JPH0786588B2 - Focus detection device - Google Patents

Focus detection device

Info

Publication number
JPH0786588B2
JPH0786588B2 JP63136818A JP13681888A JPH0786588B2 JP H0786588 B2 JPH0786588 B2 JP H0786588B2 JP 63136818 A JP63136818 A JP 63136818A JP 13681888 A JP13681888 A JP 13681888A JP H0786588 B2 JPH0786588 B2 JP H0786588B2
Authority
JP
Japan
Prior art keywords
light
prism
objective lens
detection device
observed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP63136818A
Other languages
Japanese (ja)
Other versions
JPH01304414A (en
Inventor
佐藤  直
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitutoyo Corp
Original Assignee
Mitutoyo Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitutoyo Corp filed Critical Mitutoyo Corp
Priority to JP63136818A priority Critical patent/JPH0786588B2/en
Publication of JPH01304414A publication Critical patent/JPH01304414A/en
Publication of JPH0786588B2 publication Critical patent/JPH0786588B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Focusing (AREA)
  • Automatic Focus Adjustment (AREA)

Description

【発明の詳細な説明】 [産業上の利用分野] この発明は、顕微鏡や投影機等の光学機器に付設されて
合焦状態を検出する合焦検出装置に関する。
Description: TECHNICAL FIELD The present invention relates to a focus detection device attached to an optical device such as a microscope or a projector to detect a focus state.

[従来の技術] 従来、合焦状態を検出するものとして、第10〜12図に示
す合焦検出装置Dbがある。つまり、合焦検出装置Dbで
は、対物レンズ2bの被観察物側焦点23bが結像される点
をプリズム6bの稜15bに一致させた構成となっている。
従って、合焦時の合焦検出装置Dbでは、発光素子1bから
の光が被観察物13bを経てハーフミラー3bで反射し、プ
リズム6bの稜15bで分割される。
[Prior Art] Conventionally, as a device for detecting a focus state, there is a focus detection device Db shown in FIGS. In other words, the focus detection device Db has a configuration in which the point on the observed object side focus 23b of the objective lens 2b is focused on the ridge 15b of the prism 6b.
Therefore, in the focus detection device Db at the time of focusing, the light from the light emitting element 1b is reflected by the half mirror 3b after passing through the observed object 13b, and is split by the ridge 15b of the prism 6b.

なお、第10,11及び12図はそれぞれ、合焦検出装置Dbと
被観察物13bとの相対位置が近い状態、合焦の状態及び
遠い状態にあることを示す。
It should be noted that FIGS. 10, 11 and 12 show that the relative position between the focus detection device Db and the observed object 13b is close, in focus and far away, respectively.

[発明が解決しようとする課題] 合焦検出装置Dbでは、合焦の状態が得られていない場
合、つまりいわゆるデフォーカスに対して、検出は敏感
である。
[Problems to be Solved by the Invention] In the focus detection device Db, detection is sensitive when a focused state is not obtained, that is, so-called defocus.

しかし、プリズム6bの稜15bは所定どおりの製作が極め
てむつかしく、稜15bに微小の丸みや形状に誤差がある
場合には、ハーフミラー3bからの光が所定どおりに分割
されず、従って所定どおりに分割されない場合には受光
素子7b,8b,9b,10b側に設計どおりの光が入射せず所定ど
おりの合焦検出の作動が行なわれないという問題があっ
た。
However, the ridge 15b of the prism 6b is extremely difficult to manufacture in a predetermined manner, and when the ridge 15b has a minute roundness or an error in the shape, the light from the half mirror 3b is not split as predetermined, and therefore, as predetermined. If the light is not divided, there is a problem in that the light as designed does not enter the light receiving elements 7b, 8b, 9b, 10b side and the predetermined focus detection operation is not performed.

この問題を解決するものとして、第13〜16図に示す、合
焦検出装置Dcがある。つまり、合焦検出装置Dcでは、被
観察物13cからハーフミラー3cで反射されて来た光がプ
リズム6cで分割されて、受光素子7c,8c,9c,10c側に至る
構成となっている。しかし、合焦検出装置Dcでは、被観
察物13cが焦点23cより近い位置にある場合には、第13図
に示すように受光素子8c及び9cが光を受ける。一方、被
観察物13cが焦点23cより遠い位置にある場合には、第15
図に示すように受光素子7c及び10cが光を受ける。とこ
ろが、更に被観察物13cが焦点23cより一層遠い位置にあ
る場合には、第16図に示すように受光素子8c及び9cが光
を受け、被観察物13cが焦点23cより近い位置にある場合
と同じ結果となる。従って、合焦検出装置Dcは、合焦の
状態にあるのか非合焦の状態にあるのかを判別できる
が、非合焦の状態にある場合に被観察物13cが焦点23cよ
り近い位置にあるのか遠い位置にあるのかが判別できな
い。従って、合焦の状態を得るためには、合焦検出装置
Dcを被観察物13cに接近及び離隔の二つの試行錯誤を必
要とする場合が生じるという問題がある。
As a means for solving this problem, there is a focus detection device Dc shown in FIGS. That is, in the focus detection device Dc, the light reflected by the half mirror 3c from the observed object 13c is split by the prism 6c and reaches the light receiving elements 7c, 8c, 9c, 10c side. However, in the focus detection device Dc, the light receiving elements 8c and 9c receive light as shown in FIG. 13 when the observed object 13c is closer to the focal point 23c. On the other hand, if the object to be observed 13c is located far from the focal point 23c,
As shown in the figure, the light receiving elements 7c and 10c receive light. However, when the object to be observed 13c is further distant from the focal point 23c, the light receiving elements 8c and 9c receive light as shown in FIG. 16, and the object to be observed 13c is closer to the focal point 23c. Produces the same result as. Therefore, the focus detection device Dc can determine whether it is in the in-focus state or the out-of-focus state, but the observed object 13c is located closer to the focus 23c in the out-of-focus state. It is not possible to determine whether or not it is in a distant position. Therefore, in order to obtain the focus state, the focus detection device
There is a problem that it may be necessary to perform two trial and errors of approaching and separating Dc from the observed object 13c.

この発明は上記の事情に鑑みてなされたものであり、プ
リズムの稜が高い精度で製作される必要がなくて稜に微
小の丸みや形状に多少の誤差があっても合焦状態の検出
に問題はなく、しかも非合焦の状態にある場合には被観
察物が焦点より近い位置にあるかもしくは遠い位置にあ
るかを判別できる合焦検出装置を提供するものである。
The present invention has been made in view of the above circumstances, and it is not necessary for the ridge of the prism to be manufactured with high accuracy, and it is possible to detect the focused state even if the ridge has a slight roundness or some error in the shape. (EN) Provided is a focus detection device which has no problem and is capable of discriminating whether an object to be observed is near or far from the focus when it is out of focus.

[課題を解決するための手段] この発明は、第一の光軸を共通にして配設された発光素
子及び対物レンズと、その発光素子と対物レンズとの間
で、且つ反射面が上記第一の光軸と一定の角度で交わっ
て配設されたハーフミラーと、そのハーフミラーの第一
の光軸との反射面側交点からハーフミラーに対して前記
一定の角度をもって伸びてなる第二の光軸側に配設され
た受光素子と、その受光素子とハーフミラーとの間で、
且つ稜が第二の光軸上に配設されたプリズムと、そのプ
リズムとハーフミラーとの間で、且つ光軸を第二の光軸
と共通にして配設され、対物レンズの被観察物側焦点が
対物レンズによって結像される第二の光軸上の点を、上
記受光素子上に結像するための結像用レンズと、を備え
た合焦検出装置において、前記結像用レンズによって結
像される前記対物レンズの像側焦点に前記プリズムの稜
を位置させることを特徴とする合焦検出装置である。
[Means for Solving the Problems] According to the present invention, a light emitting element and an objective lens, which are arranged with a first optical axis in common, are provided between the light emitting element and the objective lens, and the reflection surface is the above-mentioned. A half mirror arranged so as to intersect with one optical axis at a constant angle, and a second mirror extending from the intersection of the reflecting surface side of the first optical axis of the half mirror with respect to the half mirror at the constant angle. Between the light receiving element disposed on the optical axis side of the, and the light receiving element and the half mirror,
A prism whose ridge is arranged on the second optical axis and between the prism and the half mirror, and the optical axis is common to the second optical axis, and the object to be observed of the objective lens An imaging lens for forming an image of a point on the second optical axis, the side focus of which is imaged by an objective lens, on the light receiving element, comprising: The focus detection device is characterized in that the ridge of the prism is located at the image-side focal point of the objective lens formed by.

[作用] 対物レンズの被観察物側焦点は、対物レンズによって対
物レンズと結像用レンズとの間に結像され、その結ばれ
た像から受光素子への光は断面が拡がった光束の状態で
プリズムに入る。
[Function] The object-side focal point of the objective lens is imaged by the objective lens between the objective lens and the imaging lens, and the light from the combined image to the light receiving element is in a state of a light flux with a cross section expanded. Then enter the prism.

対物レンズの像側焦点が結像用レンズによってプリズム
の稜の位置に結像されており、被観察物のハーフミラー
を介して来た光は合焦からのズレ量にかかわらずハーフ
ミラーに対しプリズムよりも遠方で結像しようとすると
共にプリズムで二分割される。
The image-side focal point of the objective lens is imaged by the imaging lens at the ridge position of the prism, and the light coming through the half mirror of the object to be observed is reflected by the half mirror regardless of the amount of deviation from focusing. An image is formed at a distance from the prism and the prism divides the image into two.

[実施例] この発明を、第1〜9図に示す実施例に基づき詳述す
る。しかし、これによってこの発明が限定されるもので
はない。
Embodiments The present invention will be described in detail based on the embodiments shown in FIGS. However, this does not limit the present invention.

合焦検出装置Dは第1図に示すように、発光素子1と、
対物レンズ2と、ハーフミラー3,4と、結像用レンズ5
と、プリズム6と、受光素子7,8,9,10及び差動増幅器11
が備えられている。
As shown in FIG. 1, the focus detection device D includes a light emitting element 1,
Objective lens 2, half mirrors 3 and 4, and imaging lens 5
, Prism 6, light receiving elements 7, 8, 9, 10 and differential amplifier 11
Is provided.

発光素子1と対物レンズ2は、それぞれの光軸を光軸12
に共通して配設されている。従って、発光素子1からの
光は、ハーフミラー3,4と対物レンズ2を通って被観察
物13側へ進む。
The light emitting element 1 and the objective lens 2 have their respective optical axes.
Are arranged in common. Therefore, the light from the light emitting element 1 passes through the half mirrors 3 and 4 and the objective lens 2 to the side of the observed object 13.

ハーフミラー3は、光軸12と45度で交わって配設されて
いる。従って、被観察物13側から対物レンズ2を通りハ
ーフミラー4で反射されて来た光は、ハーフミラー3で
反射されて結像用レンズ5側へ進む。この際、ハーフミ
ラー3で反射された光は、ハーフミラー3に対して45度
の角度をもって伸びる光軸14を軸とする。
The half mirror 3 is arranged so as to intersect the optical axis 12 at 45 degrees. Therefore, the light reflected by the half mirror 4 from the observation object 13 side through the objective lens 2 is reflected by the half mirror 3 and proceeds to the imaging lens 5 side. At this time, the light reflected by the half mirror 3 has an optical axis 14 extending at an angle of 45 degrees with respect to the half mirror 3.

結像用レンズ5は、光軸14を光軸として配設されてい
る。
The imaging lens 5 is arranged with the optical axis 14 as the optical axis.

プリズム6は、稜15が光軸14上に位置して配設されてい
る。更にプリズム6は、稜15が、対物レンズ2の像側焦
点16が結像用レンズ5によって結像する位置17に位置す
る。
The prism 6 is arranged such that the ridge 15 is located on the optical axis 14. Further, in the prism 6, the ridge 15 is located at the position 17 where the image-side focus 16 of the objective lens 2 is imaged by the imaging lens 5.

第2〜4図において、合焦検出装置Dを顕微鏡(図示省
略)に組込んだ場合の作動を説明する。顕微鏡は、被観
察物13を載置するテーブル18と、テーブル18を対物レン
ズ2に接近及び離隔させるためのラック19及びピニオン
ギア20と、被観察物13を像として検出するカメラ21、及
びモニター用CRT22を備えて構成されている。合焦検出
装置Dは第2図に示すように、対物レンズ2に対して被
観察物13が対物レンズ2の被観察物13側の焦点23より近
い位置にある場合には、発光素子1からの光はハーフミ
ラー3を通り、ハーフミラー4で反射し、更に対物レン
ズ2を通った後、焦点23より近い位置にある被観察物13
に至る。被観察物13に至った光は反射して戻って再び対
物レンズ2を通り、ハーフミラー4及び3で反射して結
像点24で結像する。この時、結像点24は、結像用レンズ
5に対し比較的近い位置にある。結像点24で結像した光
は、光軸14に沿って結像用レンズ5を通って進みプリズ
ム6に入り分割される。
2 to 4, the operation when the focus detection device D is incorporated in a microscope (not shown) will be described. The microscope includes a table 18 on which an object 13 to be observed is placed, a rack 19 and a pinion gear 20 for moving the table 18 toward and away from the objective lens 2, a camera 21 for detecting the object 13 to be observed as an image, and a monitor. Is configured with a CRT22 for. As shown in FIG. 2, the focus detection device D detects from the light emitting element 1 when the observed object 13 is closer to the objective lens 2 than the focal point 23 of the objective lens 2 on the observed object 13 side. Light passes through the half mirror 3, is reflected by the half mirror 4, and further passes through the objective lens 2.
Leading to. The light reaching the object 13 to be observed is reflected, returns, passes through the objective lens 2 again, is reflected by the half mirrors 4 and 3, and forms an image at the image forming point 24. At this time, the image forming point 24 is located relatively close to the image forming lens 5. The light imaged at the image forming point 24 travels along the optical axis 14 through the image forming lens 5 and enters the prism 6 to be split.

ここで、この光がプリズム6に入る際、結像点24は対物
レンズ2の像側焦点16とプリズム6との間に位置し、且
つ結像用レンズ5が結像点24を受光素子7,8,9,10側に結
像させているから、光は断面が点ではなく拡がった光束
の状態で入る。従って、プリズム6の稜15の形状に微小
の丸みや所定形状に対して誤差があっても、光は所定ど
おりに分割され設計どおりに受光素子7,8,9,10側に至
る。よって、プリズム6は、稜15を極めて高い精度で製
作する必要がない。
Here, when this light enters the prism 6, the image forming point 24 is located between the image side focus 16 of the objective lens 2 and the prism 6, and the image forming lens 5 forms the image forming point 24 at the light receiving element 7. Since the image is formed on the 8, 8, 9, 10 side, the light enters in the state of a light flux whose cross section is not a point but a spread. Therefore, even if the shape of the ridge 15 of the prism 6 has a slight roundness or an error with respect to a predetermined shape, the light is split as predetermined and reaches the light receiving elements 7, 8, 9, 10 side as designed. Therefore, the prism 6 does not need to manufacture the ridge 15 with extremely high accuracy.

プリズム6に入った光は、二つに分割されて互いに内方
向に屈折され、更に互いに内方向に屈折されてプリズム
6から出る。プリズム6から出た二分割の光は、互いに
交わり終えた後に、受光素子8及び9に至る。
The light that has entered the prism 6 is split into two, refracted inward with respect to each other, and further refracted inward with each other, and then exits from the prism 6. The two split lights emitted from the prism 6 reach the light receiving elements 8 and 9 after they have finished intersecting with each other.

受光素子8及び9は、プリズム6からの光を受けて大き
な電流を出力する。一方、受光素子7及び10は、光を受
けていないために電流の出力は小さい。差動増幅器11
は、受光素子7,8,9,10からの電流による信号を入力し、
受光素子8及び9側からの出力と、受光素子7及び10側
からの出力との差である、合焦についての判別の信号を
出力する。さて、差動増幅器11の出力と、被観察物13の
合焦の位置からの距離との関係は、第5図のグラフに示
すとおりである。従って、受光素子8及び9の出力と受
光素子7及び10の出力の差は点25に位置し、このことよ
り観察者は対物レンズ2に対して被観察物13が合焦の位
置よりマイナスの位置つまり合焦の位置より近過ぎる位
置にあることを知る。観察者は合焦の状態を得るため
に、被観察物13と合焦検出装置Dとの相対位置を離隔し
てゆくとよい。
The light receiving elements 8 and 9 receive the light from the prism 6 and output a large current. On the other hand, since the light receiving elements 7 and 10 do not receive light, the current output is small. Differential amplifier 11
Input the signal by the current from the light receiving element 7,8,9,10,
A signal for discriminating focusing is output, which is the difference between the outputs from the light receiving elements 8 and 9 and the outputs from the light receiving elements 7 and 10. Now, the relationship between the output of the differential amplifier 11 and the distance from the in-focus position of the observed object 13 is as shown in the graph of FIG. Therefore, the difference between the outputs of the light receiving elements 8 and 9 and the outputs of the light receiving elements 7 and 10 is located at the point 25, which means that the observer has a negative value with respect to the objective lens 2 from the in-focus position of the observed object 13. Know that the position is too close to the focus position. The observer preferably separates the relative position between the object 13 to be observed and the focus detection device D in order to obtain the focused state.

なおこの時、被観察物13から出発し、対物レンズ2及び
ハーフミラー4を通って来た光は、カメラ21の後方で結
像し、CRT22には不鮮明な像が映る。
At this time, the light starting from the object 13 to be observed and passing through the objective lens 2 and the half mirror 4 forms an image behind the camera 21, and an unclear image appears on the CRT 22.

ここで、ピニオンギア20を矢印A方向に回転しテーブル
18を下方にスライドさせることによって被観察物14と合
焦検出装置Dとの相対位置を離隔させてゆくと、被観察
物13と対物レンズ2の焦点23が一致する。この時、発光
素子1からの光の進み方は第3図の矢印で示すように、
まず発光素子1から出発してハーフミラー3を通り、ハ
ーフミラー4で反射し、更に対物レンズ2を通って被観
察物13に至る。被観察物13に至った光は、反射して戻っ
て再び対物レンズ2を通った後ハーフミラー4及び3で
反射されて結像点24で結像する。結像した光は、結像用
レンズ5を通ってから断面が光束の状態でプリズム6に
入り、二分割されてプリズム6から出た後に分割された
その二つの光は互いに交わってからそれぞれ受光素子7,
8及び9,10の接合部分に至る。受光素子7,8,9,10は、そ
れぞれほぼ同等の弱い光を受けて、小さい電流を出力す
る。差動増幅器11は、受光素子7,8,9,10からの電流の信
号を受けて、受光素子8及び9側からの出力と、受光素
子7及び10側からの出力の差を出力する。この差の出力
は第5図において、点26に位置し観察者は被観察物13が
合焦の位置にあることを知る。この時、被観察物13から
出発し、対物レンズ2及びハーフミラー4を通って来た
光は、カメラ21で結像する。CRT21はカメラ21からの信
号を受けて、鮮明な像を映す。
Now, rotate the pinion gear 20 in the direction of arrow A to rotate the table.
When the relative position between the object 14 to be observed and the focus detection device D is separated by sliding 18 downward, the object 13 to be observed and the focal point 23 of the objective lens 2 coincide with each other. At this time, how the light from the light emitting element 1 travels is as shown by the arrow in FIG.
First of all, the light emitting element 1 starts, passes through the half mirror 3, is reflected by the half mirror 4, and further passes through the objective lens 2 to reach the observed object 13. The light reaching the object 13 to be observed is reflected and returned, passes through the objective lens 2 again, and then is reflected by the half mirrors 4 and 3 to form an image at the image forming point 24. The imaged light passes through the imaging lens 5, enters the prism 6 in the state of a light flux in the cross section, is split into two, and exits from the prism 6, and the two split lights are received after they intersect with each other. Element 7,
To the junction of 8 and 9,10. The light receiving elements 7, 8, 9 and 10 receive weak light having substantially the same intensity and output a small current. The differential amplifier 11 receives current signals from the light receiving elements 7, 8, 9 and 10 and outputs a difference between outputs from the light receiving elements 8 and 9 and outputs from the light receiving elements 7 and 10. The output of this difference is located at point 26 in FIG. 5, and the observer knows that the observed object 13 is in the in-focus position. At this time, the light originating from the object to be observed 13 and passing through the objective lens 2 and the half mirror 4 is imaged by the camera 21. The CRT21 receives a signal from the camera 21 and projects a clear image.

上記で得られた合焦の状態から、ピニオンギア20を矢印
A方向に回転して被観察物14と合焦検出装置Dとの相対
位置を離隔させる。この時、発光素子1からの光は、第
4図の矢印で示すように進む。つまり、発光素子1から
の光は、順次ハーフミラー3及び4、対物レンズ2、被
観察物13、対物レンズ2、ハーフミラー4及び3、及び
結像用レンズ5を経てプリズム6に入る。このプリズム
6に入る光は、対物レンズ2に対して被観察物13が対物
レンズ2の焦点23より近い位置にある場合、及び被観察
物13が合焦の位置にある場合と同様に、断面が拡った光
束の状態で入る。プリズム6に入った光は二分割されて
出て来る受光素子7,8,9,10側に至る前に交わる。分割さ
れて交わった二つの光は、それぞれ受光素子7及び10に
至る。受光素子7及び10は、プリズム6からの光を受け
て、大きな電流を出力する。一方、受光素子8及び9
は、光を受けていないために電流の出力は小さい。差動
増幅器11は、受光素子7,8,9,10からの電流による信号を
入力し、受光素子8及び9側からの出力と、受光素子7
及び10側からの出力との差を出力する。この差の出力は
第5図において、点27に位置し観察者は被観察物13と対
物レンズ2との相対位置が合焦の状態より離隔の状態に
あることがわかる。又、この時、被観察物13から出発
し、対物レンズ2及びハーフミラー4を通ってきた光
は、カメラ21の前方で結像し、CRT22には不鮮明な像が
映る。
From the in-focus state obtained above, the pinion gear 20 is rotated in the direction of arrow A to separate the relative position between the object to be observed 14 and the focus detection device D. At this time, the light from the light emitting element 1 travels as shown by the arrow in FIG. That is, the light from the light emitting element 1 sequentially enters the prism 6 through the half mirrors 3 and 4, the objective lens 2, the observed object 13, the objective lens 2, the half mirrors 4 and 3, and the imaging lens 5. The light entering the prism 6 has a cross section similar to that when the object 13 to be observed is closer to the objective lens 2 than the focal point 23 of the objective lens 2 and when the object 13 to be observed is in the in-focus position. Enters in the state of a spread light flux. The light entering the prism 6 is split into two and intersects before reaching the side of the light receiving elements 7, 8, 9 and 10. The two lights that have been divided and intersected reach the light receiving elements 7 and 10, respectively. The light receiving elements 7 and 10 receive the light from the prism 6 and output a large current. On the other hand, the light receiving elements 8 and 9
Has a small current output because it receives no light. The differential amplifier 11 inputs the signals due to the currents from the light receiving elements 7, 8, 9 and 10, and outputs the signals from the side of the light receiving elements 8 and 9 and the light receiving element 7.
And the difference from the output from the 10 side is output. The output of this difference is located at a point 27 in FIG. 5, and it can be seen that the observer is in a state in which the relative position between the object to be observed 13 and the objective lens 2 is farther from the focused state. Further, at this time, the light that has started from the object to be observed 13 and has passed through the objective lens 2 and the half mirror 4 forms an image in front of the camera 21, and an unclear image appears on the CRT 22.

ここで、ピニオンギア20を矢印A方向に更に回転して、
被観察物13と合焦検出装置Dとの相対位置をより更に離
隔させる。この時、発光素子1からの光は、第17図の矢
印で示すように進む。つまり、発光素子1からの光は、
順次ハーフミラー3及び4、対物レンズ2、被観察物1
3、対物レンズ2、ハーフミラー4及び3、及び結像用
レンズ5を経てプリズム6に入る。このプリズム6に入
る光は、上述した、合焦の状態から被観察物14と合焦検
出装置Dとの相対位置を離隔させた場合と同様に断面が
拡がった光束の状態となっている。しかも同様に、光は
プリズム6で二分割され、互いに内方向に屈折されてプ
リズム6から出て互いに交わり、受光素子7及び10に至
る。この二分割された光はプリズム6に内方向に屈折さ
れて交わるのであるから、その交わる位置はプリズム6
より受光素子7,8,9,10側にある。従って、上記二分割さ
れた光は共に結像用レンズ5に対してプリズム6より遠
方の位置で結像しようとし、第16図で示すようにプリズ
ムより近い位置で結像することはない。しかも、被観察
物13と合焦検出装置Dとの相対位置は合焦の状態に比べ
て十分に離隔しているから結像点24と結像用レンズ5と
の距離が大きくなっており、結像用レンズ5から来てプ
リズム6に入る光の入射角はより大きく、結果的にプリ
ズム6で分割されて受光素子7,8,9,10側に進む光は互い
に交わってそれぞれより外側に向かう。従って、分割さ
れた二つの光は、第4図に示したものと同様に受光素子
7及び10に至り、第2図で示すように受光素子8及び9
に至ることはない。よって、合焦検出装置Dでは、被観
察物13に対する相対位置がそれぞれ近い状態、合焦の状
態及び遠い状態にある場合、受光素子7,8,9,10の光を受
ける受け方はただ一通であるから、非合焦の状態にある
場合上記相対位置が近い状態か遠い状態かを混合すると
いうことは起こらない。つまり、非合焦の状態にある場
合観察者は被観察物13と合焦検出装置Dとの相対位置が
合焦の状態に比べて近いのか遠いのかを知ることがで
き、従ってその近いか遠いかに基づいて上記相対位置を
それぞれ離隔もしくは接近させて簡便に合焦の状態を得
ることができる。
Here, further rotate the pinion gear 20 in the direction of arrow A,
The relative position between the object to be observed 13 and the focus detection device D is further separated. At this time, the light from the light emitting element 1 travels as shown by the arrow in FIG. That is, the light from the light emitting element 1 is
Sequential half mirrors 3 and 4, objective lens 2, object to be observed 1
3, the objective lens 2, the half mirrors 4 and 3, and the image forming lens 5 enter the prism 6. The light entering the prism 6 is in the state of a light flux whose cross section is widened as in the case where the relative position between the object to be observed 14 and the focus detection device D is separated from the focused state described above. Moreover, similarly, light is split into two by the prism 6, refracted inwardly from each other, exits from the prism 6, crosses each other, and reaches the light receiving elements 7 and 10. The two divided lights are refracted inwardly by the prism 6 and intersect with each other.
It is located closer to the light receiving elements 7, 8, 9 and 10. Therefore, the two split lights both try to form an image at a position distant from the prism 6 with respect to the image forming lens 5, and do not form an image at a position closer to the prism as shown in FIG. Moreover, since the relative position between the object to be observed 13 and the focus detection device D is sufficiently separated as compared with the in-focus state, the distance between the image forming point 24 and the image forming lens 5 is large, The incident angle of the light coming from the imaging lens 5 and entering the prism 6 is larger, and as a result, the lights that are split by the prism 6 and travel toward the light receiving elements 7, 8, 9, 10 intersect with each other to the outside. Go to Therefore, the two split lights reach the light receiving elements 7 and 10 as in the case shown in FIG. 4, and the light receiving elements 8 and 9 as shown in FIG.
Never reaches. Therefore, in the focus detection device D, when the relative position with respect to the observed object 13 is near, in focus, and far, respectively, the light receiving elements 7, 8, 9, 10 receive only one light. Therefore, in the non-focused state, it does not occur that the relative positions are close or distant. That is, in the non-focused state, the observer can know whether the relative position between the object 13 to be observed and the focus detection device D is closer or farther than in the focused state, and therefore, the closeness or the farness. Based on how the relative positions are separated or approached, the focused state can be easily obtained.

第6〜9図に、この発明の他の実施例を示す。合焦検出
装置Daは第6図に示すように、ハーフミラー3a及び4aの
間に発光素子1aからの光を平行光にするコリメータレン
ズ28a及びハーフミラー29aが配設されている。従って、
合焦検出装置Daでは、発光素子1aから発した光はハーフ
ミラー3aを通過した後、コリメータレンズ28aによって
平行光となり、ハーフミラー29a及び4aで反射して対物
レンズ2aに入る。更に光は被観察物13aに至って戻り、
対物レンズ2a,ハーフミラー4a及び29a、コリメータレン
ズ28a、及びハーフミラー3aを経て光軸14a上の点24aで
結像する。結像した光は、結像用レンズ5aを通り、断面
が拡った光束の状態でプリズム6aに入射して二つに分割
される。分割された二つの光は内側に屈折され、プリズ
ム6aから出て更に内側に屈折して互いに交わってから受
光素子7a,8a,9a,10a側に至る。受光素子7a,8a,9a,10a
は、光を受けて電流を差動増幅器11aに出力する。差動
増幅器11aは、電流を受けて被観察物13aと合焦検出装置
Daとの相対位置が、合焦の状態にある、合焦の状態より
近い、或いは遠い旨を信号で出力する。
6 to 9 show another embodiment of the present invention. As shown in FIG. 6, the focus detection device Da is provided with a collimator lens 28a and a half mirror 29a for converting the light from the light emitting element 1a into parallel light between the half mirrors 3a and 4a. Therefore,
In the focus detection device Da, the light emitted from the light emitting element 1a passes through the half mirror 3a, then becomes parallel light by the collimator lens 28a, is reflected by the half mirrors 29a and 4a, and enters the objective lens 2a. Further, the light reaches the observed object 13a and returns,
An image is formed at a point 24a on the optical axis 14a through the objective lens 2a, the half mirrors 4a and 29a, the collimator lens 28a, and the half mirror 3a. The imaged light passes through the imaging lens 5a, is incident on the prism 6a in the state of a light beam having an expanded cross section, and is split into two. The two divided light beams are refracted inward, go out from the prism 6a, are refracted further inward, and intersect each other before reaching the light receiving elements 7a, 8a, 9a, 10a side. Light receiving element 7a, 8a, 9a, 10a
Receives the light and outputs a current to the differential amplifier 11a. The differential amplifier 11a receives an electric current and receives an object to be observed 13a and a focus detection device.
A signal indicating that the relative position to Da is in focus, closer to, or farther from the focus is output as a signal.

第7,8,9図は合焦検出装置Daを顕微鏡(図示省略)に組
込んだ場合の光路系を示すもので、それぞれ被観察物13
aと合焦検出装置Daとの相対位置が合焦の状態より近
い、合焦の状態にある、合焦の状態より遠いことを表し
ている。
Figures 7, 8 and 9 show the optical path system when the focus detection device Da is installed in a microscope (not shown).
It indicates that the relative position between a and the focus detection device Da is closer to the in-focus state, is in the in-focus state, and is farther than the in-focus state.

合焦検出装置Daが組込まれる顕微鏡は、ハーフミラー4a
とカメラ21aとの間に、光量の調節及びライトバランス
用のフィルタ30aとカメラ21a用の結像レンズ31aが設け
られている。32aは、照明用のハロゲンランプである。
ハロゲンランプ32aとハーフミラー3aとの間には、照明
用レンス33a及び34aが設けられている。
The microscope incorporating the focus detection device Da is a half mirror 4a.
A filter 30a for adjusting the amount of light and a light balance and an imaging lens 31a for the camera 21a are provided between the camera and the camera 21a. 32a is a halogen lamp for illumination.
Illumination lenses 33a and 34a are provided between the halogen lamp 32a and the half mirror 3a.

上述した二つの合焦検出装置D及びDaでは共に、それぞ
れプリズム6及び6aの稜15及び15aは結像用レンズ5及
び5a側に位置している。しかし、プリズムの稜を受光素
子側に位置させた構成であってもよい。
In both of the two focus detection devices D and Da described above, the ridges 15 and 15a of the prisms 6 and 6a are located on the imaging lens 5 and 5a side, respectively. However, the structure may be such that the ridge of the prism is located on the light receiving element side.

合焦検出装置を顕微鏡に組込んだ際、テーブルを上下動
させるためのピニオンギアと差動増幅器との間に駆動モ
ータと制御手段を設けて、自動合焦が得られる構成とす
ることができる。
When the focus detection device is incorporated in a microscope, a drive motor and control means may be provided between the pinion gear for moving the table up and down and the differential amplifier so that automatic focus can be obtained. .

合焦検出装置を組込むものは、上述した顕微鏡の他に投
影機等であってもよい。
In addition to the microscope described above, a projector or the like may be incorporated in the focus detection device.

[発明の効果] この発明によれば、プリズムの稜に形状に微小の丸みや
誤差があっても所定どおりに光を分割でき又製作に高い
精度を必要としないことからコストダウンをはかること
ができ、しかも非合焦の状態にある場合に被観察物との
相対位置が合焦の状態より近いか遠いかが判別でき、従
ってその判別結果に基づき簡便に合焦の状態を求めるこ
とができるという効果が得られている。
[Effect of the Invention] According to the present invention, even if the ridge of the prism has a minute roundness or an error in the shape, the light can be split in a predetermined manner, and high precision is not required for manufacturing, so that the cost can be reduced. In addition, it is possible to determine whether the relative position with respect to the observed object is closer or farther than the in-focus state when it is in the out-of-focus state, so that the in-focus state can be easily obtained based on the determination result. The effect is obtained.

【図面の簡単な説明】[Brief description of drawings]

第1図はこの発明の一実施例の光路系を示す構成説明
図、第2,3,4図はこの実施例を顕微鏡に組込んだ場合に
おいて、それぞれ被観察物との相対位置が近過ぎ、合焦
及び遠過ぎの第1図相当図、第5図はこの実施例の差動
増幅器の出力と、被観察物と対物レンズの距離との関係
を示す図、第6図はこの発明の他の実施例の第1図相当
図、第7,8,9図はそれぞれ他の実施例の第2図相当図、
第3図相当図、第4図相当図、第10,11,12図はそれぞれ
従来例の第2図相当図、第3図相当図、第4図相当図、
第13,14,15図はそれぞれ他の従来例の第2図相当図、第
3図相当図、第4図相当図、第16図は他の従来例で他の
対応の第15図相当図、第17図はこの実施例を顕微鏡に組
込んだ場合において、被観察物との相対位置がかなり遠
すぎの第1図相当図である。 D……合焦検出装置 1……発光素子、2……対物レンズ、 3,4……ハーフミラー、5……結像用レンズ、 6……プリズム、 7,8,9,10……受光素子、 12,14……光軸、15……プリズムの稜、 16,23……焦点、17……結像点。
FIG. 1 is a structural explanatory view showing an optical path system of an embodiment of the present invention, and FIGS. 2, 3 and 4 show the relative positions of the object to be observed are too close when the embodiment is incorporated into a microscope. FIG. 5 is a diagram showing the relationship between the output of the differential amplifier of this embodiment and the distance between the object to be observed and the objective lens, and FIG. 6 is a diagram of the present invention. FIG. 1 is a view corresponding to FIG. 1 of another embodiment, and FIGS. 7, 8 and 9 are views corresponding to FIG. 2 of another embodiment, respectively.
Fig. 3 equivalent diagram, Fig. 4 equivalent diagram, Fig. 10, 11, 12 are equivalent to Fig. 2 of the conventional example, Fig. 3 equivalent diagram, Fig. 4 equivalent diagram, respectively.
FIGS. 13, 14, and 15 are other conventional examples corresponding to FIG. 2, FIG. 3, equivalent diagram, FIG. 4 equivalent diagram, and FIG. 16 are other conventional examples corresponding to other corresponding FIG. FIG. 17 is a view corresponding to FIG. 1 in which the relative position to the object to be observed is too far away when this embodiment is incorporated in a microscope. D: Focus detection device 1 ... Light emitting element, 2 ... Objective lens, 3,4 ... Half mirror, 5 ... Imaging lens, 6 ... Prism, 7,8,9,10 ... Element, 12,14 ... Optical axis, 15 ... Prism edge, 16,23 ... Focus, 17 ... Imaging point.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 G03B 3/00 A ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification code Internal reference number FI Technical display location G03B 3/00 A

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】第一の光軸を共通にして配設された発光素
子及び対物レンズと、その発光素子と対物レンズとの間
で、且つ反射面が上記第一の光軸と一定の角度で交わっ
て配設されたハーフミラーと、そのハーフミラーの第一
の光軸との反射面側交点からハーフミラーに対して前記
一定の角度をもって伸びてなる第二の光軸に配設された
受光素子と、その受光素子とハーフミラーとの間で、且
つ稜が第二の光軸上に配設されたプリズムと、そのプリ
ズムとハーフミラーとの間で、且つ光軸を第二の光軸と
共通に配設され、対物レンズの被観察側焦点が対物レン
ズによって結像される第二の光軸上の点を、上記受光素
子上に結像するための結像用レンズと、を備えた合焦検
出装置において、 前記結像用レンズによって結像される前記対物レンズの
像側焦点に前記プリズムの稜を位置させることを特徴と
する合焦検出装置。
1. A light-emitting element and an objective lens, which are arranged so as to share a first optical axis, and a reflection surface between the light-emitting element and the objective lens and at a constant angle with the first optical axis. And the second optical axis formed by extending at a certain angle with respect to the half mirror from the intersection of the reflecting surface side of the half mirror and the first optical axis of the half mirror. A light receiving element, a prism whose ridge is arranged on the second optical axis between the light receiving element and the half mirror, and between the prism and the half mirror and whose optical axis is the second light An imaging lens, which is disposed in common with the axis and forms an image on the second light receiving element on the second optical axis at which the observation-side focal point of the objective lens forms an image by the objective lens. In the focus detection device provided with, the objective lens for forming an image by the image forming lens A focus detection device, characterized in that the ridge of the prism is located at the image-side focal point.
JP63136818A 1988-06-02 1988-06-02 Focus detection device Expired - Fee Related JPH0786588B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63136818A JPH0786588B2 (en) 1988-06-02 1988-06-02 Focus detection device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63136818A JPH0786588B2 (en) 1988-06-02 1988-06-02 Focus detection device

Publications (2)

Publication Number Publication Date
JPH01304414A JPH01304414A (en) 1989-12-08
JPH0786588B2 true JPH0786588B2 (en) 1995-09-20

Family

ID=15184223

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63136818A Expired - Fee Related JPH0786588B2 (en) 1988-06-02 1988-06-02 Focus detection device

Country Status (1)

Country Link
JP (1) JPH0786588B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2971823B2 (en) * 1996-11-11 1999-11-08 株式会社ミツトヨ Focus detection unit and microscope equipped with the same

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5990239A (en) * 1982-11-16 1984-05-24 Toshiba Corp Optical head
JPS60238806A (en) * 1984-05-12 1985-11-27 Kowa Co Automatic focusing device

Also Published As

Publication number Publication date
JPH01304414A (en) 1989-12-08

Similar Documents

Publication Publication Date Title
US5212514A (en) Camera having a focus detecting optical system
JP2643326B2 (en) Single-lens reflex camera with focus detection device
US5963366A (en) Focus detection unit and microscope using the focus detection unit
US5239335A (en) Auto focus apparatus having a plurality of light emitting elements
JPH0786588B2 (en) Focus detection device
US4549802A (en) Focus detection apparatus
JPH11325887A (en) Branch optical system automatic focus detector
US6041186A (en) Finder system
US4470686A (en) Distance and light measuring device for single lens reflex camera
JPH0713699B2 (en) Projection system for automatic focus detection
JP3061758B2 (en) Automatic focusing device for microscope
JP2927047B2 (en) Focus detection device
JPS63259521A (en) Composite type focusing detection device
JPH041623B2 (en)
JP3448663B2 (en) Projection exposure equipment
JPS6052371B2 (en) Focal position measuring device
SU1051402A1 (en) Device for inspecting allignment of optical systems
JP2971889B2 (en) Focus detection optical system
JPS6353509A (en) Distance measuring instrument for automatic focus adjustment of microscope
JPH06273664A (en) Focus detector
JPH01232314A (en) Automatic focus detecting device for camera
JPH0644098B2 (en) Zoom lens with movable light splitting member
JPS5942508A (en) Focal position detector
JPS63213827A (en) Focus detector
JPS5845515A (en) Controller for detecting position of surface

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees