、特性上下限の規定は不要である。た
だし実際には、製鋼技術、経済性の面から実施可能な範
囲は自ずと決まる。
Regarding S, it is not necessary to specify the upper and lower limits of the characteristics. However, in practice, the feasible range is naturally determined from the viewpoint of steelmaking technology and economic efficiency.

Sol.Al:AlはSiと同様固有抵抗を増加させ鉄損低下に寄
与する元素であるが、その一方でAlNを形成し焼鈍時の
粒成長性を悪化させ鉄損を高める方向に作用する。ただ
しこの好ましくない作用は、添加量を多くしてAlNを粗
大化してやれば取除かれる。鉄損に対する有効性を引き
出しかつAlNによる悪影響を排除するには、0.150%以上
の添加が必要である。しかし1%をこえる添加は磁束密
度の低下を来す。
Like Si, Sol.Al:Al is an element that increases the specific resistance and contributes to the decrease of iron loss, but on the other hand, it forms AlN and deteriorates the grain growth property during annealing and acts to increase iron loss. However, this unfavorable effect can be removed by increasing the amount of addition and coarsening AlN. In order to bring out the effectiveness against iron loss and eliminate the adverse effects of AlN, it is necessary to add 0.150% or more. However, the addition exceeding 1% causes a decrease in magnetic flux density.

また、Alの添加は特性上必ずしも必要ではない。鉄損に
対する有効性を放棄するなら、AlNによる悪影響を取除
くのに、Al量を低レベルに制限するのも一つの方法であ
り、この場合は許容量を0.002%以下にすべきである。
Further, the addition of Al is not always necessary in terms of characteristics. To abandon iron loss effectiveness, one way to eliminate the adverse effects of AlN is to limit the amount of Al to low levels, in which case the allowable amount should be 0.002% or less.

以上のことから、Sol、Al量は0.150〜1%または0.002
%未満の範囲とした。
From the above, the amount of Sol and Al is 0.150 to 1% or 0.002
The range is less than%.

○ 次に、製造プロセスについて述べる。○ Next, the manufacturing process will be described.

上記のような成分の素材鋼は常法に従って転炉等で溶製
され、まず連続鋳造または造塊−分塊圧延を経てスラブ
とされる。
The raw material steel having the above components is melted in a converter or the like according to a conventional method, and is first cast into a slab by continuous casting or ingot-slab rolling.

次いでこのスラブを熱間圧延し、その後巻取りを行う。
そして次に焼鈍を行うとともに、その前または後、もし
くはその双方で脱スケールを行い、しかるのち冷間圧延
を施して、焼鈍を実施する。
The slab is then hot rolled and then wound.
Then, annealing is performed next, descaling is performed before or after the annealing, or both of them, and then cold rolling is performed to perform annealing.

熱間圧延以降の各工程について以下に詳述する。Each step after hot rolling will be described in detail below.

熱間圧延・巻取り この工程は、圧延終了温度を700℃以上のフェライト領
域温度とするとともに、巻取温度を600℃以下とするこ
とが条件となる。
Hot rolling / winding In this process, the rolling end temperature is set to a ferrite region temperature of 700 ° C or higher and the winding temperature is set to 600 ° C or lower.

本発明は既述したとおり、熱延板の焼鈍の段階で再結晶
および粒成長を促進させることにより磁気特性を向上さ
せるところに重要なポイントがある。熱延板の焼鈍時に
再結晶および粒成長を十分に促進させるためには熱間圧
延終了時に十分な歪が蓄積され、またその歪みエネルギ
ーが巻取りを経たあとまで開放されずに残っていなけば
ならない。このような観点から、圧延終了温度はフェラ
イト域内の温度とすることが必要である。
As described above, the present invention has an important point in improving magnetic properties by promoting recrystallization and grain growth in the stage of annealing a hot rolled sheet. In order to sufficiently promote recrystallization and grain growth during annealing of hot-rolled sheet, sufficient strain must be accumulated at the end of hot rolling, and the strain energy must remain unreleased until after winding. I won't. From such a viewpoint, it is necessary to set the rolling end temperature to a temperature within the ferrite region.

熱延板の焼鈍時の再結晶および粒成長の意味からは、圧
延終了温度はフェライト域内の温度とする上限規定だけ
で十分であるが、現実には圧延終了温度が700℃を下ま
わると、圧延負荷が大きくなりすぎ通常の圧延機では操
業が困難となる。
From the meaning of recrystallization and grain growth during annealing of hot-rolled sheet, the rolling end temperature is sufficient only by the upper limit to be the temperature in the ferrite region, but in reality, when the rolling end temperature falls below 700 ° C, The rolling load becomes too large, and it becomes difficult to operate with a normal rolling mill.

以上のことから圧延終了温度は700℃以上でかつフェラ
イト域内の温度とした。
From the above, the rolling end temperature was set to 700 ° C or higher and within the ferrite region.

一方、巻取り温度を600℃以下としたのは、下記のよう
な実験データに基いている。
On the other hand, the reason why the winding temperature is set to 600 ° C or lower is based on the following experimental data.

第2図に、巻取温度と磁気特性との関係を調査した結果
を示す。これは、C0.003%、Si0.4%、Mn0.12%、P0.08
5%、S0.001%、Sol.Al0.225%の鋼素材をフェライト領
域温度(800℃)を圧延終了温度として熱間圧延を行っ
て板厚を2.1mmとし、その後500〜700℃の種々の温度で
巻取って、次いで脱スケールのための酸洗を行った後80
0℃で均熱30分の箱焼鈍を行い、更に0.5mmまで冷間圧延
し、その後760℃で20秒の連続焼鈍を実施し、こうして
得たものについて磁気特性を調査した結果である。
FIG. 2 shows the result of investigation on the relationship between the winding temperature and the magnetic characteristics. This is C0.003%, Si0.4%, Mn0.12%, P0.08
Steel material of 5%, S0.001%, and Sol.Al0.225% is hot-rolled with the ferrite region temperature (800 ° C) as the rolling end temperature to make the plate thickness 2.1 mm, and then various values of 500-700 ° C. At 80 ° C and then pickled for descaling
The results are obtained by conducting box annealing at 0 ° C. for 30 minutes, further cold rolling to 0.5 mm, and then performing continuous annealing at 760 ° C. for 20 seconds, and investigating the magnetic properties of the thus obtained material.

図において、巻取温度が低い領域、特に600℃以下の温
度域において、磁束密度、鉄損とも非常にすぐれた値と
なっている。これは熱延板の焼鈍により粒径が粗大化し
たことによる。巻取温度の上限を600℃としたのは、こ
のような理由からである。なお、下限については、巻取
温度は磁気特性の面からはいくら低くしても問題ないこ
とから、とくに規定しない。巻取温度は最近では、熱延
ホットランテーブル上での冷却能力の向上により、200
℃前後の温度も可能となっている。
In the figure, both the magnetic flux density and the iron loss are very excellent in the region where the coiling temperature is low, particularly in the temperature region of 600 ° C or lower. This is because the grain size was coarsened by annealing the hot rolled sheet. This is the reason why the upper limit of the winding temperature is set to 600 ° C. The lower limit is not specified because there is no problem in lowering the winding temperature in terms of magnetic characteristics. Recently, the winding temperature has been increased to 200 by improving the cooling capacity on the hot rolling hot run table.
Temperatures around ℃ are also possible.

熱延板への焼鈍 この工程は、前記した熱間圧延・巻取りを経た熱延板を
再結晶および粒成長させるためのものである。
Annealing to hot-rolled sheet This step is for recrystallizing and grain-growing the hot-rolled sheet that has been hot-rolled and wound as described above.

焼鈍のタイプとしては、箱焼鈍、連続焼鈍のいずれでも
採用できる。箱焼鈍の場合650〜900℃、連続焼鈍の場合
700〜950℃が、焼鈍温度の適正レンジである。焼鈍温度
650〜950℃の規定はこれに基く。
As the type of annealing, either box annealing or continuous annealing can be adopted. 650-900 ℃ for box annealing, continuous annealing
700-950 ℃ is the proper range of annealing temperature. Annealing temperature
The specifications for 650-950 ℃ are based on this.

各適正レンジの下限値は、当該工程において再結晶を安
定して完了させるために必要な温度である。同じく上限
値は、性能改善の効果と設備費とのバランスという観点
から許容される限度の温度である。本来焼鈍温度は効果
の点から高い方が有利である。しかしながら実際には設
備的な問題がある。すなわち、上記上限値をこえる温度
に設定するには非常に高価な設備が必要となり、この場
合設備費に見合うだけの性能改善が見込めないことにな
るのである。
The lower limit value of each appropriate range is the temperature required to stably complete the recrystallization in the process. Similarly, the upper limit value is a temperature limit that is allowable from the viewpoint of the balance between the effect of performance improvement and the equipment cost. Originally, it is advantageous that the annealing temperature is high from the viewpoint of the effect. However, in reality, there are equipment problems. That is, in order to set the temperature above the upper limit value, very expensive equipment is required, and in this case, improvement in performance commensurate with the equipment cost cannot be expected.

脱スケール、冷間圧延 何れも通常どおりでよい。脱スケールは酸洗いで行う場
合が多いが、種々の機械的な脱スケール法、例えばショ
ットブラストやロールベンダ等の組合せで行って良い。
脱スケールは熱延板の焼鈍の前または後、あるいは前後
の両方で実施してもよい。
Both descaling and cold rolling may be performed as usual. Descaling is often carried out by pickling, but various mechanical descaling methods such as shot blasting and roll bender combination may be used.
Descaling may be performed before or after annealing the hot rolled sheet, or both before and after annealing.

冷間圧延は1回を原則とし、圧下率は70〜80%程度が普
通である。
In principle, cold rolling is performed once, and the rolling reduction is usually about 70 to 80%.

冷延後の焼鈍 この焼鈍は、上記冷延後の加工組織を再結晶させるとと
もに、硬度調整等も目的とし、連続焼鈍が普通である。
Annealing after cold rolling In this annealing, continuous annealing is usually performed for the purpose of recrystallizing the worked structure after cold rolling and adjusting hardness.

無方向性電磁鋼板には、所定の磁気特性を付与して出荷
されるフルプロセス品と、出荷後ユーザー側で打ち抜き
等の加工後に歪取焼鈍(750℃×2h程度)を施されて所
定の磁気特性を保有するに至るセミプロセス品とがあ
る。
Non-oriented electrical steel sheets are full-process products that are shipped with given magnetic properties, and after shipping, they are subjected to stress relief annealing (750 ° C x 2h) after punching and other processing. There are semi-processed products that have magnetic properties.

なおフルプロセス品の場合も、当然ユーザー側において
歪取焼鈍が施されることもあり、フルプロセス品として
は、出荷時はもとより、ユーザー側での歪取焼鈍実施時
にも規定の磁気特性を示すことが要求される。
Even in the case of the full process product, the strain relief annealing may of course be performed on the user side. As a full process product, the specified magnetic properties are exhibited not only at the time of shipment but also when the strain relief annealing is performed by the user side. Is required.

本発明はこのようなフルプロセス品、セミプロセス品の
両方を対象とするものであるが、冷延後の焼鈍は一般
に、フルプロセス品では650〜900℃×5秒以上程度、セ
ミプロセス品の場合600〜800℃×5秒以上程度とされ、
本発明の場合にもこれに準ずる条件としてよい。
The present invention is intended for both such a full-process product and a semi-process product, but the annealing after cold rolling is generally about 650 to 900 ° C. × 5 seconds or more for the full-process product, In case of 600 ~ 800 ℃ × 5 seconds or more,
Also in the case of the present invention, conditions similar to this may be applied.

なお、電磁鋼板を製造する場合、通常はさらに絶縁コー
ティングを付与する工程が入ってくるが、本発明の場合
にも、製造の最終工程としてコーティングの工程を追加
することは可能であり、本発明はこのようなケースをも
含むものとする。
In addition, when a magnetic steel sheet is manufactured, a step of applying an insulating coating is usually added, but in the case of the present invention, it is possible to add a coating step as a final step of the production. Includes such cases.

〔実施例〕〔Example〕

○ 実施例1 第1表に示す各成分組成の鋼を転炉で溶製し、これを連
続鋳造により鋳片となし、続いて熱間圧延を行って厚み
2.3mmとし、これをコイルに巻取った。熱間圧延の圧延
終了温度は全て760〜810℃の範囲とした。各供試鋼のAr
1変態点は850℃以上であり、全ケースともフェライト域
内の温度で圧延終了したわけである。なお巻取温度は第
1表に示す。
○ Example 1 Steel of each component composition shown in Table 1 was melted in a converter and formed into a slab by continuous casting, followed by hot rolling to obtain a thickness.
It was set to 2.3 mm and wound on a coil. The rolling end temperature of hot rolling was set in the range of 760 to 810 ° C. Ar of each sample steel
One transformation point was 850 ° C or higher, and in all cases rolling was completed at temperatures within the ferrite region. The winding temperature is shown in Table 1.

次いでNo.1〜14の熱延鋼帯に対しては、酸洗→箱焼鈍→
冷間圧延(23mm→0.5mm)→連続焼鈍を施した。またNo.
15,16の熱延鋼帯に対しては、連続焼鈍→酸洗→冷間圧
延(2.3mm→0.5mm)→連続焼鈍を施した。熱延板および
冷延材の焼鈍条件を第1表に示す。
Next, for No. 1 to 14 hot rolled steel strips, pickling → box annealing →
Cold rolling (23 mm → 0.5 mm) → continuous annealing was performed. Also No.
The 15, 16 hot-rolled steel strips were subjected to continuous annealing → pickling → cold rolling (2.3 mm → 0.5 mm) → continuous annealing. Table 1 shows the annealing conditions of the hot rolled sheet and the cold rolled sheet.

こうして得た各供試鋼板について、30mm×280mmのエプ
スタイン試験片を鋼帯ミドル部の圧延方向とこの直角方
向から8枚ずつ採取して磁気特性を調査した。
With respect to each of the test steel sheets thus obtained, 30 mm × 280 mm Epstein test pieces were sampled from the rolling direction of the steel strip middle portion and 8 pieces each at a right angle to the magnetic characteristics thereof.

結果を第1表の右欄に示す。The results are shown in the right column of Table 1.

試験結果について述べる。 The test results will be described.

○ No.1は0.23%Siの本発明例で、低鉄損、高磁束密度
が実現されている。
○ No. 1 is an example of the present invention of 0.23% Si, which realizes low iron loss and high magnetic flux density.

○ No.2〜11は約0.5%Siの極低Alの鋼種に関し、成分
条件または製造条件を変化させた例である。
○ Nos. 2 to 11 are examples in which the composition conditions or the manufacturing conditions were changed for the ultra-low Al steel type of about 0.5% Si.

巻取温度が600℃以下の本発明No.2,No.3は、同温度が本
発明範囲を上まわるNo.6に較べ鉄損、磁束密度ともすぐ
れた値となっている。
No. 2 and No. 3 of the present invention having a winding temperature of 600 ° C. or less have excellent iron loss and magnetic flux density as compared with No. 6 in which the temperature exceeds the range of the present invention.

熱延板の焼鈍温度が650〜950℃の範囲にある本発明例N
o.5は、同焼鈍温度が本発明範囲を下まわるNo.4に比べ
鉄損、磁束密度がともに格段にすぐれている。
Inventive Example N in which the annealing temperature of the hot rolled sheet is in the range of 650 to 950 ° C
In o.5, both the iron loss and the magnetic flux density are remarkably superior to those of No. 4 in which the annealing temperature falls below the range of the present invention.

No.7〜No.9は鋼成分がMn量を除き実質的に同一のもの
で、Mn量が0.20%以下の本発明例No.7は、Mn量が本発明
範囲を上まわるNo.8,9に比べ、これも鉄損、磁束密度が
良好なものとなっている。
No. 7 ~ No. 9 steel composition is substantially the same except for the amount of Mn, Mn amount of the present invention example No. 7 of 0.20% or less, Mn amount exceeds the present invention No. 8 Compared with No.9 and No.9, the iron loss and magnetic flux density are also good.

No.10と11は鋼成分がS量の点でのみ実質的差異のある
もので、S量が0.006%以下の本発明例No.10は、S量が
本発明範囲を上まわるNo.11に比べ上記両特性とも大巾
な改善が認められる。
Nos. 10 and 11 are substantially different only in terms of the amount of S in the steel composition, and in Example No. 10 of the present invention in which the amount of S is 0.006% or less, the amount of S exceeds the range of the present invention. A marked improvement is observed in both of the above characteristics.

○ No.12〜14は約0.5%Siの鋼種でSol.Al量を変化させ
た例で、Sol.Al量が0.150〜1.0%の範囲内にある本発明
例No.12,13は、Sol.Al量が0.033%で本発明条件に適合
しないNo.14に比べ、両特性とも良好で、とくに鉄損に
ついて著しい改善が見られる。
○ No. 12 to 14 is an example in which the amount of Sol.Al is changed in a steel type of about 0.5% Si, and the present invention examples No. 12 and 13 in which the amount of Sol.Al is within the range of 0.150 to 1.0% are Sol. .Al content is 0.033% and both properties are better than No.14 which does not meet the conditions of the present invention, and especially remarkable improvement in iron loss is observed.

○ No.15,16は約0.8%Siの鋼種で何れも本発明例であ
る。既に述べてきた本発明例のものに比べ、Si量が高い
分だけ磁束密度は低い値となっているが、鉄損が著しく
低く、レベルの高い鉄損・磁束密度バランスとなってい
る。
○ Nos. 15 and 16 are steel types of about 0.8% Si and are examples of the present invention. Compared with the examples of the present invention described above, the magnetic flux density is low due to the high Si content, but the iron loss is remarkably low and the iron loss / magnetic flux density balance is high.

○ 実施例2 実施例1はエプスタイン試験片を切断採取後そのまま磁
気測定を行った結果であるが、ここでは実施例1のNo.
2,5,8,13,14のものから採取したエプスタイン試験片に
更に750×2hの歪取焼鈍を施したのち、磁気特性を評価
した。これはセミプロセス材としての磁気特性をみたも
のである。
Example 2 Example 1 is the result of magnetically measuring the Epstein test piece after cutting and sampling, and here, No. 1 of Example 1 is used.
The Epstein test pieces taken from 2, 5, 8, 13, and 14 were further subjected to strain relief annealing for 750 × 2 h, and then the magnetic properties were evaluated. This shows the magnetic properties as a semi-processed material.

結果を第2表に示す。The results are shown in Table 2.

No.2,5,13が本発明例であるが、これらは歪取焼鈍後に
おいても、低鉄損、高磁束密度の良好な磁気特性を示し
た。
Nos. 2, 5, and 13 are examples of the present invention, but these showed good magnetic characteristics of low iron loss and high magnetic flux density even after stress relief annealing.

〔発明の効果〕〔The invention's effect〕

以上の説明から明らかなように本発明の方法は、低鉄損
でかつ磁束密度の高い、すぐれた磁気特性の無方向性電
磁鋼板を製造することが可能であり、しかも従来技術の
ように実際上困難な低温での熱間圧延を必要とせず、操
業上通常の設備で問題を生じることがない。
As is clear from the above description, the method of the present invention is capable of producing a non-oriented electrical steel sheet having a low iron loss and a high magnetic flux density and excellent magnetic properties, and moreover, as in the prior art, It does not require hot rolling at low temperature, which is very difficult, and does not cause any problems in normal equipment for operation.

したがって本発明は、無方向性電磁鋼板の性能向上策と
して、実用上きわめて有意義な発明ということができ
る。
Therefore, the present invention can be said to be an extremely significant invention in practice as a measure for improving the performance of the non-oriented electrical steel sheet.

【図面の簡単な説明】[Brief description of drawings]

第1図は低S条件下におけるMn量と磁気特性との関係を
示すプロット図、第2図は巻取温度と磁気特性との関係
を示すプロット図である。
FIG. 1 is a plot diagram showing the relationship between the amount of Mn and magnetic properties under low S conditions, and FIG. 2 is a plot diagram showing the relationship between winding temperature and magnetic properties.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】C0.010%以下、Si0.1〜1.0%、Mn0.20%以
下、S0.006%以下、Sol.Al0.002%未満で、残部はFeお
よび不可避的不純物よりなる鋼素材、あるいは、この鋼
素材にさらにP0.050〜0.200%を含有させた鋼素材を、
圧延終了温度を700℃以上でかつフェライト域内の温度
として熱間圧延し、続いて600℃以下の温度で巻取りを
行い、次いで650〜950℃の温度で焼鈍を行うとともに、
その前または後、もしくはその双方で脱スケールを実施
し、しかるのち冷間圧延、焼鈍を施すことを特徴とする
磁束密度の高い無方向性電磁鋼板の製造方法。
1. A steel material comprising C0.010% or less, Si0.1 to 1.0%, Mn0.20% or less, S0.006% or less, and Sol.Al0.002% or less, with the balance being Fe and inevitable impurities. Or, a steel material containing P0.050 to 0.200% in this steel material,
Hot rolling is performed at a rolling end temperature of 700 ° C. or higher and a temperature in the ferrite region, followed by winding at a temperature of 600 ° C. or lower, and then annealing at a temperature of 650 to 950 ° C.,
A method for producing a non-oriented electrical steel sheet having a high magnetic flux density, which comprises performing descaling before or after or both, followed by cold rolling and annealing.
【請求項2】C0.010%以下、Si0.1〜1.0%、Mn0.20%以
下、S0.006%以下、Sol.Al0.150〜1.0%で、残部はFeお
よび不可避的不純物よりなる鋼素材、あるいは、この鋼
素材にさらにP0.050〜0.200%を含有させた鋼素材を、
圧延終了温度を700℃以上でかつフェライト域内の温度
として熱間圧延し、続いて600℃以下の温度で巻取りを
行い、次いで650〜950℃の温度で焼鈍を行うとともに、
その前または後、もしくはその双方で脱スケールを実施
し、しかるのち冷間圧延、焼鈍を施することを特徴とす
る磁束密度の高い無方向性電磁鋼板の製造方法。
2. A steel comprising C0.010% or less, Si0.1 to 1.0%, Mn0.20% or less, S0.006% or less, and Sol.Al0.150 to 1.0% with the balance being Fe and inevitable impurities. Material, or steel material containing P0.050-0.200% in addition to this steel material,
Hot rolling is performed at a rolling end temperature of 700 ° C. or higher and a temperature in the ferrite region, followed by winding at a temperature of 600 ° C. or lower, and then annealing at a temperature of 650 to 950 ° C.,
A method for producing a non-oriented electrical steel sheet having a high magnetic flux density, which comprises performing descaling before or after or both, and then performing cold rolling and annealing.
JP62157411A 1987-06-24 1987-06-24 Manufacturing method of non-oriented electrical steel sheet with high magnetic flux density Expired - Lifetime JPH0788530B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62157411A JPH0788530B2 (en) 1987-06-24 1987-06-24 Manufacturing method of non-oriented electrical steel sheet with high magnetic flux density

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62157411A JPH0788530B2 (en) 1987-06-24 1987-06-24 Manufacturing method of non-oriented electrical steel sheet with high magnetic flux density

Publications (2)

Publication Number Publication Date
JPS644425A JPS644425A (en) 1989-01-09
JPH0788530B2 true JPH0788530B2 (en) 1995-09-27

Family

ID=15649047

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62157411A Expired - Lifetime JPH0788530B2 (en) 1987-06-24 1987-06-24 Manufacturing method of non-oriented electrical steel sheet with high magnetic flux density

Country Status (1)

Country Link
JP (1) JPH0788530B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2665181B1 (en) * 1990-07-30 1994-05-27 Ugine Aciers PROCESS FOR PRODUCING MAGNETIC STEEL SHEET WITH NON-ORIENTED GRAINS AND SHEET OBTAINED BY THIS PROCESS.

Also Published As

Publication number Publication date
JPS644425A (en) 1989-01-09

Similar Documents

Publication Publication Date Title
JP2000129409A (en) Nonoriented silicon steel sheet excellent in actual machine characteristic of rotary machine and its production
KR20190093615A (en) Non-oriented electrical steel sheet and manufacturing method thereof
JPH0469223B2 (en)
EP0684320B1 (en) Process of making electrical steels
JPH0680169B2 (en) Manufacturing method of non-oriented electrical steel sheet with high magnetic flux density
JP2509018B2 (en) Manufacturing method of non-oriented electrical steel sheet with high magnetic flux density and low iron loss
KR100373871B1 (en) Non-oriented electrical steel sheet and core for motor or transformer with low iron loss after stress relief annealing
JP3375998B2 (en) Manufacturing method of non-oriented electrical steel sheet
JP4422220B2 (en) Non-oriented electrical steel sheet with high magnetic flux density and low iron loss and method for producing the same
JP2002348644A (en) Non-oriented electromagnetic steel sheet with ultrahigh magnetic flux density, and manufacturing method therefor
JP4337146B2 (en) Method for producing non-oriented electrical steel sheet
JP3430794B2 (en) Non-oriented electrical steel sheet excellent in magnetic properties and method for producing the same
JP3483265B2 (en) Method for producing non-oriented electrical steel sheet with high magnetic flux density and low iron loss
JPH0788530B2 (en) Manufacturing method of non-oriented electrical steel sheet with high magnetic flux density
JP3379055B2 (en) Method for producing non-oriented electrical steel sheet with high magnetic flux density and low iron loss
JP2701352B2 (en) Non-oriented electrical steel sheet with excellent magnetic properties and method for producing the same
KR101110257B1 (en) Non-oriented electrical steel sheet with high magnetic flux density and manufacturing method thereof
JP2639290B2 (en) Manufacturing method of non-oriented electrical steel sheet for rotating machines
JPH06104865B2 (en) Non-oriented electrical steel sheet manufacturing method
JP2874564B2 (en) Manufacturing method of non-oriented electrical steel sheet with excellent magnetic properties
JP2005187846A (en) Non-oriented electromagnetic steel sheet and manufacturing method therefor
JP3348811B2 (en) Manufacturing method of non-oriented electrical steel sheet with high magnetic flux density and low iron loss
JP2870817B2 (en) Manufacturing method of semi-process non-oriented electrical steel sheet with excellent magnetic properties
JP2501219B2 (en) Non-oriented electrical steel sheet manufacturing method
JPH07258736A (en) Production of nonoriented silicon steel sheet excellent in magnetic property

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070927

Year of fee payment: 12