JPH078793A - Method for controlling conduction of thermal energy - Google Patents

Method for controlling conduction of thermal energy

Info

Publication number
JPH078793A
JPH078793A JP17604693A JP17604693A JPH078793A JP H078793 A JPH078793 A JP H078793A JP 17604693 A JP17604693 A JP 17604693A JP 17604693 A JP17604693 A JP 17604693A JP H078793 A JPH078793 A JP H078793A
Authority
JP
Japan
Prior art keywords
liquid metal
melt
thermal energy
heat
conductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP17604693A
Other languages
Japanese (ja)
Other versions
JP3366382B2 (en
Inventor
Takeharu Yamamura
武晴 山村
Choju Nagata
長寿 永田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dowa Holdings Co Ltd
Original Assignee
Dowa Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dowa Mining Co Ltd filed Critical Dowa Mining Co Ltd
Priority to JP17604693A priority Critical patent/JP3366382B2/en
Publication of JPH078793A publication Critical patent/JPH078793A/en
Application granted granted Critical
Publication of JP3366382B2 publication Critical patent/JP3366382B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)

Abstract

PURPOSE:To provide a method for controlling conduction of thermal energy wherein the method is adopted in a wide temperature region to set the desired temperature gradient in melt by controlling thermal energy radiated from melt. CONSTITUTION:In a device of a figure wherein a vertical Bridgman furnace is used, a vertical type boat 8 made of quartz is surrounded by heat insulating material 3 and charged with melt 11. The temperature of the vertical type boat 8 is raised by a carbon heater 9. A vessel 14 made of carbon is fitted to the bottom of the vertical type boat 8 and houses liquid gallium 15. A rotary magnet constituted of rare earth magnets 17 fitted to ringlike soft iron 16 is so rotated along a water cooling jacket 12 formed in the circumference of a flange 13 that the temperature difference of temperature sensors 6, 7 set in a silica tube 10 provided in the axial center of the boat 8 is specified. The velocity of the rotary magnet is controlled and thermal energy radiated from melt 11 is controlled through liquid gallium 15.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、融液の固化速度や蒸発
速度等のコントロールに使用できる熱エネルギー伝導の
制御方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method of controlling thermal energy conduction which can be used to control the solidification rate and evaporation rate of a melt.

【0002】[0002]

【従来の技術】工業的に広く用いられる液相からの単結
晶育成法においては、例えば温度勾配のある電気炉で融
体を収納したるつぼを移動したり降下したりして結晶を
育成する温度勾配法(ブリッジマン法)、または融体表
面から結晶を引上げる引上げ法(チョクラルスキー法)
などにおいて、いずれも融体の冷却速度のコントロール
が重要である。
2. Description of the Related Art In a method of growing a single crystal from a liquid phase which is widely used industrially, for example, a temperature at which a crystal is grown by moving or lowering a crucible containing a melt in an electric furnace having a temperature gradient. Gradient method (Bridgman method) or pulling method (Czochralski method) to pull crystal from melt surface
In such cases, it is important to control the cooling rate of the melt.

【0003】一般に融液の固化速度や蒸発速度をコント
ロールする晶出装置や結晶育成装置における融液の冷却
は放熱したい部分を空冷したり、液体で冷却するかある
いは液体アルカリで冷却する方法が採られている。
Generally, for cooling a melt in a crystallization apparatus or a crystal growing apparatus for controlling the solidification rate or evaporation rate of the melt, a method of cooling the portion to be radiated with heat, cooling with a liquid, or cooling with a liquid alkali is adopted. Has been.

【0004】冷却される対象により、通常250℃以下
の冷却方法については、水やシリコーンオイル等を用
い、それ以上ではアルカリ金属や空気等で冷却される場
合が多い。
Depending on the object to be cooled, water, silicone oil or the like is usually used as a cooling method at 250 ° C. or lower, and if it is higher than that, it is often cooled by alkali metal or air.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、前記冷
却方法のうち、空気冷却は冷却速度が遅く、放熱したい
部分の放熱量を大きく取れないため、放熱量を増すため
には他の方法に比較して大きなスペースを必要とする。
However, among the above-mentioned cooling methods, air cooling has a slow cooling rate and cannot provide a large amount of heat radiation in a portion to be radiated. Therefore, in order to increase the amount of heat radiation, it is necessary to compare with other methods. Requires a large space.

【0006】一方、液体冷却による方法では、放熱した
い部分からの放熱量を大きくできるものの、放熱エネル
ギーのコントロール範囲が狭く、したがって冷却温度幅
に制限があった。
On the other hand, although the liquid cooling method can increase the amount of heat radiation from the portion to be radiated, the control range of the heat radiation energy is narrow and therefore the cooling temperature range is limited.

【0007】また、液体アルカリ冷却でも冷却温度域が
100〜700℃と狭い上、一般に設備費がかさむとい
う様にそれぞれ課題があった。
Further, even in the case of liquid alkali cooling, there are problems such that the cooling temperature range is as narrow as 100 to 700 ° C. and the equipment cost is generally high.

【0008】したがって本発明の目的は、融体から放散
される熱エネルギーをコントロールして融体中に所望の
温度勾配を設定するための、幅広い温度域において採用
可能な熱エネルギー伝導の制御方法を提供することにあ
る。
Therefore, an object of the present invention is to provide a control method of heat energy conduction which can be adopted in a wide temperature range for controlling the heat energy radiated from the melt and setting a desired temperature gradient in the melt. To provide.

【0009】[0009]

【課題を解決するための手段】本発明者は、上記目的を
達成すべく研究の結果、高低2種の熱良導体のうち前者
の第1の熱良導体から後者の第2の熱良導体に熱エネル
ギーが移動放散される際、第1および第2の熱良導体の
途中に、熱的に両者を接続する空間部(真空または気
相)と液体金属、例えば融点が29.8℃の高純度液体
ガリウムとからなる接続部を設け、この接続部を回転す
るか、あるいは両熱良導体の間隔を変えることにより該
液体金属の有効熱伝導面積を変化させるようにすれば、
第1の熱良導体から放散する熱エネルギーを制御でき、
従来技術の問題点を解決する有効な手段となることを見
いだし本発明に到達した。
As a result of research to achieve the above object, the present inventor has conducted thermal energy from the first heat-good conductor of the former among the two heat-good conductors of high and low types to the second heat-good conductor of the latter. When moving and dissipating, the space (vacuum or gas phase) that thermally connects the first and second good thermal conductors and liquid metal, for example, high-purity liquid gallium having a melting point of 29.8 ° C. By providing a connection part composed of and rotating the connection part or changing the distance between the two good heat conductors, the effective heat conduction area of the liquid metal can be changed.
It is possible to control the heat energy dissipated from the first good thermal conductor,
The present invention has been achieved by finding that it is an effective means for solving the problems of the prior art.

【0010】すなわち、本発明は第1に、第1の熱良導
体から第2の熱良導体に熱エネルギーを伝導することに
よって第1の熱良導体中の温度勾配を設定する熱エネル
ギー伝導の制御方法において、上記第1の熱良導体と第
2の熱良導体との間に真空または気相からなる空間部と
液体金属とからなる接続部を設け、両熱良導体間を熱的
に接続する液体金属の有効熱伝導面積を変えることによ
り、第1の熱良導体中の温度勾配を第1の熱良導体から
の放熱量によって制御することを特徴とする熱エネルギ
ー伝導の制御方法を:第2に、前記液体金属の有効熱伝
導面積の変更が該液体金属を回転することにより行われ
る上記第1の制御方法を:第3に、前記液体金属の有効
熱伝導面積の変更が該液体金属と熱的に接続する熱良導
体同士の間隔の変更により行われる上記第1の制御方法
を提供するものでる。
That is, the present invention is, firstly, in a method of controlling thermal energy conduction for setting a temperature gradient in the first thermal conductor by conducting thermal energy from the first thermal conductor to the second thermal conductor. , A liquid metal that thermally connects the two good thermal conductors by providing a connecting part made of a liquid metal and a space formed of a vacuum or a vapor phase between the first good thermal conductor and the second good thermal conductor A method of controlling thermal energy conduction, characterized in that the temperature gradient in the first good thermal conductor is controlled by changing the heat conducting area by the amount of heat released from the first good thermal conductor: second, the liquid metal Changing the effective heat transfer area of the liquid metal by rotating the liquid metal: Third, changing the effective heat transfer area of the liquid metal thermally connects with the liquid metal. Change in spacing between good thermal conductors Out those providing the first control method carried out by.

【0011】[0011]

【作用】本発明の方法では、両熱良導体の間に設けられ
た接続部中の液体金属によって有効熱伝導面積を変化さ
せることにより熱エネルギーの伝導を制御する。
In the method of the present invention, the conduction of thermal energy is controlled by changing the effective heat conduction area by the liquid metal in the connection portion provided between the two good thermal conductors.

【0012】上記有効熱伝導面積を制御する方法とし
て、図2(a)の模式断面図に示すように、断熱材3で
囲まれた第1の熱良導体1と第2の熱良導体2との間
に、静止時、図示のような空間部4と液体金属5とから
なる接続部を設け、図2(b)の模式断面図のように該
接続部を回転させると、回転速度に応じて、側壁に沿っ
てせり上がった液体金属5と接する第1の熱良導体との
面積すなわち有効熱伝導面積が変化するようになる。
As a method of controlling the effective heat conduction area, as shown in the schematic cross-sectional view of FIG. 2A, the first heat good conductor 1 and the second heat good conductor 2 surrounded by a heat insulating material 3 are formed. In the meantime, when stationary, a connecting portion composed of the space portion 4 and the liquid metal 5 as shown in the figure is provided, and the connecting portion is rotated as shown in the schematic cross-sectional view of FIG. , The area of the first heat-good conductor in contact with the liquid metal 5 rising along the side wall, that is, the effective heat conduction area is changed.

【0013】また、図3の模式断面図に示すように、同
じく断熱材3で囲まれた両熱良導体1および2との間に
図示のような接続部(空間部4および液体金属5からな
る)を設け、両熱良導体のいずれかを上下に移動して両
者の間隔を変えることにより、第1の熱良導体と接する
液体金属の有効熱伝導面積を変化させることもできる。
以上の様にして上記有効熱伝導面積を変えることによ
り、第1の熱良導体中に押入された第1温度センサー6
と第2温度センサー7との温度差が所望の値になるよう
に放散熱エネルギーをコントロールすることができる。
Further, as shown in the schematic cross-sectional view of FIG. 3, a connection portion (a space portion 4 and a liquid metal 5 as shown in the drawing is provided between the two thermal conductors 1 and 2 which are also surrounded by the heat insulating material 3. It is also possible to change the effective heat conduction area of the liquid metal which is in contact with the first good thermal conductor by providing a) and moving either of the good thermal conductors up and down to change the distance between the two.
By changing the effective heat conduction area as described above, the first temperature sensor 6 pushed into the first good thermal conductor.
The dissipated heat energy can be controlled so that the temperature difference between the second temperature sensor 7 and the second temperature sensor 7 becomes a desired value.

【0014】なお、接続部中の液体金属を回転させるに
は、例えばリング状の軟鉄板の内側に希土類磁石を取り
つけた回転磁石を接続部の周りを回転させ、その回転速
度に比例して流れる誘導電流によって回転する液体金属
の挙動をコントロールする。
In order to rotate the liquid metal in the connecting portion, for example, a rotating magnet having a rare earth magnet mounted inside a ring-shaped soft iron plate is rotated around the connecting portion and flows in proportion to the rotational speed. The induced current controls the behavior of the rotating liquid metal.

【0015】また、液体金属としては、融点が29.8
℃の高純度ガリウムあるいはその化合物が化学的安定性
およびコントロール域の広さから考えて望ましい。
The liquid metal has a melting point of 29.8.
High-purity gallium or its compound at ℃ is desirable in view of its chemical stability and wide control range.

【0016】[0016]

【実施例1】図1は本実施例で用いられた垂直ブリッジ
マン炉を利用した装置の模式断面図であって、この図を
参照して以下説明する。
[Embodiment 1] FIG. 1 is a schematic sectional view of an apparatus using a vertical Bridgman furnace used in this embodiment, which will be described below with reference to this drawing.

【0017】断熱材3で囲まれ、カーボンヒーター9に
よって昇温される500℃以上の融点をもつ融体11が
装入されている石英製縦型ボート8の底部に液体ガリウ
ム15を収納した特殊カーボン材からなる容器14を図
のように取りつけ、該ボート8の軸心に設けた石英管1
0中の第1温度センサー6と第2温度センサー7との温
度差が一定になるように、リング状の軟鉄16に取りつ
けられた希土類磁石からなる回転磁石を、フランジ13
の周囲に設けられた水冷ジャケット12に沿って回転さ
せた。
A special type in which liquid gallium 15 is housed in the bottom of a vertical quartz boat 8 surrounded by a heat insulating material 3 and charged with a melt 11 having a melting point of 500 ° C. or higher which is heated by a carbon heater 9. A container 14 made of a carbon material is attached as shown in the figure, and the quartz tube 1 is provided at the axis of the boat 8.
In order to keep the temperature difference between the first temperature sensor 6 and the second temperature sensor 7 at zero, the rotary magnet made of a rare earth magnet attached to the ring-shaped soft iron 16 is attached to the flange 13
It was rotated along a water cooling jacket 12 provided around the.

【0018】回転磁石を回転させると回転速度に比例し
て誘導電流が流れるので液体金属を回転させることがで
き、図では液体ガリウムが容器の側面にせり上がった回
転時の状態を示している。
When the rotating magnet is rotated, an induced current flows in proportion to the rotation speed, so that the liquid metal can be rotated. In the figure, the state in which the liquid gallium rises to the side surface of the container is shown.

【0019】まず、上記の装置で3段重ねの各カーボン
容器に250gずつ容器の体積の90%に相当する高純
度ガリウムを入れ、アルゴン雰囲気で昇温したところ、
第1温度センサーが1000℃、第2温度センサーが9
50℃で単位面積当りの放出エネルギーは4.2 W/cm
2 であった。
First, 250 g of high-purity gallium, which corresponds to 90% of the volume of the container, was placed in each of the three-tiered carbon containers in the above apparatus and the temperature was raised in an argon atmosphere.
The first temperature sensor is 1000 ℃, the second temperature sensor is 9
Emission energy per unit area at 50 ° C is 4.2 W / cm
Was 2 .

【0020】次に、両センサーの温度差を100℃にセ
ットして該磁石を回転させたところ、第1センサー、第
2センサーが約950℃および約850℃となり、放出
エネルギーは8.5 W/cm2 となった。
Next, when the temperature difference between the two sensors was set to 100 ° C. and the magnet was rotated, the first and second sensors were about 950 ° C. and about 850 ° C., and the emission energy was 8.5 W. / Cm 2 .

【0021】次に、両センサーの温度差を200℃にセ
ットして該磁石を回転させたところ、同様に約800℃
および約600℃となり放出エネルギーは17 W/cm2
であり、以上の様に放出エネルギーをコントロールする
ことができた。
Next, when the temperature difference between both sensors was set to 200 ° C. and the magnet was rotated, about 800 ° C. was similarly obtained.
And about 600 ° C, the emission energy is 17 W / cm 2
The emission energy could be controlled as described above.

【0022】[0022]

【実施例2】実施例1では融体11中の第1温度センサ
ーで1000℃以下の場合について述べたが、本実施例
では1000℃より高温の場合について試験した。
Example 2 In Example 1, the case where the first temperature sensor in the melt 11 was 1000 ° C. or lower was described, but in this Example, the case where the temperature was higher than 1000 ° C. was tested.

【0023】図1の装置を用いて第1温度センサーが1
400℃、第2温度センサーが1330℃になるように
して試験を行ったが、実施例1と同様に支障なく熱放出
エネルギーをコントロールすることができた。
Using the device of FIG. 1, the first temperature sensor is
The test was conducted at 400 ° C. and the temperature of the second temperature sensor at 1330 ° C., but the heat release energy could be controlled without any trouble as in Example 1.

【0024】[0024]

【発明の効果】以上説明したように、本発明の方法によ
れば、熱良導体、例えば融体の固化速度をコントロール
するために、2つの熱良導体の途中を液体金属でつな
ぎ、液体金属の有効熱伝導面積をコントロールするの
で、熱エネルギー伝導、すなわち熱放出エネルギーを幅
広い温度域において制御することができる。
As described above, according to the method of the present invention, in order to control the solidification rate of a good heat conductor, for example, a melt, two heat good conductors are connected to each other by a liquid metal, and the liquid metal is effectively used. Since the heat conduction area is controlled, heat energy conduction, that is, heat emission energy can be controlled in a wide temperature range.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の1実施例において用いられた垂直ブリ
ッジマン炉を利用する装置の模式断面図である。
FIG. 1 is a schematic cross-sectional view of an apparatus using a vertical Bridgman furnace used in one embodiment of the present invention.

【図2】本発明において、液体金属を回転させるタイプ
の場合、その作用を説明する模式図であって、同図
(a)は液体金属が静止時の状態を、同図(b)は液体
金属が回転して有効熱伝導面積が変化する様子を示す図
である。
2A and 2B are schematic diagrams for explaining the operation of a liquid metal rotating type according to the present invention, in which FIG. 2A shows a state in which the liquid metal is stationary, and FIG. It is a figure which shows a mode that a metal rotates and an effective heat conduction area changes.

【図3】本発明において、熱良導体のいずれかが上下に
移動すると、両者間に介在する液体金属の有効熱伝導面
積が変化する様子を示す模式図である。
FIG. 3 is a schematic diagram showing how the effective heat conduction area of the liquid metal interposed between the two good thermal conductors moves up and down in the present invention.

【符号の説明】[Explanation of symbols]

1 第1の熱良導体 2 第2の熱良導体 3 断熱材 4 空間部 5 液体金属 6 第1温度センサー 7 第2温度センサー 8 石英製縦型ボート 9 カーボンヒーター 10 石英管 11 融体 12 水冷ジャケット 13 フランジ 14 カーボン容器 15 ガリウム 16 軟鉄 17 希土類磁石 1 1st good thermal conductor 2 2nd good thermal conductor 3 Thermal insulation 4 Space part 5 Liquid metal 6 1st temperature sensor 7 2nd temperature sensor 8 Quartz vertical boat 9 Carbon heater 10 Quartz tube 11 Melt 12 Water cooling jacket 13 Flange 14 Carbon container 15 Gallium 16 Soft iron 17 Rare earth magnet

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 第1の熱良導体から第2の熱良導体に熱
エネルギーを伝導することによって第1の熱良導体中の
温度勾配を設定する熱エネルギー伝導の制御方法におい
て、上記第1の熱良導体と第2の熱良導体との間に真空
または気相による空間部と液体金属とからなる接続部を
設け、両熱良導体間を熱的に接続する液体金属の有効熱
伝導面積を変えることにより、第1の熱良導体中の温度
勾配を第1の熱良導体からの放熱量の調節によって制御
することを特徴とする熱エネルギー伝導の制御方法。
1. A method of controlling thermal energy conduction, wherein the temperature gradient in the first good thermal conductor is set by conducting thermal energy from the first good thermal conductor to the second good thermal conductor, wherein the first good thermal conductor is provided. By providing a connecting portion made of a liquid metal and a space portion in a vacuum or a vapor phase between the second heat conductor and the second heat conductor, and changing the effective heat conduction area of the liquid metal that thermally connects the two heat conductors, A method for controlling thermal energy conduction, characterized in that a temperature gradient in the first good thermal conductor is controlled by adjusting the amount of heat released from the first good conductor.
【請求項2】 前記液体金属の有効熱伝導面積の変更が
該液体金属の高速回転による液面上昇力の調節により行
われる請求項1記載の制御方法。
2. The control method according to claim 1, wherein the effective heat conduction area of the liquid metal is changed by adjusting the liquid level raising force by the high speed rotation of the liquid metal.
【請求項3】 前記液体金属の有効熱伝導面積の変更が
該液体金属と熱的に接続する熱良導体同士の間隔の変更
により行われる請求項1記載の制御方法。
3. The control method according to claim 1, wherein the effective heat conduction area of the liquid metal is changed by changing an interval between thermal conductors that are thermally connected to the liquid metal.
JP17604693A 1993-06-23 1993-06-23 Control method of thermal energy conduction Expired - Fee Related JP3366382B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17604693A JP3366382B2 (en) 1993-06-23 1993-06-23 Control method of thermal energy conduction

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17604693A JP3366382B2 (en) 1993-06-23 1993-06-23 Control method of thermal energy conduction

Publications (2)

Publication Number Publication Date
JPH078793A true JPH078793A (en) 1995-01-13
JP3366382B2 JP3366382B2 (en) 2003-01-14

Family

ID=16006778

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17604693A Expired - Fee Related JP3366382B2 (en) 1993-06-23 1993-06-23 Control method of thermal energy conduction

Country Status (1)

Country Link
JP (1) JP3366382B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110501086A (en) * 2019-08-01 2019-11-26 电子科技大学 A kind of flexibility temperature sensor and preparation method thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110501086A (en) * 2019-08-01 2019-11-26 电子科技大学 A kind of flexibility temperature sensor and preparation method thereof
CN110501086B (en) * 2019-08-01 2020-09-25 电子科技大学 Flexible temperature sensor and preparation method thereof

Also Published As

Publication number Publication date
JP3366382B2 (en) 2003-01-14

Similar Documents

Publication Publication Date Title
JP2804505B2 (en) Apparatus and method for growing large single crystals in plate / slab form
JP2009505935A (en) Apparatus and method for crystal growth
US4650540A (en) Methods and apparatus for producing coherent or monolithic elements
Frosch et al. The preparation and floating zone processing of gallium phosphide
GB2279585A (en) Crystallising molten materials
US4904336A (en) Method of manufacturing a single crystal of compound semiconductor and apparatus for the same
JP2005179080A (en) Method for producing single crystal and production apparatus
JPS6153187A (en) Device for growing single crystal
JPS6256083B2 (en)
US5268063A (en) Method of manufacturing single-crystal silicon
JP3366382B2 (en) Control method of thermal energy conduction
JPH10139599A (en) Superconducting magnet for single crystal pulling-up device
JPH11209198A (en) Synthesis of silicon carbide single crystal
US4784715A (en) Methods and apparatus for producing coherent or monolithic elements
JPS6168389A (en) Apparatus for growing single crystal
US3039071A (en) Electrical resistance-type heater
US6574264B2 (en) Apparatus for growing a silicon ingot
US6669776B2 (en) Magnetic field furnace and a method of using the same to manufacture semiconductor substrates
JPH0315550Y2 (en)
US3505025A (en) Jacketed,cooled crucible for crystallizing material
AU2002246865A1 (en) Magnetic field furnace and a method of using the same to manufacture semiconductor substrates
JPH0337181A (en) Production of big magnetostrictive alloy rod composed of rare earth metal and transition metal
JPS62119198A (en) Device for rotating and pulling up single crystal provided with magnetic field impressing device
JPH0660080B2 (en) Single crystal growth equipment
CN211522375U (en) Auxiliary heating device of single crystal furnace

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 5

Free format text: PAYMENT UNTIL: 20071101

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071101

Year of fee payment: 5

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071101

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081101

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees