JPH0787770B2 - Exhaust heat recovery system heat treatment equipment - Google Patents

Exhaust heat recovery system heat treatment equipment

Info

Publication number
JPH0787770B2
JPH0787770B2 JP63029324A JP2932488A JPH0787770B2 JP H0787770 B2 JPH0787770 B2 JP H0787770B2 JP 63029324 A JP63029324 A JP 63029324A JP 2932488 A JP2932488 A JP 2932488A JP H0787770 B2 JPH0787770 B2 JP H0787770B2
Authority
JP
Japan
Prior art keywords
cold water
hot water
cooling
heat
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP63029324A
Other languages
Japanese (ja)
Other versions
JPH01206985A (en
Inventor
教之 森山
美代次 石田
Original Assignee
ダイキンプラント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ダイキンプラント株式会社 filed Critical ダイキンプラント株式会社
Priority to JP63029324A priority Critical patent/JPH0787770B2/en
Publication of JPH01206985A publication Critical patent/JPH01206985A/en
Publication of JPH0787770B2 publication Critical patent/JPH0787770B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Distillation Of Fermentation Liquor, Processing Of Alcohols, Vinegar And Beer (AREA)

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は煮沸、冷却を交互に繰り返して行う煮沸工程の
際に発生する大気圧100℃の水蒸気を熱回収して連続的
な冷却に必要な冷熱源を得ることが可能で、特に煮沸と
冷却とを交互かつ頻繁に行わせることが要求されるビー
ル仕込工程などに利用して好適な排熱回収方式熱処理装
置に関する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Use) The present invention is necessary for continuous cooling by recovering steam at atmospheric pressure of 100 ° C. generated during a boiling process in which boiling and cooling are alternately repeated. The present invention relates to an exhaust heat recovery type heat treatment apparatus which is suitable for use in a beer charging process or the like in which a different cold heat source can be obtained, and in particular, boiling and cooling are required to be alternately and frequently performed.

(従来の技術) 煮沸、冷却を交互に繰り返して行う製造工程例えばビー
ル仕込工程では、麦汁にホップを加えて100℃まで加熱
した原料中に含まれる異臭成分を水蒸気と共に発散させ
る操作を90分程度行って1時間位自然冷却後、次に100
分程度をかけて5℃位まで冷却することが行われてい
る。
(Prior art) In a manufacturing process in which boiling and cooling are alternately repeated, for example, in a beer charging process, an operation of causing offensive odor components contained in the raw material heated to 100 ° C by adding hops to wort to be emitted together with steam for 90 minutes Go for about 1 hour and let it cool naturally, then 100
It takes about 5 minutes to cool to about 5 ° C.

従来は、加熱と冷却とを夫々独立した加熱装置と冷却装
置とで処理している場合が多かったが2種の装置を利用
するのは装置面、運転面でのコストが高くつく不利があ
るので、最近は特に煮沸時における廃熱回収をはかるも
のが提案され、一部において実用されている。
In the past, heating and cooling were often processed by independent heating devices and cooling devices, but using two types of devices is disadvantageous in terms of cost in terms of equipment and operation. Therefore, recently, a method for recovering waste heat particularly during boiling has been proposed and partially put into practical use.

この熱回収は以下述べる要領で成されたものであって麦
汁煮沸用煮釜でバッチ毎に最初はボイラーから供給され
るスチームにより煮沸した後、煮釜上部から排出される
100℃、大気圧の水蒸気をスクリュー式など蒸気圧縮機
で吸引、圧縮することにより再加熱利用が可能な温度レ
ベル(130〜140℃)まで昇圧昇温させ、この吐出された
蒸気は別途設けた熱交換器を介し麦汁を加熱するように
している。
This heat recovery is performed as described below. In each wort boiling pot, each batch is first boiled with steam supplied from the boiler and then discharged from the top of the pot.
By sucking and compressing steam at 100 ° C and atmospheric pressure with a vapor compressor such as a screw type, the temperature is raised to a temperature level (130 to 140 ° C) where it can be reheated and reused, and the discharged steam is provided separately. The wort is heated via a heat exchanger.

従って、煮沸開始まではボイラーからエネルギーが供給
されるが、ある温度まで上昇した後はスチームを止めて
も圧縮機から十分なエネルギーが供給され、煮沸を継続
させることができるようになっている。
Therefore, energy is supplied from the boiler until the start of boiling, but after the temperature rises to a certain temperature, sufficient energy is supplied from the compressor even if steam is stopped, and boiling can be continued.

(発明が解決しようとする問題点) 上述の熱回収は「冷凍第60巻第697号、昭和60年11月
号、第1134頁」にも記載されているが、これは水蒸気に
ついての熱回収をはからせるものであって、冷却操作時
の熱効率の改善には何等関与しないものであり、ランニ
ングの低減効果が一応は奏されるものの、その程度は全
体の熱効率からみると余り大きくなく改善の実を挙げ難
いのが実状であり、併せて冷却運転時に発生する凝縮熱
の熱回収もはからなければ綜合的な熱量効率の大巾な向
上が得られないにもかかわらず、この点の解決が以前と
して成されていない。
(Problems to be Solved by the Invention) The heat recovery described above is also described in "Frozen Volume 60 No. 697, November 1985, page 1134", but this is heat recovery for steam. It does not contribute to the improvement of the thermal efficiency during the cooling operation, and although it has a running reduction effect, it is not so large in terms of the overall thermal efficiency. It is difficult to mention the fact that, even if the heat of the condensation heat generated during the cooling operation is not recovered at the same time, a comprehensive improvement in the total heat efficiency cannot be obtained. The resolution has not been made as before.

このような実状に鑑みて本発明は成されたものであっ
て、特に煮沸の際発生する水蒸気を熱回収してこの熱を
煮沸の再利用だけでなく冷却用冷熱を得るための熱源と
して、有効に利用し得る蓄冷熱方式を併用することによ
って時間的なずれを有して交互に行われる加熱と冷却と
に対する必要な熱源の確保と熱効率の向上によるランニ
ングコストの低減をはかり、さらに具体的な運転制御を
行う方法,手段を確立させて、一般の利用に対する普及
の促進をはからせることを目的とする。
In view of such an actual situation, the present invention has been made, and particularly as a heat source for recovering cooling heat as well as reusing this heat by recovering heat of steam generated during boiling, By using the cool storage heat method that can be effectively used together, the running cost is reduced by securing the necessary heat source for heating and cooling that are alternately performed with a time lag and improving the thermal efficiency. The purpose is to establish a method and means for performing various operational controls, and promote the popularization for general use.

(問題点を解決するための手段) しかして本発明は実施例を示す添付図面により明らかな
ように、収容中の被熱処理液を一定時間、一定周期の繰
り返しで大気圧下の100℃に加熱する煮沸釜等の加熱容
器(3)を複数基備えて、交互にかつ全体としては連続
的に加熱運転を行わせる煮沸装置(1)と、前記煮沸装
置(1)で加熱処理した被熱処理液を交互に冷却用熱交
換器(11),(11)に導いて、低温冷水との熱交換によ
り冷却せしめる冷却装置(2)とからなる熱処理装置に
おいて、ダンパ(19)が夫々設けられて各加熱容器
(3),(3)の気相部に夫々接続した熱回収用ダクト
(18),(18)、1次通路(21)を前記熱回収用ダクト
(18),(18)に一括接続した熱回収用熱交換器(2
0)、前記1次通路(21)に接続した抽気ファン(26)
からなり、各加熱容器(3),(3)で発生した大気圧
100℃の水蒸気と熱回収用熱交換器(20)の2次コイル
(22)に流通する水との間の熱交換を行わせる熱回収ラ
イン(4)と、前記熱回収用熱交換器(20)の2次コイ
ル(22)の温水取出口及び温水戻し口を、温度による比
重差で温度境膜を形成し貯液し得る縦長構造の温水タン
ク(29)における上部に設けた温水流入口及び下部に設
けた温水流出口に夫々接続してなり、沸騰に至らない高
温度、所定量の湯を温水タンク(29)に貯液可能となし
た蓄温水循環ライン(5)と、発生器(32),凝縮器
(33),蒸発器(34)及び吸収器(35)からなり、発生
器(32)の加熱コイル(36)を前記温水タンク(29)に
おける上部に設けた温水取出口及び下部に設けた温水戻
し口に夫々循環的に接続せしめた吸収式冷凍機(6)
と、前記温水タンク(29)と同要領により形成した縦長
構造の冷水タンク(43)における下部に設けた冷水流入
口及び上部に設けた冷水流出口を前記蒸発(34)の冷水
コイル(42)に循環的に接続してなり、低温冷水を前記
冷水タンク(43)に貯液可能となした蓄冷水循環ライン
(7)と、前記冷水タンク(43)の下部に設けた冷水取
出口及び上部に設けた冷水戻し口を前記冷却用熱交換器
(11),(11)の3次コイル(14)に循環的に接続して
なり、冷却用熱交換器(11),(11)の1次コイル(1
2)に導いた前記被熱処理液を冷却せしめる冷却循環ラ
イン(8)と、熱回収用ダクト(18),(18)の各ダン
パ(19)の開放、前記抽気ファン(26)の運転、前記冷
却装置(2)の運転、蓄温水循環ライン(5)の温水循
環、吸収式冷凍式(6)の冷凍運転、蓄冷水循環ライン
(7)の冷水循環及び冷却循環ライン(8)の冷却運転
を行わせる制御装置とを備えてなり、前記制御装置は、
加熱容器(3),(3)を運転する際発信する仕込開始
信号と仕込回数信号とにより、対応するダンパ(19),
(19)を開かせるダンパ制御手段と、ダンパ(19),
(19)のいずれかが開いており、かつ、前記異常差圧信
号が発信されていなくて前記抽気ファン(26)を運転さ
せ、前記異常差圧信号の発信により抽気ファン(26)を
停止させる抽気ファン制御手段と、熱回収用ダクト(1
8),(18)のダンパ(19)通過後の水蒸気温度が設定
値以上のときで、かつ、温水タンク(29)に設定温度の
温水が貯液されているときに吸収式冷凍機(6)を運転
させると共に、温水タンク(29)と発生器(32)の加熱
コイル(36)との間の温水循環量を冷凍負荷に応じて増
減させる冷凍機制御手段と、温水タンク(29)内に所定
温度、所定量の温水が貯液される如く、蓄温水循環ライ
ン(5)の循環温水量を調節する温水循環制御手段と、
冷水タンク(43)に所定温度の冷水が貯液される如く、
蓄冷水循環ライン(7)の循環冷水量を調節する冷水循
環制御手段と、加熱処理済みの後、冷却を必要とするた
め冷却開始信号が発信され、かつ、前記冷水タンク(4
3)に所定温度の冷水が貯液されていることによって冷
却循環ライン(8)の冷水循環を行わせる冷却制御手段
とからなることを特徴とする。
(Means for Solving the Problems) As will be apparent from the accompanying drawings showing examples of the present invention, however, the liquid to be heat treated is heated to 100 ° C. under atmospheric pressure for a certain period of time and a certain number of cycles. A boiling device (1) having a plurality of heating containers (3) such as a boiling pot and performing a heating operation alternately and continuously as a whole, and a liquid to be heat treated by the boiling device (1). In a heat treatment device comprising a cooling device (2) for alternately guiding heat to cooling heat exchangers (11), (11) and cooling by heat exchange with low-temperature cold water, dampers (19) are respectively provided. The heat recovery ducts (18), (18) and the primary passages (21) connected to the gas phase portions of the heating containers (3), (3) respectively are bundled in the heat recovery ducts (18), (18). Connected heat recovery heat exchanger (2
0), extraction fan (26) connected to the primary passage (21)
And the atmospheric pressure generated in each heating vessel (3), (3)
A heat recovery line (4) for exchanging heat between 100 ° C. steam and water flowing through the secondary coil (22) of the heat recovery heat exchanger (20), and the heat recovery heat exchanger ( The hot water inlet and the hot water return port of the secondary coil (22) of 20) are provided at the upper part of a vertically long structure hot water tank (29) capable of forming and storing a temperature boundary film due to the difference in specific gravity due to temperature. And a hot water circulation line (5), which is connected to the hot water outlets provided at the bottom and the bottom, respectively, and is capable of storing a predetermined amount of hot water that does not reach boiling in the hot water tank (29), and a generator. (32), condenser (33), evaporator (34) and absorber (35), and the heating coil (36) of the generator (32) is provided at the upper part of the hot water tank (29). And absorption-type refrigerators (6) that are cyclically connected to the hot water return ports provided in the lower part
And a cold water tank (43) having a vertically long structure formed in the same manner as the hot water tank (29), with a cold water inlet provided at a lower portion and a cold water outlet provided at an upper portion as a cold water coil (42) for the evaporation (34). And a cold water circulation line (7) capable of storing low-temperature cold water in the cold water tank (43), and a cold water outlet and an upper part provided in the lower part of the cold water tank (43). The cold water return port provided is cyclically connected to the cooling heat exchangers (11) and the tertiary coil (14) of the cooling heat exchanger (11), and the cooling heat exchangers (11) and (11) are primary. Coil (1
2) The cooling circulation line (8) for cooling the liquid to be heat-treated, the dampers (19) of the heat recovery ducts (18) and (18) are opened, the extraction fan (26) is operated, and The operation of the cooling device (2), the hot water circulation of the hot water circulation line (5), the freezing operation of the absorption refrigeration system (6), the cold water circulation of the cold water circulation line (7) and the cooling operation of the cooling circulation line (8). And a control device for performing the
Corresponding dampers (19), according to the preparation start signal and preparation frequency signal transmitted when operating the heating containers (3), (3)
Damper control means for opening (19), and damper (19),
Either one of (19) is opened, and the extraction fan (26) is operated when the abnormal differential pressure signal is not transmitted, and the extraction fan (26) is stopped by transmitting the abnormal differential pressure signal. Extraction fan control means and heat recovery duct (1
When the water vapor temperature after passing through the dampers (19) of (8) and (18) is equal to or higher than the set value and the hot water of the set temperature is stored in the hot water tank (29), the absorption refrigerator (6 ) Is operated, and the refrigerator control means for increasing or decreasing the circulating amount of hot water between the hot water tank (29) and the heating coil (36) of the generator (32) according to the refrigeration load, and the inside of the hot water tank (29). Hot water circulation control means for adjusting the circulating hot water amount in the warm water circulating line (5) so that a predetermined temperature and a predetermined amount of warm water are stored in
As cold water of a predetermined temperature is stored in the cold water tank (43),
Cold water circulation control means for adjusting the amount of circulating cold water in the cold water circulation line (7), and a cooling start signal is transmitted to require cooling after the heat treatment, and the cold water tank (4
It is characterized by comprising a cooling control means for causing cold water circulation of the cooling circulation line (8) by storing cold water of a predetermined temperature in 3).

また、請求項2の発明は、前記請求項1の発明に加え
て、吸収式冷凍機(6)の冷却温度が所定温度に比して
高いときに、ブライン等の低温冷水を冷却用熱交換器
(11),(11)の2次コイル(13)に流通させる追加冷
却制御手段を前記制御装置に設けた構成を特徴とする。
Further, the invention of claim 2 is, in addition to the invention of claim 1, heat exchange for cooling low temperature cold water such as brine when the cooling temperature of the absorption refrigerator (6) is higher than a predetermined temperature. The control device is characterized in that additional cooling control means for circulating the secondary coil (13) of the containers (11) and (11) is provided.

さらに、請求項3の発明は、発生器(32)の加熱コイル
(36)と温水タンク(29)の温水流出口とを接続する管
路中に加熱装置(47)を設けると共に、蒸発器(34)の
冷水コイル(42)と冷水タンク(43)の冷水流入口とを
接続する管路中に冷却装置(49)を設ける構成を請求項
1又は2の発明に付加せしめたことを特徴とする。
Further, in the invention of claim 3, the heating device (47) is provided in the pipe line connecting the heating coil (36) of the generator (32) and the hot water outlet of the hot water tank (29), and the evaporator ( A structure in which a cooling device (49) is provided in a pipe line connecting the cold water coil (42) of 34) and the cold water inlet of the cold water tank (43) is added to the invention of claim 1 or 2. To do.

(作用) 上記熱処理装置は、熱回収ライン(4)において100℃
の水蒸気から90℃程度の温水を効率よく得ることが可能
であって、熱回収効率を高く保持できる。
(Operation) The heat treatment device is 100 ° C. in the heat recovery line (4).
It is possible to efficiently obtain hot water of about 90 ° C. from the steam, and the heat recovery efficiency can be kept high.

そして蓄温水循環ライン(5)では温水タンク(29)内
の少なくとも液相上部に、90℃程度の中高温度域温水を
常時貯液し得るので、適正能力に設定した吸収式冷凍機
(6)を連続的に運転し得るだけの熱量を確保でき、従
って、蓄冷水循環ライン(7)の冷水タンク(43)内に
も少なくとも液相下部において7℃程度の低温冷水を常
時貯液し得る結果、煮沸後の時間をずらして行わせる冷
却に対し充分なエネルギーが確保される。
And in the hot water circulation line (5), at least the upper part of the liquid phase in the hot water tank (29) can always store hot water in the middle-high temperature range of about 90 ° C, so the absorption refrigerator (6) set to an appropriate capacity. As a result, it is possible to secure a sufficient amount of heat for continuous operation of the cold storage water, and therefore, it is possible to constantly store low-temperature cold water of about 7 ° C. in the cold water tank (43) of the cold water circulation line (7) at least in the lower part of the liquid phase. Sufficient energy is secured for the cooling that is performed with the time after boiling being shifted.

かくして煮沸に際し発生する水蒸気(排熱)を冷却のた
めの熱源として有効に利用し得る。
Thus, the steam (waste heat) generated during boiling can be effectively used as a heat source for cooling.

一方、請求項2の発明は、吸収式冷凍機(6)だけでは
所定の低温が得られないような場合に、ブライン等の低
温冷水による被熱処理液の冷却を補完的に行わせること
によって被熱処理液の冷却温度を低温維持することが可
能である。
On the other hand, according to the invention of claim 2, when the predetermined low temperature cannot be obtained only by the absorption refrigerator (6), the liquid to be heat treated is complementarily cooled by low temperature cold water such as brine. It is possible to keep the cooling temperature of the heat treatment liquid low.

また、請求項3の発明は、吸収式冷凍機(6)の温水供
給ライン、冷水供給ラインに対し、加熱装置(47)、冷
却装置(49)を介設させているので、例えば週明けのウ
オーミングアップ時の能力不足のとき、吸収式冷凍機が
異常停止したときなどにも、発生器(32)の加熱源を十
分確保でき、同時に蓄冷水循環ライン(7)の冷熱源も
十分確保できるので、能力不足を解消し、被熱処理液の
低温維持をはかり得る。
Further, in the invention of claim 3, since the heating device (47) and the cooling device (49) are provided on the hot water supply line and the cold water supply line of the absorption chiller (6), for example, at the start of the week. When the capacity for warming up is insufficient, even when the absorption refrigerator freezes abnormally, the heating source of the generator (32) can be sufficiently secured, and at the same time, the cold heat source of the cold water circulation line (7) can be sufficiently secured. It is possible to solve the lack of capacity and maintain the low temperature of the liquid to be heat treated.

(実施例) 以下、本発明の実施例を添付図面にもとづき詳細に説明
する。
(Example) Hereinafter, an example of the present invention will be described in detail with reference to the accompanying drawings.

第1図乃至第4図は本発明の実施例に係るビール製造工
程用熱処理装置の装置回路図であって、煮沸装置
(1)、冷却装置(2)、熱回収ライン(4)、蓄温水
循環ライン(5)、吸収式冷凍機(6)、蓄冷水循環ラ
イン(7)及び冷却循環ライン(8)を備えていて、後
述する制御装置によって、熱回収を伴った加熱,冷却の
交互繰り返し運転が成されるものであり、それ等各機構
を逐次説明する。
FIG. 1 to FIG. 4 are device circuit diagrams of a heat treatment device for beer manufacturing process according to an embodiment of the present invention, wherein a boiling device (1), a cooling device (2), a heat recovery line (4), and warm water storage. A circulation line (5), an absorption chiller (6), a cold water circulation line (7), and a cooling circulation line (8) are provided, and the control device described below alternately performs heating and cooling with heat recovery. Each of these mechanisms will be sequentially described.

◎煮沸装置(1)(第2図参照)、 被熱処理液である麦汁を所定量収容して例えば180分程
度の一定周期下において90分程度の加熱運転を行わせ大
気圧下の100℃に麦汁を加熱するための加熱容器として
の煮沸釜(3)を複数基(例、2基)備えていて、交互
にかつ全体としては連続的に加熱運転を行わせるように
なっている。
◎ Boiler (1) (Refer to Fig. 2), a predetermined amount of wort, which is the liquid to be heat-treated, is stored and heated for about 90 minutes at a constant cycle of about 180 minutes, for example, at 100 ° C under atmospheric pressure. Further, a plurality of boiling pots (3) as heating containers for heating the wort (3) are provided, and the heating operation is alternately and continuously performed as a whole.

各煮沸釜(3),(3)は密閉容器に形成していて、排
気ダンパ(10)を有する排気ダクト(9)を頂壁から垂
直に立設しており、熱回収運転を行わせる際には排気ダ
ンパ(10)を全閉操作させる。
Each of the boiling pots (3), (3) is formed in a closed container, and an exhaust duct (9) having an exhaust damper (10) is erected vertically from the top wall to perform a heat recovery operation. Fully operate the exhaust damper (10).

◎冷却装置(2)(第3図参照)、 煮沸釜(3)で被処理した麦汁を流通せしめる1次コイ
ル(12)、低温冷水例えば−4℃のブラインを流通せし
める2系統の2次コイル(13),(13)、後述する冷水
タンク(43)に貯液中の冷水を流通せしめる3次コイル
(14)、市水、地下水などを流通せしめる4次コイル
(15)からなる冷却用熱交換器(11)を煮沸釜(3)に
対応させた例えば2基設けていて、交互に熱交換運転を
行わせるようになっているが、1次コイル(12)に対し
て2次〜4次コイル(13),(13),(14),(15)が
直列的関係で熱交換可能に設けられ、熱処理後の95℃程
度の麦汁を市水(20℃)が流れる4次コイル(15)によ
って1時間程度自然冷却させて25℃程度までいったん温
度低下させた後、7℃程度の冷水が流れる3次コイル
(14)と−4℃のブラインが流れる一方の2次コイル
(13)によって12℃程度まで冷却し、さらに−4℃のブ
ラインが流れる他方の2次コイル(13)によって5℃程
度まで冷却させるようになっている。
◎ Cooling device (2) (see Fig. 3), primary coil (12) for circulating the wort treated in the boiling kettle (3), two secondary systems for circulating cold cold water, for example, -4 ° C brine For cooling, consisting of coils (13), (13), a tertiary coil (14) for circulating cold water in the stored cold water tank (43), and a quaternary coil (15) for circulating city water, groundwater, etc. For example, two heat exchangers (11) corresponding to the boiling kettle (3) are provided so that heat exchange operation can be alternately performed. Quaternary coils (13), (13), (14), (15) are installed in series so that heat can be exchanged, and city water (20 ° C) flows through the wort at about 95 ° C after heat treatment. The coil (15) naturally cools it for about 1 hour, once lowers it to about 25 ℃, and then cools it to about 7 ℃. (14) and -4 ° C brine flows through one secondary coil (13) to cool to about 12 ° C, and another -4 ° C brine flows through to another secondary coil (13) to cool to about 5 ° C. It is like this.

なお、ブラインを循環的に供給する2系統のブライン供
給管には冷却用熱交換器(11),(11)を選択する切換
弁(16)及び流量制御弁(17)が夫々介設されていて、
熱交換器の選択運転及び冷却能力の調節が可能である。
In addition, a switching valve (16) and a flow control valve (17) for selecting the cooling heat exchangers (11) and (11) are respectively provided in the brine supply pipes of the two systems that supply brine in a circulating manner. hand,
It is possible to selectively operate the heat exchanger and adjust the cooling capacity.

◎熱回収ライン(4)(第2図参照)、 各排気ダクト(9),(9)の途中から分岐して引き出
させ、かつ、熱回収運転時に開かせるダンパ(19)を介
して有する熱回収用ダクト(18),(18)と、蒸気を充
満し得るチャンバに形成して、その頂部を各熱回収用ダ
クト(18),(18)の出口に一括接続せしめてなる1次
通路(21)内に、上方部から順に2次コイル(22)、3
次コイル(23)及び4次コイル(24)を熱交換可能な段
階的に配設せしめた熱回収用熱交換器(20)と、前記1
次通路(21)の底部に一端を接続した抽気ダクト(27)
と、該抽気ダクト(27)の途中に介設した不凝縮ガス冷
却用熱交換器(25)と、抽気ダクト(27)の他端に吸込
側を接続した抽気ファン(26)と、該抽気ファン(26)
の吐出側に接続したフィルター(28)とを備えている。
◎ Heat recovery line (4) (see FIG. 2), heat which is branched from the middle of each exhaust duct (9), (9) and pulled out, and through a damper (19) opened during heat recovery operation Primary ducts (18) formed by forming recovery ducts (18), (18) and a chamber that can be filled with steam, and connecting the tops thereof to the outlets of the heat recovery ducts (18), (18) all at once. 21) Secondary coil (22), 3 in order from the upper part
A heat recovery heat exchanger (20) in which the secondary coil (23) and the quaternary coil (24) are arranged stepwise so that heat can be exchanged;
Extraction duct (27) with one end connected to the bottom of the next passage (21)
A heat exchanger (25) for cooling non-condensable gas interposed in the middle of the extraction duct (27), an extraction fan (26) having a suction side connected to the other end of the extraction duct (27), and the extraction air Fan (26)
And a filter (28) connected to the discharge side of.

この熱回収ライン(4)は、抽気ファン(26)の駆動に
よって、煮沸釜(3)で発生した大気圧100℃の水蒸気
を1次通路(21)に充満し流通させ、2次コイル(22)
と後述する温水タンク(29)の間を循環的に流通する水
との間で熱交換を行わせて90℃程度の温水を得る一方、
水蒸気は低温液となった後、1次通路(21)の底部から
ドレンとして排液される。
The heat recovery line (4) is driven by an extraction fan (26) to fill the primary passageway (21) with water vapor generated at the boiling pot (3) at an atmospheric pressure of 100 ° C. to flow through the secondary coil (22). )
While heat is exchanged with water circulating between the hot water tank (29) described later and hot water of about 90 ° C,
After the steam becomes a low temperature liquid, it is drained from the bottom of the primary passageway (21) as drain.

さらに水蒸気に混じっていた不凝縮悪臭ガスは前記熱交
換器(25)で冷却された後、抽気ファン(26)経、フィ
ルター(28)に吸着処理されて排気される。
Further, the uncondensed malodorous gas mixed with the water vapor is cooled by the heat exchanger (25), then adsorbed by the extraction fan (26) and the filter (28) and exhausted.

なお、3次コイル(23)には少量の清水が送られて水蒸
気との熱交換により90℃程度の温水になった後、図示し
ないタンクに貯溜せしめられ、例えば殺菌湯として利用
される。
In addition, a small amount of fresh water is sent to the tertiary coil (23) to become warm water of about 90 ° C. by heat exchange with steam, and then stored in a tank (not shown) and used as, for example, sterilizing hot water.

一方、前記温水タンク(29)内に所要量の高温水が貯液
された状態で熱回収運転が中断される場合には、4次コ
イル(24)とクーリングタワー(37)との間を流通する
水と水蒸気との熱交換を行わせて水蒸気の排熱処理を行
わせるようになっている。
On the other hand, when the heat recovery operation is interrupted when a required amount of high temperature water is stored in the hot water tank (29), it flows between the quaternary coil (24) and the cooling tower (37). The heat exchange between water and water vapor is performed to perform heat treatment for exhausting water vapor.

◎蓄温水循環ライン(5)(第2図参照)、 前記熱回収用熱交換器(20)の2次コイル(22)の温水
取出口及び温水戻し口を、温水タンク(29)の上部に設
けた温水流入口及び下部に設けた温水流出口に配管によ
って夫々接続して循環回路を形成せしめると共に、前記
配管の途中に1次側温水ポンプ(30)を介設せしめてな
る構造であって、2次コイル(22)で熱回収により90℃
の沸騰に至らない高温度に加熱された温水を温水取出口
から温水タンク(29)の上部に設けた温水流入口に送り
込むと共に、温水タンク(29)内底部の75℃まで温度低
下した温水を該タンク(16)下部に設けた温水流出口か
ら、2次コイル(22)の温水戻し口に返戻して再加熱す
るように設けられている。
◎ The hot water circulation line (5) (see FIG. 2), the hot water outlet and the hot water return port of the secondary coil (22) of the heat recovery heat exchanger (20) are located above the hot water tank (29). The hot water inflow port provided and the hot water outflow port provided in the lower part are respectively connected by a pipe to form a circulation circuit, and a primary side hot water pump (30) is provided in the middle of the pipe. 90 ° C due to heat recovery in the secondary coil (22)
The hot water heated to a high temperature that does not result in boiling is sent from the hot water outlet to the hot water inlet provided at the top of the hot water tank (29), and the hot water whose temperature has dropped to 75 ° C at the bottom of the hot water tank (29) It is provided so as to return from the hot water outlet provided in the lower portion of the tank (16) to the hot water return port of the secondary coil (22) for reheating.

しかして温水タンク(29)は密閉された竪長構造の容器
であって周壁は断熱材で掩われて保温性が高く、さらに
胴径に比して高さ寸法が大きい細長形状をなしていると
共に、内部に多孔板などからなるバッフル板(31)を適
宜間隔で水平に横置せしめることによって上下に並ぶ数
層の室に仕切らせている。
However, the warm water tank (29) is a closed container with a vertical structure, and its peripheral wall is covered with a heat insulating material for high heat retention, and has an elongated shape with a large height dimension compared to the body diameter. At the same time, a baffle plate (31) made of a perforated plate or the like is horizontally laid horizontally at appropriate intervals to partition the chamber into a plurality of layers arranged vertically.

そしてタンク底部に前記温水流出口及び温水戻し口を開
口して設ける一方、タンク上部に前記温水流入口及び温
水取出口を開口して設けている。
The hot water outlet and the hot water return opening are provided at the bottom of the tank while the hot water inlet and the hot water outlet are provided at the top of the tank.

かく構成した温水タンク(29)は90°の温水が温水流入
口を経、タンク内に流入され充満した状態で所定量の90
°温水を備蓄しているが温水取出口から負荷側に導出さ
れて75℃まで温度低下した温水が温水戻し口に返流して
くることにより、タンク内温水は下層部から75℃の温水
が漸次増量してくる。
The hot water tank (29) thus configured has a predetermined amount of 90 ° when hot water of 90 ° flows into the tank through the hot water inlet and is filled.
° Although hot water is stored, it is discharged from the hot water outlet to the load side and the hot water whose temperature has dropped to 75 ° C is returned to the hot water return port. The amount will gradually increase.

この場合のタンク内温水の流動状態はバッフル板(31)
の存在により攪拌を伴わない穏やかな重量に順じた動き
となり、すなわち、温度による比重差で温度境膜を存す
るままの移動が成されることになり、従って、タンク内
に貯溜している温水の略全量が負荷側で熱交換した後の
低温水と置換するまで温水取出口から90℃一定の高温水
を供給することが可能である。
The flow state of the hot water in the tank in this case is the baffle plate (31).
The presence of the water causes the movement according to the gentle weight without stirring, that is, the movement with the temperature film existing due to the difference in the specific gravity due to the temperature, and therefore the warm water stored in the tank. It is possible to supply high-temperature water at a constant temperature of 90 ° C from the hot-water outlet until almost the entire amount of is replaced with low-temperature water after heat exchange on the load side.

なお、この温水タンク(31)は当然低温の冷水を貯溜す
るタンクとしても利用し得るものであって、この場合
は、水取出口、水流入口と水戻し口、水流出口との位置
関係が逆転するだけで基本的な構造に違いがなく、後述
する冷水タンク(43)がこの例に該当することは言うま
でもない。
The hot water tank (31) can of course be used as a tank for storing low-temperature cold water. In this case, the positional relationship between the water intake, the water inlet and the water return, and the water outlet is reversed. Of course, there is no difference in the basic structure, and it goes without saying that the cold water tank (43) described later corresponds to this example.

◎吸収式冷凍機(6)(第4図参照)、 発生器(32)、凝縮器(33)、蒸発器(34)及び吸収器
(35)を主要部材とする周知の冷媒サイクル及び溶液サ
イクルを持つ吸収式冷凍装置であり、冷媒を発生器(3
2)で蒸発させるための熱源としては前記温水タンク(2
9)内の90℃温水を利用し、一方、吸収器(35)におい
て冷媒が濃溶液に吸収される際及び冷媒が液化する際に
夫々発生する熱は冷却水ポンプ(41)を有する配管を経
て、クーリングタワー(38)によって大気に放出させる
ように設けられている。
◎ Well-known refrigerant cycle and solution cycle that have absorption refrigerator (6) (see Fig. 4), generator (32), condenser (33), evaporator (34) and absorber (35) as main components. Is an absorption refrigeration system with a refrigerant generator (3
The hot water tank (2
While using the 90 ° C hot water in 9), the heat generated when the refrigerant is absorbed in the concentrated solution and when the refrigerant is liquefied in the absorber (35) is supplied to the pipe having the cooling water pump (41). After that, the cooling tower (38) is provided so as to release it into the atmosphere.

上記冷凍機は発生器(32)に付設されてなる加熱コイル
(36)を2次側温水ポンプ(39)が介設された配管及び
流量制御弁(40)が介設された配管によって温水タンク
(29)の前記温水取出口及び温水戻し口に循環的に接続
せしめている。
In the above refrigerator, a heating coil (36) attached to a generator (32) is connected to a pipe having a secondary side hot water pump (39) and a flow control valve (40). The hot water outlet and the hot water return port of (29) are cyclically connected.

◎蓄冷水循環ライン(7)(第4図参照)、 前記蒸発器(34)に付設されてなる冷水コイル(42)と
前述した温水タンク(29)と同要領の構造になる冷水タ
ンク(43)とを1次側冷水ポンプ(44)が介設された配
管及び冷却装置(49)が介設された配管によって循環的
に接続せしめており、冷水コイル(42)で7℃に冷却さ
れた冷水を冷水タンク(43)の下部に設けた冷水流入口
からタンク内に送り込むと共に、冷水タンク(43)内の
25℃まで温度上昇した水をタンク上部に設けた冷水流出
口から導出して冷水コイル(42)に送り再冷却するよう
になっている。
◎ Cold water circulation line (7) (see FIG. 4), cold water coil (42) attached to the evaporator (34) and cold water tank (43) having the same structure as the hot water tank (29) described above. And are circulated through a pipe having a primary side cold water pump (44) and a pipe having a cooling device (49), and the cold water is cooled to 7 ° C by a cold water coil (42). Is sent into the tank from the cold water inlet provided at the bottom of the cold water tank (43), and
Water whose temperature has risen to 25 ° C. is led out from a cold water outlet provided in the upper part of the tank and sent to the cold water coil (42) for recooling.

◎冷却循環ライン(8)(第3図参照)、 前記冷水タンク(43)と2基の前記冷却用熱交換器(1
1),(11)における3次コイル(14),(14)とを2
次側冷水ポンプ(45)及び両3次コイル(14),(14)
を選択する切換弁(46)が介設された配管により循環的
に接続せしめてなり、冷水タンク(43)内の7℃の低温
冷水をタンク下部に設けた冷水取出口から一方の3次コ
イル(14)に送り込み、該3次コイル(14)で負荷側の
麦汁と熱交換して25℃程度に温度上昇した水を、タンク
上部に設けた冷水戻し口を経、冷水タンク(43)内に返
戻するようになっている。
◎ Cooling circulation line (8) (see FIG. 3), the cold water tank (43) and two heat exchangers for cooling (1
The 3rd coil (14) and (14) in 1) and (11) are 2
Secondary side cold water pump (45) and both tertiary coils (14), (14)
The switching valve (46) for selecting is connected in a circulating manner through a pipe, and the low temperature cold water of 7 ° C in the cold water tank (43) is provided at the lower part of the tank from the cold water outlet to one of the tertiary coils. Water sent to (14) and having its temperature increased to about 25 ° C by exchanging heat with the wort on the load side in the tertiary coil (14) passes through a cold water return port provided at the top of the tank, and then a cold water tank (43) It is supposed to be returned inside.

しかして冷水タンク(43)は前述した温水タンク(29)
と同様に蓄熱機能を発揮し得る装置であって、タンク内
に貯溜している7℃の冷水の略々全量が3次コイル(1
4)で熱交換した後の25℃の水と置換するまで冷水取出
口から7℃の冷水を供給することが可能である。
However, the cold water tank (43) is the hot water tank (29) described above.
A device capable of exhibiting a heat storage function similar to the above, and substantially the entire amount of cold water of 7 ° C stored in the tank is stored in the tertiary coil (1
It is possible to supply cold water at 7 ° C from the cold water outlet until it is replaced with water at 25 ° C after heat exchange in 4).

以上実施例装置の構造を説明したが、さらに発生器(3
2)の加熱コイル(36)流入側端部と温水タンク(29)
の温水流出口とを接続する管路中で、2次側温水ポンプ
(39)に対し下流側の個所に水対水熱交換器からなる加
熱装置(47)を介設していて、必要に応じ温水ボイラ
(48)から温水を供給して加熱コイル(36)に流入する
温水温度を高め得るようにしており、一方、蒸発器(3
4)の冷水コイル(42)流出側端部と冷水タンク(43)
の冷水流入口とを接続する管路中に水対水熱交換器から
なる冷却装置(49)を介設していて、必要に応じて前記
冷却装置(2)のの冷熱源である−4℃のブラインを前
記水対水熱交換器(49)に供給して冷水タンク(43)に
流入する冷水温度を低下させ得るようにしており、この
構造は請求項3に係る例であって吸収式冷凍機(6)が
異常停止したとき、ウオーミングアップの際の能力不足
時などに前記両装置(47),(49)を作動させるもので
ある(第4図参照)。
The structure of the embodiment apparatus has been described above.
2) Heating coil (36) inlet end and hot water tank (29)
A heating device (47) consisting of a water-to-water heat exchanger is installed at a location downstream of the secondary side hot water pump (39) in the pipeline connecting the hot water outlet of Accordingly, hot water is supplied from the hot water boiler (48) to raise the temperature of the hot water flowing into the heating coil (36), while the evaporator (3
4) Cold water coil (42) Outflow side end and cold water tank (43)
A cooling device (49) consisting of a water-to-water heat exchanger is provided in a pipe line connecting to the cold water inflow port, and is a cold heat source of the cooling device (2) as required-4. The temperature of cold water flowing into the cold water tank (43) can be lowered by supplying brine of ℃ to the water-to-water heat exchanger (49). This structure is an example according to claim 3 The above-mentioned devices (47) and (49) are operated when the freezer (6) abnormally stops or when the capacity is insufficient during warming up (see FIG. 4).

次に上述の構成を有する装置の熱回収を伴う熱処理運転
の制御を司る制御装置ならびにその運転態様についてフ
ロー線図を併せ参照して以下説明する。
Next, a control device that controls the heat treatment operation involving heat recovery of the device having the above-described configuration and an operation mode thereof will be described below with reference to a flow diagram.

糖化に要する時間例えば90分の仕込に次いで30分程度の
1次煮沸を行った後、5時間程度のホールディングをな
した麦汁を煮沸釜(3)で100℃まで90分間2次煮沸す
る。
The time required for saccharification, for example, 90 minutes of charging, followed by 30 minutes of primary boiling, and then holding of the wort for 5 hours is boiled to 100 ° C for 90 minutes in a boiling pot (3) for secondary boiling.

この煮沸釜(3)での2次煮沸は例えば180分を周期と
して行われる。
The secondary boiling in the boiling pot (3) is performed with a period of 180 minutes, for example.

一方の煮沸釜(3)への仕込を行うことによって発信す
る仕込開始信号(イ)と仕込回数信号(ロ)にもとづい
て、対応する煮沸釜(3)のダンパ(19)を全開させる
(ステップ(ハ))。
The damper (19) of the corresponding boiling kettle (3) is fully opened based on the charging start signal (a) and the charging frequency signal (b) transmitted by charging the one boiling kettle (3) (step). (C)).

同時に煮沸釜(3)内の圧力、気相部の温度を熱回収用
ダクト(18)に設けた圧力検知器(50),温度検知器
(51)により検知する。
At the same time, the pressure in the boiling pot (3) and the temperature of the gas phase part are detected by the pressure detector (50) and the temperature detector (51) provided in the heat recovery duct (18).

煮沸釜(3)では常圧100℃の水蒸気が発生するが、こ
の時点では大気圧との差圧が存しないので圧力状態が正
常であることを判断して(ステップ(ニ))、風量可変
形の抽気ファン(26)を駆動させる(ステップ
(ホ))。
Steam at atmospheric pressure of 100 ° C is generated in the boiling kettle (3), but at this point there is no differential pressure from atmospheric pressure, so it is judged that the pressure is normal (step (d)) The deformed extraction fan (26) is driven (step (e)).

この場合、煮沸釜(3)内における大気圧との差圧が所
定値例えば±20mm水柱より大きく異常であれば抽気ファ
ン(26)を停止(ステップ(ヘ))、かつ、ダンパ(1
9)を閉止させる(ステップ(ト))。
In this case, if the pressure difference from the atmospheric pressure in the boiling kettle (3) is larger than a predetermined value, for example ± 20 mm water column, the extraction fan (26) is stopped (step (f)), and the damper (1)
9) Close (step (g)).

ここで、ステップ(イ),(ハ),(ト)がダンパ制御
手段に該当し、ステップ(ハ),(ニ),(ヘ)が抽気
ファン制御手段に該当する。
Here, steps (a), (c), and (g) correspond to damper control means, and steps (c), (d), and (f) correspond to extraction fan control means.

ダンパ(19)の開放、抽気ファン(26)の駆動によって
煮沸釜(3)内に発生した常圧100℃の水蒸気は熱回収
ライン(4)により熱回収され、1次側温水ポンプ(3
0)の運転により回収熱源は2次コイル(22)を介して
蓄温水循環ライン(5)の温水タンク(29)に温水とし
て蓄積される。
Steam at atmospheric pressure of 100 ° C generated in the boiling pot (3) by opening the damper (19) and driving the extraction fan (26) is recovered by the heat recovery line (4), and the primary side hot water pump (3)
By the operation of 0), the recovered heat source is accumulated as hot water in the hot water tank (29) of the hot water circulation line (5) via the secondary coil (22).

熱回収ライン(4)における水蒸気温度が設定温度、例
えば100℃になったことを温度検知器(51)で検知する
と(ステップ(チ))、各ポンプ(39),(41),(4
4)を運転せしめて(ステップ(リ),(ヌ),
(ル))、吸収式冷凍機(6)を運転させる(ステップ
(ヲ))。
When the temperature detector (51) detects that the water vapor temperature in the heat recovery line (4) has reached a set temperature, for example, 100 ° C (step (h)), the pumps (39), (41), (4)
Run 4) (step (ri), (nu),
(L)), and the absorption refrigerator (6) is operated (step (wo)).

この運転と同時に流量制御弁(40)を開かせ(ステップ
(ワ))、運転制御を開始し(ステップ(カ))、蒸発
器(34)の冷水コイル(42)出口水温を検知する温度検
知器(52)の温度信号によって冷凍負荷を判断し(ステ
ップ(ヨ))、流量制御弁(40)の弁開度を制御するこ
とにより(ステップ(タ),(レ),(ソ))、発生器
(32)内の加熱コイル(36)に流入する90℃の温水の量
を調節する。
Simultaneously with this operation, the flow control valve (40) is opened (step (wa)), operation control is started (step (f)), and temperature detection is performed to detect the outlet water temperature of the cold water coil (42) of the evaporator (34). The refrigeration load is judged by the temperature signal of the device (52) (step (Yo)), and the valve opening of the flow control valve (40) is controlled (Steps (T), (R), (S)), The amount of 90 ° C. hot water flowing into the heating coil (36) in the generator (32) is adjusted.

かくして蓄冷水循環ライン(7)における冷水タンク
(43)内の水を7℃の冷水に冷却して蓄冷熱が行われ
る。
Thus, the cold water in the cold water tank (43) in the cold water circulation line (7) is cooled to 7 ° C. to store cold heat.

ここで、ステップ(リ)〜(ソ)が冷凍機制御手段に該
当する。
Here, steps (ri) to (so) correspond to the refrigerator control means.

しかして2次煮沸を完了すると、続いて別の煮沸釜
(3)の2次煮沸を行わせるので以上述べた熱回収,冷
凍両運転は連続される。
Then, when the secondary boiling is completed, the secondary boiling of another boiling pot (3) is subsequently performed, so that both the heat recovery and freezing operations described above are continued.

そして温水タンク(29)に設けた3位置温度検知器(5
3)と冷水タンク(43)に設けた3位置温度検知器(5
4)とによって両タンク内の温度レベルを検知し(ステ
ップ(ナ),(ラ))、温度レベルが高いときは1次側
温水ポンプ(30)は停止(ステップ(ム))、1次側冷
水ポンプ(44)は運転させ(ステップ(オ))、一方、
温度レベルが低いときは逆に運転(ステップ(ウ)、停
止させる(ステップ(ノ))。
And a 3-position temperature detector (5
3) and a 3-position temperature detector (5) provided in the cold water tank (43)
The temperature levels in both tanks are detected by (4) and (steps (a) and (la)). When the temperature level is high, the primary side hot water pump (30) is stopped (step (m)) and the primary side. Operate the cold water pump (44) (step (e)), while
When the temperature level is low, the operation is reversed (step (c) and stopped (step (no)).

2次煮沸を行った後の麦汁は4次コイル(15)による井
水での冷却を行わせ、約25℃まで温度低下した時点で麦
汁冷却用開始信号が発せられることにより(ステップ
(ク))、切換弁(46)を切換操作した後、2次側冷水
ポンプ(45)を運転して(ステップ(ヤ))、冷水タン
ク(43)内の7℃の冷水を3次コイル(14)に送り、1
次コイル(12)に流れる麦汁を冷却する。
The wort after the second boiling is cooled by well water by the fourth coil (15), and when the temperature drops to about 25 ° C, a wort cooling start signal is issued (step ( )), After switching the switching valve (46), the secondary side cold water pump (45) is operated (step (YA)) to cool the cold water at 7 ° C in the cold water tank (43) to the tertiary coil ( Send to 14), 1
Cool the wort flowing in the next coil (12).

なお、ステップ(ナ),(ム),(ウ)が温水循環制御
手段、ステップ(ヲ),(ノ),(オ)が冷水循環制御
手段、ステップ(ク),(ヤ)が1段冷却制御手段に夫
々該当するものである。
Note that steps (a), (m), and (c) are hot water circulation control means, steps (wo), (no), and (o) are cold water circulation control means, and steps (k) and (ya) are one-stage cooling. They correspond to the control means, respectively.

このようにして、180分を周期として90分の間欠的な繰
り返しで成される煮沸により発生した水蒸気を有効に熱
回収して吸収式冷凍機(6)を連続運転させ煮沸後の冷
却用冷熱源を確保することが可能である。
In this way, the steam generated by boiling that is intermittently repeated for 90 minutes with a cycle of 180 minutes is effectively recovered, and the absorption refrigerator (6) is continuously operated to cool the cooling heat after boiling. It is possible to secure the source.

この場合において温水タンク(29)を竪長構造に形成し
温度差による比重差で温度境膜を形成し得る如く温水の
導入,導出を行わせているので間欠的に時間間隔をあけ
て発生する蒸気を熱源として吸収式冷凍機を連続運転す
ることができ、また、冷水タンク(43)についても同様
に低温の一定した温度の冷水を連続的に供給することが
可能である。
In this case, the hot water tank (29) is formed in a vertical structure, and the hot water is introduced and led out so that the temperature boundary film can be formed by the difference in specific gravity due to the temperature difference, so it occurs intermittently at intervals. The absorption chiller can be continuously operated by using steam as a heat source, and cold water at a constant low temperature can be continuously supplied to the cold water tank (43) as well.

ところで冷水タンク(43)に貯溜している冷水での冷却
だけでは所定低温例えば5℃の麦汁を得られないのでス
テップ(マ),(ケ),(フ)によりブラインによるバ
ックアップ冷却を行わせる。
By the way, since the wort at a predetermined low temperature, for example, 5 ° C. cannot be obtained only by cooling with the cold water stored in the cold water tank (43), the backup cooling by the brine is performed by steps (a), (b) and (f). .

すなわち、2基の2次コイル(13),(13)の1基を切
換弁(16)の選択切換えによってブライン供給ラインに
接続すると共に、一方の流量制御弁(17)の開度制御,
閉止を行わせれば良い。
That is, one of the two secondary coils (13) and (13) is connected to the brine supply line by selectively switching the switching valve (16), and the opening control of one flow control valve (17) is performed.
You just have to close it.

それでもまだ低温が得られない場合は同じように切換弁
(16)の切換え及び他方の流量制御弁(17)の開度制
御,閉止を行わせる(ステップ(コ),(エ),
(テ))。
If the low temperature is still not obtained, the switching valve (16) is switched and the flow rate control valve (17) is opened and closed in the same manner (steps (C), (D),
(Te)).

このステップ(マ)〜(テ)が請求項2の発明に係る追
加冷却制御手段に該当する。
The steps (MA) to (TE) correspond to the additional cooling control means according to the second aspect of the invention.

一方、休日明けの最初の仕込みに際しては、起動に可成
りの時間を要する吸収式冷凍機(6)における発生器
(32)の熱源を熱回収方式だけでは十分かつ速やかに確
保し難いところから、ウオーミングアップ信号が発せら
れていると(ステップ(ア))、前記両温度検知器(5
3),(54)によって各タンク(29),(43)内の温度
レベルを検知し(ステップ(サ),(キ))、温度レベ
ルが温水タンク(29)では高レベル、冷水タンク(43)
では低レベルに夫々保たれるように、加熱装置(47)、
冷却装置(49)の一次側に夫々設けた流量制御弁(5
5),(56)を弁開度制御せしめる(ステップ(ユ),
(シ))。
On the other hand, at the time of the first preparation after the holiday, it is difficult to quickly and sufficiently secure the heat source of the generator (32) in the absorption refrigerating machine (6), which requires a considerable time to start up, by the heat recovery method alone. When a warm-up signal is issued (step (a)), both temperature detectors (5
The temperature level in each tank (29), (43) is detected by 3), (54) (steps (SA), (KI)), and the temperature level is high in the hot water tank (29) and cold in the cold water tank (43). )
So that they are kept at low levels respectively, the heating device (47),
Flow control valves (5) provided on the primary side of the cooling device (49)
5), (56) to control the valve opening (step (you),
(Shi)).

かくして吸収式冷凍機(6)が運転開始時、異常状態時
などで冷凍能力が十分確保できないときでも必要な加熱
源,冷熱源が得られる。
Thus, even when the absorption refrigerating machine (6) is in operation, when the refrigerating capacity cannot be sufficiently secured due to an abnormal state, etc., the required heating source and cooling source can be obtained.

(発明の効果) 本発明は周期的かつ間欠的に発生する水蒸気を全体とし
ては連続的に熱回収して高温水の状態で蓄熱せしめ、し
かも高温と低温との温水間で温度境膜が介在して混和し
ないような構造の温水タンク(29)に貯溜せしめること
によって、吸収式冷凍機(6)を連続的に運転し得るに
十分な高温水を確保することができ、また、冷却用の冷
水タンク(43)も前記温水タンク(29)と同要領になる
タンクに形成しているので煮沸後の冷却に必要な熱量の
冷水を十分確保することが可能である。
(Effects of the Invention) The present invention continuously recovers steam generated periodically and intermittently as a whole to store heat in the state of high-temperature water, and further, a temperature film intervenes between the high-temperature and low-temperature hot water. By storing the hot water in a hot water tank (29) that does not mix with each other, it is possible to secure high-temperature water sufficient to continuously operate the absorption refrigerator (6), and to cool the absorption refrigerator (6). Since the cold water tank (43) is also formed in the same manner as the hot water tank (29), it is possible to secure a sufficient amount of cold water necessary for cooling after boiling.

かくして煮沸に関連する冷却工程、冷房用などの冷却装
置を煮沸工程で発生する大気圧水蒸気の熱回収により運
転される吸収式冷凍機(6)となしたことによって受電
設備容量、ランニングコストの大幅な低減をもたらし、
省エネルギーに資するところまさに多大である。
In this way, the cooling process related to boiling, cooling equipment for cooling, etc., was changed to an absorption chiller (6) operated by heat recovery of atmospheric pressure steam generated in the boiling process. A significant reduction,
It is a huge amount that contributes to energy saving.

また、加熱容器(3),(3)内の圧力一定保持、熱回
収運転、吸収冷凍運転及び被熱処理液の冷却運転を制御
装置によって全自動的に行わせることにより、乱調を全
く来すことなく、安全性及び熱回収効率が高い処理装置
を提供し得る。
In addition, the control device performs the automatic pressure control, the heat recovery operation, the absorption refrigeration operation, and the cooling operation of the liquid to be heat-treated to keep the pressure in the heating vessels (3) and (3) constant. Therefore, a processing device having high safety and high heat recovery efficiency can be provided.

さらに吸収式冷凍機(6)に加えて、低温冷水で冷却さ
せる追加冷却制御手段を設けたことにより、ランニング
コストを最少限に維持しながら低温冷却が行える。
Furthermore, in addition to the absorption refrigerator (6), by providing an additional cooling control means for cooling with low temperature cold water, low temperature cooling can be performed while keeping the running cost to a minimum.

また、吸収式冷凍機(6)の発生器熱源を確保するため
の加熱装置(47)、蒸発器の能力不足を補う冷却装置
(49)を付設せしめてなることにより、ウオーミングア
ップ時や、異常時における冷却能力不足を補完し得るの
で被熱処理液の低温保持を安定的に果たし得る効果を奏
する。
In addition, a heating device (47) for securing the generator heat source of the absorption chiller (6) and a cooling device (49) for compensating for the insufficient capacity of the evaporator are additionally provided, so that when warming up or when an abnormality occurs. Insufficient cooling capacity can be complemented, so that the liquid to be heat treated can be stably maintained at a low temperature.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明の1例に係るブロック示構造図、第2図
乃至第4図は同じく各要部の装置回路図、第5図乃至第
7図は制御装置の作動を説明するフロー線図である。 (1)……煮沸装置、(2)……冷却装置、(3)……
加熱容器、(4)……熱回収ライン、(5)……蓄温水
循環ライン、(6)……吸収式冷凍機、(7)……蓄冷
水循環ライン、(8)……冷却循環ライン、(11)……
冷却用熱交換器、(12)……1次コイル、(13)……2
次コイル、(14)……3次コイル、(18)……熱回収用
ダクト、(19)……ダンパ、(20)……熱回収用熱交換
器、(21)……1次通路、(22)……2次コイル、(2
6)……抽気ファン、(29)……温水タンク、(32)…
…発生器、(33)……凝縮器、(34)……蒸発器、(3
5)……吸収器、(36)……加熱コイル、(42)……冷
水コイル、(43)……冷水タンク、(47)……加熱装
置、(49)……冷却装置。
FIG. 1 is a block diagram showing a structure according to an example of the present invention, FIGS. 2 to 4 are device circuit diagrams of respective main parts, and FIGS. 5 to 7 are flow lines for explaining the operation of a control device. It is a figure. (1) …… Boiler, (2) …… Cooler, (3) ……
Heating container, (4) ... heat recovery line, (5) ... hot water circulation line, (6) ... absorption type refrigerator, (7) ... cooled water circulation line, (8) ... cooling circulation line, (11) ……
Cooling heat exchanger, (12) …… Primary coil, (13) …… 2
Next coil, (14) …… Third coil, (18) …… Heat recovery duct, (19) …… Damper, (20) …… Heat recovery heat exchanger, (21) …… Primary passage, (22) …… Secondary coil, (2
6) …… Bleed fan, (29) …… Hot water tank, (32)…
… Generator, (33) …… Condenser, (34) …… Evaporator, (3
5) …… Absorber, (36) …… Heating coil, (42) …… Cold water coil, (43) …… Chilled water tank, (47) …… Heating device, (49) …… Cooling device.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】収容中の被熱処理液を一定時間、一定周期
の繰り返しで大気圧下の100℃に加熱する煮沸釜等の加
熱容器(3)を複数基備えて、交互にかつ全体としては
連続的に加熱運転を行わせる煮沸装置(1)と、前記煮
沸装置(1)で加熱処理した被熱処理液を交互に冷却用
熱交換器(11),(11)に導いて、低温冷水との熱交換
により冷却せしめる冷却装置(2)とからなる熱処理装
置において、ダンパ(19)が夫々設けられて各加熱容器
(3),(3)の気相部に夫々接続した熱回収用ダクト
(18),(18)、1次通路(21)を前記熱回収用ダクト
(18),(18)に一括接続した熱回収用熱交換器(2
0)、前記1次通路(21)に接続した抽気ファン(26)
からなり、各加熱容器(3),(3)で発生した大気圧
100℃の水蒸気と熱回収用熱交換器(20)の2次コイル
(22)に流通する水との間の熱交換を行わせる熱回収ラ
イン(4)と、前記熱回収用熱交換器(20)の2次コイ
ル(22)の温水取出口及び温水戻し口を、温度による比
重差で温度境膜を形成し貯液し得る縦長構造の温水タン
ク(29)における上部に設けた温水流入口及び下部に設
けた温水流出口に夫々接続してなり、沸騰に至らない高
温度、所定量の湯を温水タンク(29)に貯液可能となし
た蓄温水循環ライン(5)と、発生器(32),凝縮器
(33),蒸発器(34)及び吸収器(35)からなり、発生
器(32)の加熱コイル(36)を前記温水タンク(29)に
おける上部に設けた温水取出口及び下部に設けた温水戻
し口に夫々循環的に接続せしめた吸収式冷凍機(6)
と、前記温水タンク(29)と同要領により形成した縦長
構造の冷水タンク(43)における下部に設けた冷水流入
口及び上部に設けた冷水流出口を前記蒸発(34)の冷水
コイル(42)に循環的に接続してなり、低温冷水を前記
冷水タンク(43)に貯液可能となした蓄冷水循環ライン
(7)と、前記冷水タンク(43)の下部に設けた冷水取
出口及び上部に設けた冷水戻し口を前記冷却用熱交換器
(11),(11)の3次コイル(14)に循環的に接続して
なり、冷却用熱交換器(11),(11)の1次コイル(1
2)に導いた前記被熱処理液を冷却せしめる冷却循環ラ
イン(8)と、熱回収用ダクト(18),(18)の各ダン
パ(19)の開放、前記抽気ファン(26)の運転、前記冷
却装置(2)の運転、蓄温水循環ライン(5)の温水循
環、吸収式冷凍式(6)の冷凍運転、蓄冷水循環ライン
(7)の冷水循環及び冷却循環ライン(8)の冷却運転
を行わせる制御装置とを備えてなり、前記制御装置は、
加熱容器(3),(3)を運転する際発信する仕込開始
信号と仕込回数信号とにより、対応するダンパ(19),
(19)を開かせるダンパ制御手段と、ダンパ(19),
(19)のいずれかが開いており、かつ、前記異常差圧信
号が発信されていなくて前記抽気ファン(26)を運転さ
せ、前記異常差圧信号の発信により抽気ファン(26)を
停止させる抽気ファン制御手段と、熱回収用ダクト(1
8),(18)のダンパ(19)通過後の水蒸気温度が設定
値以上のときで、かつ、温水タンク(29)に設定温度の
温水が貯液されているときに吸収式冷凍機(6)を運転
させると共に、温水タンク(29)と発生器(32)の加熱
コイル(36)との間の温水循環量を冷凍負荷に応じて増
減させる冷凍機制御手段と、温水タンク(29)内に所定
温度、所定量の温水が貯液される如く、蓄温水循環ライ
ン(5)の循環温水量を調節する温水循環制御手段と、
冷水タンク(43)に所定温度の冷水が貯液される如く、
蓄冷水循環ライン(7)の循環冷水量を調節する冷水循
環制御手段と、加熱処理済みの後、冷却を必要とするた
め冷却開始信号が発信され、かつ、前記冷水タンク(4
3)に所定温度の冷水が貯液されていることによって冷
却循環ライン(8)の冷水循環を行わせる冷却制御手段
とからなることを特徴とする排熱回収方式熱処理装置。
1. A plurality of heating containers (3), such as a boiling pot, for heating a liquid to be heat-treated in a housing at 100 ° C. under atmospheric pressure by repeating a fixed cycle for a fixed time, alternately and as a whole. A boiling device (1) for continuously performing a heating operation and a liquid to be heat treated by the boiling device (1) are alternately introduced into cooling heat exchangers (11), (11) to obtain low-temperature cold water. In a heat treatment apparatus comprising a cooling device (2) for cooling by heat exchange with a heat recovery duct (a) provided with a damper (19) and connected to a gas phase part of each heating container (3), (3), respectively. 18), (18), a heat recovery heat exchanger (2) in which a primary passageway (21) is collectively connected to the heat recovery ducts (18), (18).
0), extraction fan (26) connected to the primary passage (21)
And the atmospheric pressure generated in each heating vessel (3), (3)
A heat recovery line (4) for exchanging heat between 100 ° C. steam and water flowing through the secondary coil (22) of the heat recovery heat exchanger (20), and the heat recovery heat exchanger ( The hot water inlet and the hot water return port of the secondary coil (22) of 20) are provided at the upper part of a vertically long structure hot water tank (29) capable of forming and storing a temperature boundary film due to the difference in specific gravity due to temperature. And a hot water circulation line (5), which is connected to the hot water outlets provided at the bottom and the bottom, respectively, and is capable of storing a predetermined amount of hot water that does not reach boiling in the hot water tank (29), and a generator. (32), condenser (33), evaporator (34) and absorber (35), and the heating coil (36) of the generator (32) is provided at the upper part of the hot water tank (29). And absorption-type refrigerators (6) that are cyclically connected to the hot water return ports provided in the lower part
And a cold water tank (43) having a vertically long structure formed in the same manner as the hot water tank (29), with a cold water inlet provided at a lower portion and a cold water outlet provided at an upper portion as a cold water coil (42) for the evaporation (34). And a cold water circulation line (7) capable of storing low-temperature cold water in the cold water tank (43), and a cold water outlet and an upper part provided in the lower part of the cold water tank (43). The cold water return port provided is cyclically connected to the cooling heat exchangers (11) and the tertiary coil (14) of the cooling heat exchanger (11), and the cooling heat exchangers (11) and (11) are primary. Coil (1
2) The cooling circulation line (8) for cooling the liquid to be heat-treated, the dampers (19) of the heat recovery ducts (18) and (18) are opened, the extraction fan (26) is operated, and The operation of the cooling device (2), the hot water circulation of the hot water circulation line (5), the freezing operation of the absorption refrigeration system (6), the cold water circulation of the cold water circulation line (7) and the cooling operation of the cooling circulation line (8). And a control device for performing the
Corresponding dampers (19), according to the preparation start signal and preparation frequency signal transmitted when operating the heating containers (3), (3)
Damper control means for opening (19), and damper (19),
Either one of (19) is opened, and the extraction fan (26) is operated when the abnormal differential pressure signal is not transmitted, and the extraction fan (26) is stopped by transmitting the abnormal differential pressure signal. Extraction fan control means and heat recovery duct (1
When the water vapor temperature after passing through the dampers (19) of 8) and (18) is higher than the set value and when the hot water of the set temperature is stored in the hot water tank (29), the absorption refrigerator (6 ) Is operated and the refrigerator control means for increasing or decreasing the circulating amount of hot water between the hot water tank (29) and the heating coil (36) of the generator (32) according to the refrigeration load, and the hot water tank (29). Hot water circulation control means for adjusting the circulating hot water amount in the warm water circulating line (5) so that a predetermined temperature and a predetermined amount of warm water are stored in
As cold water of a predetermined temperature is stored in the cold water tank (43),
Cold water circulation control means for adjusting the amount of circulating cold water in the cold water circulation line (7), and a cooling start signal is transmitted to require cooling after the heat treatment, and the cold water tank (4
An exhaust heat recovery type heat treatment apparatus comprising: a cooling control means for circulating cold water in a cooling circulation line (8) by storing cold water of a predetermined temperature in 3).
【請求項2】吸収式冷凍式(6)の冷却温度が所定温度
に比し高いときに低温冷水を冷却用熱交換器(11),
(11)の2次コイル(13)に流通させる追加冷却制御手
段が前記制御装置に付加されている請求項1記載の排熱
回収方式熱処理装置。
2. A heat exchanger (11) for cooling low temperature cold water when the absorption refrigeration type (6) has a higher cooling temperature than a predetermined temperature.
The exhaust heat recovery system heat treatment apparatus according to claim 1, wherein additional cooling control means for circulating the secondary coil (13) of (11) is added to the control device.
【請求項3】発生器(32)の加熱コイル(36)と温水タ
ンク(29)の温水流出口とを接続する管路中に加熱装置
(47)が設けられ、また、蒸発器(34)の冷水コイル
(42)と冷水タンク(43)の冷水流入口とを接続する管
路中に冷却装置(49)が設けられている請求項1項又は
2記載の排熱回収方式熱処理装置。
3. A heating device (47) is provided in a pipe line connecting a heating coil (36) of a generator (32) and a hot water outlet of a hot water tank (29), and an evaporator (34). The exhaust heat recovery type heat treatment apparatus according to claim 1 or 2, wherein a cooling device (49) is provided in a pipe line connecting the cold water coil (42) and the cold water inlet of the cold water tank (43).
JP63029324A 1988-02-10 1988-02-10 Exhaust heat recovery system heat treatment equipment Expired - Fee Related JPH0787770B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63029324A JPH0787770B2 (en) 1988-02-10 1988-02-10 Exhaust heat recovery system heat treatment equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63029324A JPH0787770B2 (en) 1988-02-10 1988-02-10 Exhaust heat recovery system heat treatment equipment

Publications (2)

Publication Number Publication Date
JPH01206985A JPH01206985A (en) 1989-08-21
JPH0787770B2 true JPH0787770B2 (en) 1995-09-27

Family

ID=12273049

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63029324A Expired - Fee Related JPH0787770B2 (en) 1988-02-10 1988-02-10 Exhaust heat recovery system heat treatment equipment

Country Status (1)

Country Link
JP (1) JPH0787770B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102188475B1 (en) * 2020-06-23 2020-12-08 황제연 Apparatus for treating organic waste

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102012220581A1 (en) * 2012-11-12 2014-05-15 Krones Ag Heat supply to a processing facility in a beer production facility
CN113046212A (en) * 2021-03-12 2021-06-29 广东一钛科技有限公司 Dry-type heat recovery wine cooling system and method
DE102021106529A1 (en) * 2021-03-17 2022-09-22 Krones Aktiengesellschaft Energy recovery in a beverage production plant
DE102021106528A1 (en) * 2021-03-17 2022-09-22 Krones Aktiengesellschaft Provision of cold water and ice water

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102188475B1 (en) * 2020-06-23 2020-12-08 황제연 Apparatus for treating organic waste

Also Published As

Publication number Publication date
JPH01206985A (en) 1989-08-21

Similar Documents

Publication Publication Date Title
KR20190067207A (en) Sub-atmospheric heat and cold system
KR101511432B1 (en) Cooling system for low-temperature warehouse and system for supplying hot water using the cooling system
JP6689801B2 (en) Solar air conditioning system
US3640084A (en) Refrigeration system and method
JPH0787770B2 (en) Exhaust heat recovery system heat treatment equipment
EP0842384A1 (en) Method and device for cooling
JP3728122B2 (en) Absorption air conditioner control device
JP2000274860A (en) Heat pump cycle type absorption refrigerating and heating simultaneously taking-out machine and method
JP3244774B2 (en) Automatic cooling / heating switching method and apparatus in absorption chiller / heater
JP3728121B2 (en) Absorption air conditioner control device
JP3521011B2 (en) Heat transfer device
JP3837186B2 (en) Absorption refrigerator
JP3615353B2 (en) Operation control method for air conditioner
JP2008309384A (en) Hot water supply device
JP3660493B2 (en) Absorption refrigeration system controller
JPS63123369A (en) Heat recovering and cooling device
JP3920979B2 (en) Absorption air conditioner control device
JP3920997B2 (en) Absorption air conditioner control device
JP3663006B2 (en) Absorption chiller / heater
JP3383898B2 (en) Absorption type cold heat generator
SU1636659A1 (en) Absorption refrigerator
JP2002349990A (en) Absorption refrigeration unit
JP2635276B2 (en) Absorption type cold / hot water unit
JP3663008B2 (en) Absorption chiller / heater
JPH11257788A (en) Absorption type cold heat generator

Legal Events

Date Code Title Description
S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees