JPH0787245B2 - Tunnel transistor - Google Patents

Tunnel transistor

Info

Publication number
JPH0787245B2
JPH0787245B2 JP32904692A JP32904692A JPH0787245B2 JP H0787245 B2 JPH0787245 B2 JP H0787245B2 JP 32904692 A JP32904692 A JP 32904692A JP 32904692 A JP32904692 A JP 32904692A JP H0787245 B2 JPH0787245 B2 JP H0787245B2
Authority
JP
Japan
Prior art keywords
layer
semiconductor
gaas
semiconductor channel
tunnel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP32904692A
Other languages
Japanese (ja)
Other versions
JPH06177367A (en
Inventor
寿夫 馬場
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP32904692A priority Critical patent/JPH0787245B2/en
Publication of JPH06177367A publication Critical patent/JPH06177367A/en
Publication of JPH0787245B2 publication Critical patent/JPH0787245B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Bipolar Transistors (AREA)
  • Junction Field-Effect Transistors (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は高集積化,高速動作,多
機能化が可能な、トンネル現象利用のトランジスタに関
するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a transistor utilizing a tunnel phenomenon, which can be highly integrated, operate at high speed, and have multiple functions.

【0002】[0002]

【従来の技術】半導体表面におけるp+ −n+ 接合での
トンネル現象を利用し、多機能性を有するトランジスタ
としてトンネルトランジスタが提案されている。このデ
バイスについては例えば、本出願人よる、特願平3−1
96321号「半導体装置」に記載されている。このト
ンネルトランジスタは少ない素子数で機能回路を構成で
き、高集積化を可能にする。
2. Description of the Related Art A tunnel transistor has been proposed as a transistor having multiple functions by utilizing a tunnel phenomenon at a p + -n + junction on a semiconductor surface. Regarding this device, for example, Japanese Patent Application No. 3-1
No. 96321, "Semiconductor Device". This tunnel transistor can form a functional circuit with a small number of elements, and enables high integration.

【0003】図5は従来のトンネルトランジスタの一例
を示す断面図である。1はGaAs基板、2はGaAs
基板1上に形成したi−Al0.5 Ga0.5 As層(ここ
でiは真性または実質的に真性とみなせるノンドープ半
導体を意味する略号。以下同様。)からなる、3は厚さ
20nm程度のi−GaAs層からなる半導体チャネル
層、10は縮退したn+ −GaAs層を含むn+ −拡散
層でソース領域、11は縮退したp+ −GaAs層を含
むp+ −拡散層でドレイン領域、6はi−Al0.5 Ga
0.5 As層からなる絶縁層、7はゲート電極でAl膜か
らなり、8はソース電極、9はドレイン電極でAuGe
/Au多層膜でできている。ソース電極8をアース電位
とし、ゲート電極7には電圧を印加せず、ドレイン電極
9に正の電圧を印加すると、ソース領域のn+ −GaA
s層とドレイン領域のp+ −GaAs層との間は非常に
薄い半導体チャネル層(3)を介して順方向バイアスに
なる。この順方向バイアスでは逆方向バイアスに比べド
レイン電流が流れ易いが、キャリアの拡散電流が顕著と
ならない電圧以下(GaAsで0.7V以下)にしてお
けば、ほとんど電流は流れない。さて、ゲート電極に大
きな正の電圧を印加すると、半導体チャネル層(3)に
は高濃度の電子が誘起される。この結果、この半導体チ
ャネル層は電子濃度が非常に大きい縮退した状態とな
り、等価的にn+ −GaAs層とみなせる。このため、
ソース領域(10)と半導体チャネル層(3)は完全な
導通状態となる。一方、半導体チャネル層(3)とドレ
イン領域(11)との間は江崎ダイオード(トンネルダ
イオード)と同様の接合(トンネル接合)が形成され
る。したがって、順方向バイアスが印加されたドレイン
・ソース間にはトンネル効果による大きなトンネル電流
が流れるようになり、電流−電圧特性には微分負性抵抗
が現れる。トンネル電流の大きさは半導体チャネル層に
誘起される電子の濃度に依存するため、この微分負性抵
抗特性はゲート電極に印加する電圧により制御されるこ
とになり、機能を有するトランジスタの動作が得られ
る。
FIG. 5 is a sectional view showing an example of a conventional tunnel transistor. 1 is a GaAs substrate, 2 is GaAs
An i-Al 0.5 Ga 0.5 As layer (where i is an abbreviation that means an undoped semiconductor that can be regarded as intrinsic or substantially intrinsic; the same applies to the following) formed on the substrate 1 is 3 having a thickness of about 20 nm. semiconductor channel layer made of GaAs layer, n + including n + -GaAs layer degenerated 10 - source regions in the diffusion layer, p + including p + -GaAs layer having degenerated 11 - drain region in the diffusion layer, 6 i-Al 0.5 Ga
Insulating layer made of 0.5 As layer, 7 is a gate electrode made of an Al film, 8 is a source electrode, 9 is a drain electrode of AuGe.
/ Au multilayer film. When the source electrode 8 is set to the ground potential, no voltage is applied to the gate electrode 7, and a positive voltage is applied to the drain electrode 9, n + -GaA of the source region is applied.
A forward bias is provided between the s layer and the p + -GaAs layer in the drain region through the very thin semiconductor channel layer (3). In this forward bias, the drain current flows more easily than in the reverse bias, but if the carrier diffusion current is not higher than a voltage (0.7 V or less for GaAs), almost no current flows. Now, when a large positive voltage is applied to the gate electrode, a high concentration of electrons is induced in the semiconductor channel layer (3). As a result, this semiconductor channel layer is in a degenerated state in which the electron concentration is very large, and can be equivalently regarded as an n + -GaAs layer. For this reason,
The source region (10) and the semiconductor channel layer (3) are brought into complete conduction. On the other hand, a junction (tunnel junction) similar to an Esaki diode (tunnel diode) is formed between the semiconductor channel layer (3) and the drain region (11). Therefore, a large tunnel current flows due to the tunnel effect between the drain and source to which the forward bias is applied, and differential negative resistance appears in the current-voltage characteristic. Since the magnitude of the tunnel current depends on the concentration of electrons induced in the semiconductor channel layer, this differential negative resistance characteristic is controlled by the voltage applied to the gate electrode, and the operation of a functional transistor can be obtained. To be

【0004】[0004]

【発明が解決しようとする課題】このデバイスで最も重
要な半導体チャネル層とドレイン領域間の接合の形成
は、イオン注入を利用している。あるいは選択再成長を
利用して形成することもできる。いずれにしてもこのよ
うなプロセスに伴なって発生・再結合センサターがトン
ネル接合とのその近傍に発生し易く、このセンターを介
した大きな再結合電流により微分負性抵抗特性が悪影響
を受けるという問題があった。機能素子として高い信頼
性を得るためには、この発生・再結合センターの抑制が
望まれる。
The most important junction formation between the semiconductor channel layer and the drain region in this device utilizes ion implantation. Alternatively, it can be formed by utilizing selective regrowth. In any case, the recombination sensor is likely to occur in the vicinity of the tunnel junction due to such a process, and the large negative recombination current through this center adversely affects the negative differential resistance characteristics. was there. In order to obtain high reliability as a functional element, suppression of this generation / recombination center is desired.

【0005】本発明の目的は、発生・再結合センターの
影響を受け難く従って微分負性抵抗特性の改善されたト
ンネルトランジスタを提供することにある。
It is an object of the present invention to provide a tunnel transistor which is not easily affected by generation / recombination centers and therefore has an improved differential negative resistance characteristic.

【0006】[0006]

【課題を解決するための手段】本発明のトンネルトラン
ジスタは、少なくとも表面部が絶縁性の基板表面に設け
られた半導体チャネル層と、半導体チャネル層をそれぞ
れ選択的に被覆する互いに異なる導電型を有する第1の
半導体層および第2の半導体層と、前記第1および第2
の半導体層とで挟まれた前記半導体チャネル層表面に設
けられた絶縁層と、前記絶縁層上のゲート電極と、前記
第1の半導体層と第2の半導体層にそれぞれ接触するソ
ース電極およびドレイン電極を有するというものであ
る。
A tunnel transistor according to the present invention has a semiconductor channel layer having at least a surface portion provided on a surface of an insulating substrate and different conductivity types for selectively covering the semiconductor channel layer. A first semiconductor layer and a second semiconductor layer, and the first and second semiconductor layers.
An insulating layer provided on the surface of the semiconductor channel layer sandwiched by the semiconductor layer, a gate electrode on the insulating layer, a source electrode and a drain in contact with the first semiconductor layer and the second semiconductor layer, respectively. It has an electrode.

【0007】[0007]

【作用】トンネル接合が半導体チャネル層内に形成され
るため、この接合特性は、発生・再結合センターの影響
を受け難い。
Since the tunnel junction is formed in the semiconductor channel layer, this junction characteristic is not easily affected by the generation / recombination center.

【0008】[0008]

【実施例】以下、本発明について実施例について図面を
参照して説明する。
Embodiments of the present invention will be described below with reference to the drawings.

【0009】図1は本発明の第1の実施例を示す断面図
である。
FIG. 1 is a sectional view showing a first embodiment of the present invention.

【0010】この実施例は、GaAs基板1の表面に厚
さ500nmのi−Al0.5 Ga0.5 As層2をエピタ
キシャル成長した、表面部が絶縁性の基板を有してい
る。i−Al0.5 Ga0.5 As層2の表面には、厚さ2
0nmのi−GaAs層3がエピタキシャル成長されて
いる。i−GaAs層3には、1μmの間隔を置いてn
+ −GaAs層4aとp+ −GaAs層5aがそれぞれ
選択的に形成されている。n+ −GaAs層4aとp+
−GaAs層5aとはいずれも縮退していてi−GaA
s層とエピタキシャル接合をしている。n+ −GaAs
層4aとp+ −GaAs層5aとで挟まれたi−GaA
s層3表面には厚さ20nmのi−Al0.5 Ga0.5
s層6がヘテロ接合して設けられている。n+ −GaA
s層4aおよびp+ −GaAs層5aにはAuGe/A
u多層膜からなるソース電極8およびドレイン電極9が
それぞれ接触して設けられている。i−Al0.5 Ga
0.5 As層6の表面はAl膜からなるゲート電極7が接
触して設けられている。
In this embodiment, the surface of the GaAs substrate 1 is an i-Al 0.5 Ga 0.5 As layer 2 having a thickness of 500 nm, which is epitaxially grown. The i-Al 0.5 Ga 0.5 As layer 2 has a thickness of 2 on the surface.
The 0 nm i-GaAs layer 3 is epitaxially grown. The i-GaAs layer 3 has a space of 1 μm and n
The + -GaAs layer 4a and the p + -GaAs layer 5a are selectively formed. n + -GaAs layer 4a and p +
All are degenerate with i-GaA layer 5a
It has an epitaxial junction with the s layer. n + -GaAs
I-GaA sandwiched between the layer 4a and the p + -GaAs layer 5a
A 20 nm-thick i-Al 0.5 Ga 0.5 A layer is formed on the surface of the s layer 3.
The s layer 6 is provided in a heterojunction. n + -GaA
AuGe / A is used for the s layer 4a and the p + -GaAs layer 5a.
A source electrode 8 and a drain electrode 9 made of a u multilayer film are provided in contact with each other. i-Al 0.5 Ga
A gate electrode 7 made of an Al film is provided in contact with the surface of the 0.5 As layer 6.

【0011】第1の半導体層(n+ −GaAs層4a)
は高濃度の電子が存在する縮退した半導体となっている
ため、この層の下の半導体チャネル層(i−GaAs層
3)にも高濃度の電子が広がり、第1の半導体層下の半
導体チャネル層は高濃度の電子が存在する縮退した半導
体となっている。同様に、第2の半導体層(p+ −Ga
As層5a)には高濃度の正孔が存在する縮退した半導
体となっているため、この層の下の半導体チャネル層に
も正孔が広がり、第2の半導体層下の半導体チャネル層
は高濃度の正孔が存在する縮退した半導体となってい
る。このため、ゲート電極7に正の電圧を印加して絶縁
層(i−Al0.5 Ga0.5 As層)下の半導体チャネル
層に高濃度の電子を誘起すると、この領域と第1の半導
体層下の半導体チャネル層とは完全な導通状態となり、
第2の半導体層下の半導体チャネル層との間にはトンネ
ル接合が形成される。したがって、従来のトランジスタ
と同様に微分負性抵抗特性を有するトランジスタ動作が
実現できる。なお、第1の半導体層は必ずしも縮退して
いる必要はないが、寄生抵抗を減らすために縮退してい
ることが望ましい。
First semiconductor layer (n + -GaAs layer 4a)
Is a degenerate semiconductor in which high-concentration electrons exist, so that high-concentration electrons spread to the semiconductor channel layer (i-GaAs layer 3) below this layer, and the semiconductor channel below the first semiconductor layer. The layer is a degenerate semiconductor with a high concentration of electrons. Similarly, the second semiconductor layer (p + -Ga
Since the As layer 5a) is a degenerate semiconductor in which a high concentration of holes exists, holes also spread to the semiconductor channel layer below this layer, and the semiconductor channel layer below the second semiconductor layer has a high concentration. It is a degenerate semiconductor in which a certain number of holes exist. Therefore, when a positive voltage is applied to the gate electrode 7 to induce a high concentration of electrons in the semiconductor channel layer below the insulating layer (i-Al 0.5 Ga 0.5 As layer), this region and the first semiconductor layer Complete conduction with the semiconductor channel layer,
A tunnel junction is formed with the semiconductor channel layer below the second semiconductor layer. Therefore, it is possible to realize the transistor operation having the differential negative resistance characteristic like the conventional transistor. Note that the first semiconductor layer does not necessarily have to be degenerated, but is preferably degenerated in order to reduce parasitic resistance.

【0012】本発明のトンネルトランジスタの構造で
は、上に述べたようにトンネル接合が単一の半導体チャ
ネル層内に形成されるため、トンネル接合は異種半導体
接合形成プロセスに伴うような発生・再結合センターの
影響を受け難い。このため、再結合電流が小さく従来構
造よりも顕著な微分負性抵抗特性が得られる。
In the structure of the tunnel transistor of the present invention, since the tunnel junction is formed in the single semiconductor channel layer as described above, the tunnel junction is generated and recombined as in the heterogeneous semiconductor junction forming process. Not easily affected by the center. For this reason, the recombination current is small and the differential negative resistance characteristic which is more remarkable than that of the conventional structure is obtained.

【0013】次に本発明の実施例の製造方法について説
明する。
Next, the manufacturing method of the embodiment of the present invention will be described.

【0014】まず、GaAs基板1の(100)面上に
500nmのi−Al0.5 Ga0.5As層3(半導体チ
ャネル層)厚さ20nmのp+ GaAs層5a(濃度5
×1019cm-3のBeをドーパントとして含んでいる)
を分子線エピタキシー(MBE)法によりそれぞれ形成
した。不純物の表面偏折、拡散を抑えるため、基板温度
は520℃とした。
First, a 500 nm i-Al 0.5 Ga 0.5 As layer 3 (semiconductor channel layer) on a (100) plane of a GaAs substrate 1 and a 20 nm thick p + GaAs layer 5 a (concentration 5).
X contains 10 19 cm -3 of Be as a dopant)
Were formed by a molecular beam epitaxy (MBE) method. The substrate temperature was set to 520 ° C. in order to suppress surface unevenness and diffusion of impurities.

【0015】ドレインとなる部分以外のp+ −GaAs
5aを除去した後、ソース部分に厚さ20nmのn+
GaAs層4a(濃度1×1019cm-3のSiをドーパ
ントとして含んでいる)を選択的に成長させた。さら
に、厚さ20nmのi−Al0.5 Ga0.5 層6を成長さ
せ、厚さ50nmのAl膜を蒸着した後、ゲート電極形
状にAl膜およびその下のi−Al0.5 Ga0.5 As層
6を加工した。最後にリフトオフ法によりAuGe/A
u多層膜よりなるソース電極8及びドレイン電極9を形
成した。電極のアロイ化工程は行なわなくてもオーム性
接触が得られた。
P + -GaAs other than the portion to be the drain
After removing 5a, a 20 nm-thick n + -
A GaAs layer 4a (containing a concentration of 1 × 10 19 cm −3 of Si as a dopant) was selectively grown. Furthermore, after growing an i-Al 0.5 Ga 0.5 layer 6 having a thickness of 20 nm and depositing an Al film having a thickness of 50 nm, the Al film and the i-Al 0.5 Ga 0.5 As layer 6 thereunder are processed into a gate electrode shape. did. Finally, by lift-off method, AuGe / A
A source electrode 8 and a drain electrode 9 made of a u multilayer film were formed. Ohmic contact was obtained without the alloying step of the electrodes.

【0016】この構造のデバイスにより、微分負性抵抗
特性のピーク・バレー比として10以上が得られ、従来
構造より改善されていることがわかった。なお、ソー
ス、ドレインおよびゲートに加える電圧の極性を逆にし
てゲート電極下のi−GaAs層3に高濃度の正孔を誘
起した場合にも、トンネルトランジスタとしての同様な
特性が得られた。
With the device having this structure, it was found that the peak-valley ratio of the differential negative resistance characteristic was 10 or more, which is an improvement over the conventional structure. The same characteristics as a tunnel transistor were obtained when high-concentration holes were induced in the i-GaAs layer 3 below the gate electrode by reversing the polarities of the voltages applied to the source, drain, and gate.

【0017】次に、本発明の第2の実施例について図2
を参照して説明する。この実施例は第2の半導体装置と
して半導体チャネル層(i−GaAs層3)よりも価電
子帯端のエネルギーが低いp型半導体として厚さ20n
m,Be濃度5×1019cm-3のp+ −Al0.3 Ga
0.7 As層5bを用い、第1の半導体層として厚さ20
nm,Si濃度1×1019cm-3のn+ −Al0.3 Ga
0.7 As層4bを用いた点で第1の実施例と相違してい
る。なお、第2の半導体層と半導体チャネル層との間は
+ −Al0.3 Ga0.7 As/GaAs変調ドープ構造
となっている。
Next, a second embodiment of the present invention will be described with reference to FIG.
Will be described with reference to. In this embodiment, as a second semiconductor device, a p-type semiconductor having a valence band edge energy lower than that of the semiconductor channel layer (i-GaAs layer 3) has a thickness of 20 n.
m, Be concentration of 5 × 10 19 cm −3 of p + -Al 0.3 Ga
The 0.7 As layer 5b is used and the thickness of the first semiconductor layer is 20.
nm, Si concentration 1 × 10 19 cm −3 n + -Al 0.3 Ga
The difference from the first embodiment is that the 0.7 As layer 4b is used. A p + -Al 0.3 Ga 0.7 As / GaAs modulation-doped structure is provided between the second semiconductor layer and the semiconductor channel layer.

【0018】図3(a),(b)に本実施例におけるソ
ース側およびドレイン側のエネルギー帯図の概略を示
す。
3 (a) and 3 (b) schematically show energy band diagrams on the source side and the drain side in this embodiment.

【0019】ソース側ではn+ −Al0.3 Ga0.7 As
層4bとi−GaAs層3との接合部に電子蓄積層Aが
できている。ドレイン側ではp+ −Al0.3 0.7 As
層5bとi−GaAs層3との接合部に正孔蓄積層Bが
できている。
On the source side, n + -Al 0.3 Ga 0.7 As
An electron storage layer A is formed at the junction between the layer 4b and the i-GaAs layer 3. On the drain side, p + -Al 0.3 G 0.7 As
A hole storage layer B is formed at the junction between the layer 5b and the i-GaAs layer 3.

【0020】p+ −Al0.3 Ga0.7 As層5bの正孔
がi−GaAs層3へと移動し、第2の半導体層(5
b)下の半導体チャネル層(3)には第2の半導体層
(5b)以上の濃度の正孔が蓄積されることになる。
The holes in the p + -Al 0.3 Ga 0.7 As layer 5b move to the i-GaAs layer 3, and the second semiconductor layer (5
b) Holes having a concentration higher than that of the second semiconductor layer (5b) will be accumulated in the lower semiconductor channel layer (3).

【0021】ゲート電極7に正の電圧を印加するとi−
Al0.5 Ga0.5 As層6とi−GaAs層3との接合
部に図3(a)と類似の電子蓄積層ができる。
When a positive voltage is applied to the gate electrode 7, i-
An electron storage layer similar to that shown in FIG. 3A is formed at the junction between the Al 0.5 Ga 0.5 As layer 6 and the i-GaAs layer 3.

【0022】ゲート電圧が1ボルトのとき約1×1012
cm-2の電荷が蓄積される。理想的なヘテロ接合を仮定
し、最大電荷密度を見積ると約1×1019cm-3とな
る。ドレイン側のi−GaAs層3には、p+ −Al
0.3 Ga0.7 As層5bの不純物濃度5×1019cm-3
より多数の正孔が存在しているので、厚さ約12nm以
下のトンネル接合(p+ −n+ 接合)が形成されると考
えられることができる。
When the gate voltage is 1 volt, about 1 × 10 12
A charge of cm -2 is accumulated. Assuming an ideal heterojunction, the maximum charge density is estimated to be about 1 × 10 19 cm −3 . In the i-GaAs layer 3 on the drain side, p + -Al
Impurity concentration of 0.3 Ga 0.7 As layer 5b 5 × 10 19 cm −3
Since a larger number of holes are present, it can be considered that a tunnel junction (p + -n + junction) having a thickness of about 12 nm or less is formed.

【0023】本実施例は、ドレイン側に第2の半導体層
(5b)より高濃度の正孔が蓄積されるので、第1の実
施例と同様な負性微分特性の改善に加え、トンネル電流
密度の向上が可能であり、第1の実施例に比べ少なくと
も1桁大きなトンネル電流が得られた。
In this embodiment, since holes having a higher concentration than the second semiconductor layer (5b) are accumulated on the drain side, in addition to the improvement of the negative differential characteristic as in the first embodiment, the tunnel current is increased. The density can be improved, and a tunnel current larger than that of the first embodiment by at least one digit was obtained.

【0024】なお、第1の半導体層は第1の実施例と同
じくn+ −GaAs層にしてもよい。また、製造方法は
第1の実施例に準じるので改めて説明しない。
The first semiconductor layer may be an n + -GaAs layer as in the first embodiment. The manufacturing method is similar to that of the first embodiment and will not be described again.

【0025】次に、本発明の第3の実施例について図4
を参照して説明する。本実施例は第1の半導体層として
厚さ20nm,Be濃度5×1019cm-3のp+ −Al
0.3Ga0.7 As層4cを用い第2の半導体層として半
導体チャネル層(i−GaAs層3)よりも伝導帯端の
エネルギーが高い厚さ20nm,Si濃度1×1019
-3のn+ −Al0.3 Ga0.7 As層5cを用いた点で
第1の実施例と相違している。この構造では、ソース、
ドレインの導電型が第1および第2の実施例と反対であ
るため、ゲートに負の電圧を印加してチャネル層に高濃
度の正孔を誘起させて動作させる必要があるが、やはり
ドレイン端にトンネル接合が形成され、同様なトンネル
トランジスタの特性が得られる。
Next, a third embodiment of the present invention will be described with reference to FIG.
Will be described with reference to. In this example, p + -Al having a thickness of 20 nm and a Be concentration of 5 × 10 19 cm −3 was used as the first semiconductor layer.
The 0.3 Ga 0.7 As layer 4c is used as the second semiconductor layer, the energy of the conduction band edge is higher than that of the semiconductor channel layer (i-GaAs layer 3), the thickness is 20 nm, and the Si concentration is 1 × 10 19 c.
It differs from the first embodiment in that the n + -Al 0.3 Ga 0.7 As layer 5c of m −3 is used. In this structure, the source,
Since the conductivity type of the drain is opposite to that of the first and second embodiments, it is necessary to apply a negative voltage to the gate to induce a high concentration of holes in the channel layer to operate, but the drain end is also operated. A tunnel junction is formed in the, and similar characteristics of the tunnel transistor are obtained.

【0026】第2の半導体層と半導体チャネル層との間
はn+ −Al0.3 Ga0.7 As/i−GaAsのn型の
変調ドープ構造となっている。従って、n+ −Al0.3
Ga0.7 As層5cの電子がi−GaAs層3へと移動
し、第2の半導体層下の半導体チャネル層には第2の半
導体層以上の濃度の電子が蓄積される。このため、第2
の実施例と同様に負性微分特性の改善と、トンネル電流
の向上が達成できた。なお、第1の半導体層はp+ −G
aAs層にしてもよい。また製造方法は第1の実施例に
準じるので改めて説明しない。
An n-type modulation-doped structure of n + -Al 0.3 Ga 0.7 As / i-GaAs is provided between the second semiconductor layer and the semiconductor channel layer. Therefore, n + -Al 0.3
Electrons in the Ga 0.7 As layer 5c move to the i-GaAs layer 3, and electrons having a concentration higher than that of the second semiconductor layer are accumulated in the semiconductor channel layer below the second semiconductor layer. Therefore, the second
As in the case of Example 1, the improvement of the negative differential characteristic and the improvement of the tunnel current could be achieved. The first semiconductor layer is p + -G
It may be an aAs layer. The manufacturing method is similar to that of the first embodiment and will not be described again.

【0027】以上、GaAs基板にi−AlGaAs層
をエピタキシャル成長したものを基板とし、i−GaA
s層を半導体チャネル層として用いた例について説明し
た。基板表面の絶縁膜としては、AlGaAsのほか、
禁止帯幅の広いその他の半導体、SiO2 ,Si
3 4 ,酸窒化シリコン,Al2 3 ,TiO2 ,Pb
ZrTiO3 ,CaFなどの絶縁体を用いることができ
る。また半導体チャネル層、第1,第2の半導体層とし
てはSi,Ge,GaAs,InPなどの単一の半導体
のほか、GaAs−GaAlAs,Ge−SiGe,S
i−SiGeC,Si−GaP,Ge−GaAs,In
AsP−GaAs,InGaAs−InAlAs,In
GaAs−InP,GaSb−AlGaSb,InAs
−AlGaSb,InSb−InAs,HgCdTe−
CdTeなどのヘテロ接合をする半導体を用いることも
できる。
As described above, a substrate obtained by epitaxially growing an i-AlGaAs layer on a GaAs substrate is used as an i-GaA substrate.
The example in which the s layer is used as the semiconductor channel layer has been described. As the insulating film on the substrate surface, in addition to AlGaAs,
Other semiconductors with wide bandgap, SiO 2 , Si
3 N 4 , silicon oxynitride, Al 2 O 3 , TiO 2 , Pb
An insulator such as ZrTiO 3 or CaF can be used. The semiconductor channel layer and the first and second semiconductor layers are not only a single semiconductor such as Si, Ge, GaAs, InP, but also GaAs-GaAlAs, Ge-SiGe, S.
i-SiGeC, Si-GaP, Ge-GaAs, In
AsP-GaAs, InGaAs-InAlAs, In
GaAs-InP, GaSb-AlGaSb, InAs
-AlGaSb, InSb-InAs, HgCdTe-
A semiconductor having a heterojunction such as CdTe can also be used.

【0028】[0028]

【発明の効果】以上説明したように、本発明により発
生、再結合センターの影響を受け難く改善された微分負
性抵抗特性を有するトンネルトランジスタを実現でき、
高速.低消費電力,室温動作,超高密度のトンネルデバ
イス集積回路が可能になる。
As described above, according to the present invention, it is possible to realize a tunnel transistor having an improved differential negative resistance characteristic which is less susceptible to the influence of recombination centers.
high speed. It enables low power consumption, room temperature operation, and ultra-high-density tunnel device integrated circuits.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の第1の実施例を示す断面図である。FIG. 1 is a sectional view showing a first embodiment of the present invention.

【図2】本発明の第2の実施例を示す断面図である。FIG. 2 is a sectional view showing a second embodiment of the present invention.

【図3】第2の実施例の説明に使用するソース側および
ドレイン側をそれぞれ(a),(b)に分図して示すエ
ネルギー帯図である。
FIG. 3 is an energy band diagram showing the source side and the drain side used in the description of the second embodiment, which are divided into (a) and (b), respectively.

【図4】本発明の第3の実施例を示す断面図である。FIG. 4 is a sectional view showing a third embodiment of the present invention.

【図5】従来例を示す断面図である。FIG. 5 is a cross-sectional view showing a conventional example.

【符号の説明】[Explanation of symbols]

1 GaAs基板 2 i−Al0.5 Ga0.5 As層 3 i−GaAs層 4a n+ GaAs層 4b n+ −Al0.3 Ga0.2 As層 4c p+ −Al0.3 Ga0.7 As層 5a p+ −GaAs層 5b p+ −Al0.3 Ga0.7 As層 5c n+ −Al0.3 Ga0.5 As層 6 i−Al0.5 Ga0.5 As層 7 ゲート電極 8 ソース電極 9 ドレイン電極 10 n+ −拡散層 11 p+ −拡散層1 GaAs substrate 2 i-Al 0.5 Ga 0.5 As layer 3 i-GaAs layer 4 a n + GaAs layer 4 b n + -Al 0.3 Ga 0.2 As layer 4 cp + -Al 0.3 Ga 0.7 As layer 5 ap + -GaAs layer 5 bp + -Al 0.3 Ga 0.7 As layer 5c n + -Al 0.3 Ga 0.5 As layer 6 i-Al 0.5 Ga 0.5 As layer 7 Gate electrode 8 Source electrode 9 Drain electrode 10 n + -Diffusion layer 11 p + -Diffusion layer

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 少なくとも表面部が絶縁性の基板表面に
設けられた半導体チャネル層と、半導体チャネル層をそ
れぞれ選択的に被覆する互いに異なる導電型を有する第
1の半導体層および第2の半導体層と、前記第1および
第2の半導体層とで挟まれた前記半導体チャネル層表面
に設けられた絶縁層と、前記絶縁層上のゲート電極と、
前記第1の半導体層と第2の半導体層にそれぞれ接触す
るソース電極およびドレイン電極を有することを特徴と
するトンネルトランジスタ。
1. A semiconductor channel layer having at least a surface portion provided on a surface of an insulating substrate, and a first semiconductor layer and a second semiconductor layer having different conductivity types for selectively covering the semiconductor channel layer. An insulating layer provided on the surface of the semiconductor channel layer sandwiched between the first and second semiconductor layers, and a gate electrode on the insulating layer,
A tunnel transistor having a source electrode and a drain electrode respectively in contact with the first semiconductor layer and the second semiconductor layer.
【請求項2】 少なくとも前記第2の半導体層が高濃度
の不純物を含有し縮退している請求項1記載のトンネル
トランジスタ。
2. The tunnel transistor according to claim 1, wherein at least the second semiconductor layer contains a high concentration of impurities and is degenerated.
【請求項3】 少なくとも前記第2の半導体層がp型の
導電型を有し、前記半導体チャネル層よりも価電子帯端
のエネルギーが低い請求項1記載のトンネルトランジス
タ。
3. The tunnel transistor according to claim 1, wherein at least the second semiconductor layer has a p-type conductivity type and has a lower valence band edge energy than the semiconductor channel layer.
【請求項4】 少なくとも前記第2の半導体層がn型の
導電型を有し、前記半導体チャネル層よりも伝導帯端の
エネルギーが高い請求項1記載のトンネルトランジス
タ。
4. The tunnel transistor according to claim 1, wherein at least the second semiconductor layer has an n-type conductivity, and the energy of the conduction band edge is higher than that of the semiconductor channel layer.
JP32904692A 1992-12-09 1992-12-09 Tunnel transistor Expired - Fee Related JPH0787245B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP32904692A JPH0787245B2 (en) 1992-12-09 1992-12-09 Tunnel transistor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP32904692A JPH0787245B2 (en) 1992-12-09 1992-12-09 Tunnel transistor

Publications (2)

Publication Number Publication Date
JPH06177367A JPH06177367A (en) 1994-06-24
JPH0787245B2 true JPH0787245B2 (en) 1995-09-20

Family

ID=18217009

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32904692A Expired - Fee Related JPH0787245B2 (en) 1992-12-09 1992-12-09 Tunnel transistor

Country Status (1)

Country Link
JP (1) JPH0787245B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101558497B (en) 2006-12-15 2011-09-07 Nxp股份有限公司 Transistor device and method of manufacturing such a transistor device

Also Published As

Publication number Publication date
JPH06177367A (en) 1994-06-24

Similar Documents

Publication Publication Date Title
US5705827A (en) Tunnel transistor and method of manufacturing same
JP2773487B2 (en) Tunnel transistor
US4583105A (en) Double heterojunction FET with ohmic semiconductor gate and controllable low threshold voltage
CA1265626A (en) Electron gas hole gas tunneling transistor device
JPH05251475A (en) Hemt type semiconductor device
JPH0541520A (en) Semiconductor device
US5382814A (en) Semiconductor device with low thermally generated leakage current
EP0092645B1 (en) Transistor and circuit including a transistor
JPS61147577A (en) Complementary semiconductor device
JP2701583B2 (en) Tunnel transistor and manufacturing method thereof
JPH088360B2 (en) Tunnel transistor and manufacturing method thereof
JP2768097B2 (en) Tunnel transistor
JP2643890B2 (en) Tunnel transistor
JPH0787245B2 (en) Tunnel transistor
JP2800675B2 (en) Tunnel transistor
JP2658934B2 (en) Tunnel transistor
JP2817718B2 (en) Tunnel transistor and manufacturing method thereof
JP2778447B2 (en) Tunnel transistor and manufacturing method thereof
JP2792295B2 (en) Tunnel transistor
JP2861590B2 (en) Tunnel transistor
JP2817726B2 (en) Tunnel transistor and manufacturing method thereof
JP2000174256A (en) Tunnel transistor and its manufacture
JP2530806B2 (en) Complementary logic structure
JP2757758B2 (en) Tunnel transistor and manufacturing method thereof
JP2834172B2 (en) Field effect transistor

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19960305

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080920

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080920

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090920

Year of fee payment: 14

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090920

Year of fee payment: 14

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100920

Year of fee payment: 15

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110920

Year of fee payment: 16

LAPS Cancellation because of no payment of annual fees