JPS5845515A - Controller for detecting position of surface - Google Patents

Controller for detecting position of surface

Info

Publication number
JPS5845515A
JPS5845515A JP14242081A JP14242081A JPS5845515A JP S5845515 A JPS5845515 A JP S5845515A JP 14242081 A JP14242081 A JP 14242081A JP 14242081 A JP14242081 A JP 14242081A JP S5845515 A JPS5845515 A JP S5845515A
Authority
JP
Japan
Prior art keywords
image
light
optical system
reflected
detected
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP14242081A
Other languages
Japanese (ja)
Other versions
JPS6345523B2 (en
Inventor
Yoshisada Hayamizu
早水 良定
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Olympus Corp
Original Assignee
Olympus Corp
Olympus Optical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Olympus Corp, Olympus Optical Co Ltd filed Critical Olympus Corp
Priority to JP14242081A priority Critical patent/JPS5845515A/en
Publication of JPS5845515A publication Critical patent/JPS5845515A/en
Publication of JPS6345523B2 publication Critical patent/JPS6345523B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F23/00Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm
    • G01F23/22Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm by measuring physical variables, other than linear dimensions, pressure or weight, dependent on the level to be measured, e.g. by difference of heat transfer of steam or water
    • G01F23/28Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm by measuring physical variables, other than linear dimensions, pressure or weight, dependent on the level to be measured, e.g. by difference of heat transfer of steam or water by measuring the variations of parameters of electromagnetic or acoustic waves applied directly to the liquid or fluent solid material
    • G01F23/284Electromagnetic waves
    • G01F23/292Light, e.g. infrared or ultraviolet

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Thermal Sciences (AREA)
  • Fluid Mechanics (AREA)
  • General Physics & Mathematics (AREA)
  • Measurement Of Optical Distance (AREA)
  • Automatic Focus Adjustment (AREA)
  • Length Measuring Devices By Optical Means (AREA)

Abstract

PURPOSE:To improve the accuracy of detection and to detect a surface to be detected correctly despite minor inclination of the surface by forming the image of the image-forming light of a micropattern reflected by said surface again onto the surface to be detected and detecting the image-forming position of said reflected light. CONSTITUTION:A micropattern of a slit S or the like is formed on a surface A to be detected by image-forming optical systems 6, 8, and the image-forming light reflected by a surface A is formed the image again on the surface A by an optical system for reflection of an unmagnified real image such as a concave mirror 9. The image-forming light reflected by the surface A is conducted through, for example, a prism 7 or the like onto the photodetecting surface of a photoelectric element 11 or 13, and the change in the image-forming position on the photodetection surfaces thereof is detected, whereby the position of the surface A is detected and controlled. For example, a projecting lens L0 and the entire part of the optical system of the device are moved in one body in the optical axis direction of the lens L0 by a moving device for the optical system, whereby a sliding projector is focused automatically.

Description

【発明の詳細な説明】 本発明は、スライド映写機や双眼実体顕微鏡等の自動焦
点調節に用いる面位置検出制御装置に関するものである
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a surface position detection control device used for automatic focus adjustment of slide projectors, binocular stereomicroscopes, and the like.

この種従来の面位置検出制御装置は、例えば第1図に示
した如く、光源1と、光源1の光をスリット5Vca光
せしめる集光レンズ2と、スリットSt発した光をフィ
ル面等の被検面A上に像S1として結像せしめる結像レ
ンズ3と、面Aで正反射した光全像S2として再結像せ
しめる結像レンズ4と、受光面が像S2の結像面と一致
するように配置され且つ図示しない光学系移動装置と接
続さnた受光素子5とから成り、第2図に示した如く・
面Aが正しい位置から投影レンズムの光軸方向に距4D
だけ平行移動して面A′に移ったとすると、像S1とな
るべき光が面A’で反射さflた後像S、lとして結像
し、像S、、S□′間の距離が2Dとなり、この場合結
像レンズ4の倍率がmであればもとの像S2は受光素子
5の受光面上をほぼ距離2mD移動して像S2となるの
で、距離2mD’t”受光素子5により光電的に検出し
、距離2mDが零となるようにフィードバックする即ち
光学系移動装置により投影レンズLoと本装置の光学系
全体を一体として投影レンズLoの光軸方向に移動せし
めて像S+が面A′上にくるように制御するものであっ
た。ところが、この面位置検出制御装置は、その精度自
体が十分なものではなく、文面Aが傾むくと面Aによる
正反射光の傾きが変化して結像レンズ4に対する入射位
置が変化してしまい、これがそのまま像S2’の位置の
変化としてあられれるため検出が正しく行わnないとい
う問題があった。
A conventional surface position detection control device of this type, as shown in FIG. An imaging lens 3 forms an image S1 on the test surface A, an imaging lens 4 re-images the light specularly reflected by the surface A as a full image S2, and the light-receiving surface coincides with the imaging surface of the image S2. It consists of a light-receiving element 5 arranged as shown in FIG.
A distance of 4D from the correct position of surface A in the direction of the optical axis of the projection lens.
If the light that should become the image S1 is reflected by the surface A' and then formed as the images S, l, the distance between the images S, , S□' is 2D. In this case, if the magnification of the imaging lens 4 is m, the original image S2 will move on the light receiving surface of the light receiving element 5 by a distance of approximately 2 mD and become the image S2. It is photoelectrically detected and fed back so that the distance 2 mD becomes zero. That is, the projection lens Lo and the entire optical system of this device are moved as one in the optical axis direction of the projection lens Lo by an optical system moving device so that the image S+ is on the plane. However, the accuracy of this surface position detection control device was not sufficient, and as the text surface A tilted, the angle of the specularly reflected light from surface A changed. As a result, the incident position with respect to the imaging lens 4 changes, and this appears as a change in the position of the image S2', resulting in a problem that detection cannot be performed correctly.

本発明は、上記問題点に鑑み、検出精度を大幅に向上さ
せると共に面の多少の傾きに対しても検出が正しく行わ
n得るようにした面位置検出制御装置を提供せんとする
ものであるが、以下第3図乃至第5図に示した一実施例
に基づき上記従来例・轡 と同一の部材には同一符号を付してこfiを説明す几ば
、6はスリットSから発した光を後述のプリズムの頂部
に像SOとして結像せしめる結像レンズ、7は頂部が細
長く研摩さ几てスリット状となっているプリズム、8は
像5o(i−発した光を被検面A上に像Slとして結像
せしめると共に像S1を発した光を再び像So上に結像
せしめる結像レンズ、9は曲率中心が像Sl上にあるよ
うに配置されていて面Aで正反射した光を反射して再び
像Sl上に結像せしめる凹面鏡、10はプリズム7の一
側方に配置されていてプリズム7の一方の斜面で反射し
た光を同じく一側方に配置さnた受光素子11の受光面
に集光せしめる結像レンズ、12はプリズム7の他の側
方に配置さ几ていてプリズム7の他方の斜面で反射した
光を同じく他の側方に配置さfLf(受光素子13の受
光面に集光せしめる結像レンズである。そして、両受光
素子11.13は図示しない光学系移動装置と接続さn
ている。
In view of the above-mentioned problems, it is an object of the present invention to provide a surface position detection control device that greatly improves detection accuracy and allows accurate detection even when the surface is slightly tilted. The following description will be based on the embodiment shown in FIGS. 3 to 5, with the same reference numerals given to the same members as in the conventional example above. 6 represents the light emitted from the slit S. An imaging lens 7 forms an image SO on the top of a prism, which will be described later. 7 is a prism whose top is polished into a slit shape. 8 is an image 5o (i) which directs the emitted light onto the surface A to be inspected. An imaging lens 9 is arranged so that the center of curvature is on the image S1, and collects the light specularly reflected by the surface A. A concave mirror 10 that reflects the light and forms it again on the image Sl is placed on one side of the prism 7, and a light receiving element 11 that is also placed on one side receives the light reflected from one slope of the prism 7. An imaging lens 12 is arranged on the other side of the prism 7 to condense the light onto the light-receiving surface. It is an imaging lens that focuses light on a light receiving surface. Both light receiving elements 11 and 13 are connected to an optical system moving device (not shown).
ing.

本発明による面位置検出制御装置は上述の如く構成さn
ているから、第4図に示した如く、面Aが投影レンズb
の光軸方向に距離りだけ平行移動して面A′に移ったと
すると、像S+となるべき光が面A′で反射された後像
Sl′として結像し、この場合像S1+ Sl’間の距
離は2Dとなる。次に、像Ss’ffi発した光は凹面
鏡9により反射されて像SWとして結像しようとするが
この光は面A′で再反射さ几て像S、#l として結像
する。この場合、像S+’+ St’間の距離がほぼ4
Dとなるので、像St+ Sl”間の距離もほぼ4Dと
なる(像SsへSl′i間の距離はほぼ6Dである。)
。次に、像S、IIIを発した光はプリズム7の頂部か
ら外f’した位置に像So′として結像し、像So’e
発した光はプリズム7の一方の斜面で反射された後結像
レンズ10より受光素子11の受光面上に集光せしめら
几る。−万、面Aが面A′と反対方向に移動したとする
と、上記と同様な原理によりスリット像光線束はプリズ
ム7の他方の面で反射さnた後結像レンズ12に工9受
光素子13の受光面上に集光せしめられる。従って、受
光素子11及びI3の出力が零となるようにフィードツ
マツクする即ち光学系移動装置により投影レンズムと本
装置の光学系全体を一体として投影レンズムの光軸方向
に移動せしめて像Slが面A′上にくるように制御チル
ば、投影レンズbのピントラ面A′に合わせることが出
来る。かくして、本装置の作動が行われるが、本装置は
、上述の如く面AがDだけ移動しただけで合焦時面A上
に結像すべき像S!と面A′や凹面鏡9で反射された後
に出来る最終像81″との間の距離がほぼ4Dとなるの
で、従来例に較べて感度が倍増し検出精度が大幅に向上
する。
The surface position detection control device according to the present invention is constructed as described above.
Therefore, as shown in Fig. 4, the surface A is the projection lens b.
If the light that should become image S+ is reflected by surface A', it will be formed as image Sl', and in this case, the distance between images S1+ Sl' The distance is 2D. Next, the light emitted from the image Ss'ffi is reflected by the concave mirror 9 and attempts to form an image SW, but this light is re-reflected by the surface A' and forms an image S, #l. In this case, the distance between images S+'+St' is approximately 4
D, so the distance between the images St+Sl' is also approximately 4D (the distance between the images Ss and Sl'i is approximately 6D).
. Next, the light emitting images S and III forms an image So' at a position f' outward from the top of the prism 7, and an image So'e
The emitted light is reflected by one slope of the prism 7 and then focused by the imaging lens 10 onto the light receiving surface of the light receiving element 11. - If the surface A moves in the opposite direction to the surface A', the slit image light beam is reflected by the other surface of the prism 7 based on the same principle as above, and then transferred to the imaging lens 12. The light is focused on the light receiving surface of 13. Therefore, the outputs of the light-receiving elements 11 and I3 are fed so that they become zero, that is, the projection lens and the entire optical system of this apparatus are moved as one in the direction of the optical axis of the projection lens using the optical system moving device, so that the image Sl is By controlling the tilt so that it is on the plane A', it can be aligned with the focal plane A' of the projection lens b. In this way, the present apparatus is operated, but the present apparatus is capable of forming an image S! which is to be formed on the plane A at the time of focusing, even though the plane A has only moved by D as described above. Since the distance between the final image 81'' formed after being reflected by the surface A' and the concave mirror 9 is approximately 4D, the sensitivity is doubled and the detection accuracy is greatly improved compared to the conventional example.

又、第5図に示した如く、面Aが合焦状態において傾い
て面A′となり正反射光の傾きが変化したとしても、凹
面鏡9の有効径を十分大きくしておけば全ての正反射光
を捕えて反射し、元の光路に沿ってそのまま送り返して
プリズム7の頂部上に結像せしめることが出来るので、
検出は正しく行われる。
Furthermore, as shown in FIG. 5, even if surface A tilts in the focused state and becomes surface A', the inclination of the specularly reflected light changes, if the effective diameter of the concave mirror 9 is made sufficiently large, all specularly reflected light will be removed. Since the light can be captured, reflected, and sent back along the original optical path to form an image on the top of the prism 7,
Detection is done correctly.

第6図は第二の実施例を示しており、14はその入射端
面に結像レンズ6によりスリットSから発した光が集光
せしめら几るとその射出端面が一種のスリツ′ト状光源
Soとなるオプティカルファイバー又はオプテイカルフ
ァイバーヲー直線上に配列して成るオプティカルファイ
バーシート、15及び16は各入射端面がオプティカル
7アイノ々−14の射出端面の両側に配置せしめらfし
たオシティカルファイバー束であって、こルらが上記第
一の実施例のプリズム7の代りに設けられている。
FIG. 6 shows the second embodiment, and when the light emitted from the slit S is focused by the imaging lens 6 on the incident end surface, the exit end surface becomes a kind of slit-shaped light source. Optical fiber sheets 15 and 16 are optical fiber sheets formed by arranging optical fibers or optical fibers in a straight line, and 15 and 16 are optical fiber bundles whose incident end faces are arranged on both sides of the exit end face of the optical 7-14. These are provided in place of the prism 7 of the first embodiment.

従って、ピントが合っている場合即ち面A上に像S+が
ある場合はオプティカル7アイノ々−束15及び16の
いず九にも光が戻らないが、ピントがずれた場合即ち面
Aが移動した場合は戻り光がオプティカル7アイノ々−
束15又は16のいずれが一方で捕捉さn、その結果受
光素子11又は13のいず几か一方に出力が発生するの
で、この情報をフィートツマツクすることにより面Aの
自動焦点調整が可能なる。尚、この実施例において、オ
プティカルファイバー束15及び16を何層かのオゾテ
イ力ルファイノ々−シートヲ入射端面においては規則正
しく整列積みし且つ射出端面においては一層ずつ分離し
て複数受光素子の受光面に夫々導くとか或いはそのまま
規則正しく整列積みした状態で位置検出素子に導くこと
により構成すれば、上記第一の実施例における像Sot
 So’間に相当する距離を測定することも出来る。
Therefore, when the focus is correct, that is, when the image S+ is on the surface A, the light does not return to any of the optical 7-eye bundles 15 and 16, but when the focus is shifted, that is, the surface A moves. In this case, the return light is optical 7-eye.
Either bundle 15 or 16 is captured on one side, and as a result an output is generated on either one of light receiving elements 11 or 13, so automatic focus adjustment of surface A is possible by selecting this information. Become. In this embodiment, several layers of optical fiber bundles 15 and 16 are stacked in regular alignment at the input end face, and are separated one layer at a time at the exit end face and applied to the light receiving surfaces of a plurality of light receiving elements. If the image Sot in the first embodiment is constructed by guiding the image So
It is also possible to measure the distance corresponding to So'.

第7図は第三の実施例を示しており、17は結像レンズ
、18は平面反射鏡であって、こ九らが第一実施例の凹
面鏡9の代りに設けら九ている。
FIG. 7 shows a third embodiment, in which 17 is an imaging lens and 18 is a plane reflecting mirror, which are provided in place of the concave mirror 9 of the first embodiment.

又、19及び20は夫々第二の実施例の位置検出素子の
代りに設けられたCCD等の固体撮像素子であって、像
Soの戻り光をプリズム7の斜面で反射させた後に結像
レンズ10又は12により固体撮像素子19又は20上
に結像させnば、第二の実施例と同様に第一の実施例に
おける像Son So’間に相当する距離を測定するこ
とが出来る。
Moreover, 19 and 20 are solid-state imaging devices such as CCDs provided in place of the position detection devices of the second embodiment, which reflect the return light of the image So on the slope of the prism 7 and then pass through the imaging lens. 10 or 12 on the solid-state image sensor 19 or 20, it is possible to measure the distance corresponding to the distance between the images Son So' in the first embodiment, similarly to the second embodiment.

第8図は第四の実施例を示しており、21及び22は第
一の実施例の結像レンズ8の代りに設けられてでいてこ
れらの間の光線を平行光線にしている結像レンズ、23
は結像レンズ21及び22間に配置されていて戻り光を
側方に取り出すための半透鏡、24は半透鏡23で反射
さf’Lfc戻り光を位置検出素子25上に像S2とし
て結像せしめる結像レンズである。従って、像S2の位
置の変化を検出することにより而Aの変位距離Dt検出
することが出来る。
FIG. 8 shows a fourth embodiment, in which imaging lenses 21 and 22 are provided in place of the imaging lens 8 of the first embodiment, and make the rays between them parallel rays. , 23
24 is a semi-transparent mirror arranged between the imaging lenses 21 and 22 to take out the returned light to the side; 24 is a semi-transparent mirror 23 that reflects the returned light f'Lfc, and forms the returned light on the position detection element 25 as an image S2. It is an imaging lens that Therefore, by detecting the change in the position of the image S2, the displacement distance Dt of the image A can be detected.

第9図は第四の実施例を単対物方式の双眼実体顕微鏡に
応用した例を示しており、26は対物レンズ、27及び
28は左右光学系の結像レンズであって、これらが対物
光学系を構成し、結像レンズ27及び28と対物レンズ
26との間の光線は平行光線となっている。又、29及
び30は平面反射鏡である。従って、スリン)Sk発し
た光は結像レンズ21により平行光線束となジ、平面反
射鏡29で反射さtl、た後対物レンズ26により面A
上にスリット像Slとして結像せしめられる。続いて而
Aでほぼ正反射した光は対物レンズ26を通過した後平
行光線となって平面反射鏡30に入射し、平面反射鏡3
0で反射さfLfc光は対物レンズ26によジ面A上の
像Sl上に再び結像せしめられ、面、Aでほぼ正反射し
た光は再び平面反射鏡29に入射せしめられる。更に、
平面反射鏡29で反射さ几た光は半透鏡23で反射され
た後結像レンズ24により位置検出素子25上に像S2
として結像せしめられる。従って、面Aがピントから外
れると位置検出素子25上で像S2の位置ずれが生じる
ので、像S2の位置の変化を検出することにより面Aの
変位距離を検出することが出来るし、こ九をフィートツ
マツクして面Aに正しく自動的にピント合わせすること
も可能である。尚、このような光学系においては、結像
レンズ27及び28の光軸を含む平面と、スリットS、
結像レンズ21゜平面反射鏡29及び30、半透鏡23
等から成る検出系を含む平面を斜交させ几ば、全体をコ
ンAクトにまとめることが出来る。又、上記第一、第二
及び第三の実施例において結像レンズ80代りに双眼実
体顕微鏡の対物光学系を置き換えでやnば、この応用例
と同様な応用例を構成することが出来る。
FIG. 9 shows an example in which the fourth embodiment is applied to a single-objective type binocular stereomicroscope, where 26 is an objective lens, 27 and 28 are imaging lenses of the left and right optical systems, and these are the objective optical system. The light rays between the imaging lenses 27 and 28 and the objective lens 26 are parallel rays. Further, 29 and 30 are flat reflecting mirrors. Therefore, the emitted light is converted into a parallel beam bundle by the imaging lens 21, reflected by the plane reflecting mirror 29, and then reflected by the objective lens 26 onto the surface A.
A slit image Sl is formed on the top. Next, the light that is almost specularly reflected at A passes through the objective lens 26, becomes a parallel ray, and enters the plane reflecting mirror 30.
The fLfc light reflected at 0 is again focused on the image Sl on the surface A by the objective lens 26, and the light almost specularly reflected at the surface A is made incident on the plane reflecting mirror 29 again. Furthermore,
The light reflected by the flat reflecting mirror 29 is reflected by the semi-transparent mirror 23 and then formed into an image S2 on the position detection element 25 by the imaging lens 24.
It is imaged as Therefore, when the surface A goes out of focus, the position of the image S2 will shift on the position detection element 25, so by detecting the change in the position of the image S2, the displacement distance of the surface A can be detected. It is also possible to automatically focus correctly on surface A by selecting the feet. In addition, in such an optical system, a plane including the optical axes of the imaging lenses 27 and 28, a slit S,
Imaging lens 21° flat reflecting mirrors 29 and 30, semi-transparent mirror 23
By obliquely intersecting the planes containing the detection system consisting of the above, the whole can be made into a compact structure. Further, in the first, second, and third embodiments, if the objective optical system of a binocular stereomicroscope is substituted for the imaging lens 80, an application example similar to this application example can be constructed.

尚、上記各実施例はいずれもスリットS盆用いているが
、光量を増加させるためにスリットSの代りに微小な格
子を用いても良いし、リング状のスリットヲ用いても良
い。又、使用する光は、必要に応じて赤外線又は紫外線
の如き不可視光を用いても良い。
Incidentally, in each of the above embodiments, a slit tray S is used, but in order to increase the amount of light, a minute grating may be used instead of the slit S, or a ring-shaped slit may be used. Further, as the light used, invisible light such as infrared rays or ultraviolet rays may be used as necessary.

上述の如く、本発明による面位置検出制御装置は、検出
精度が極めて高く且つ被検面の多少の傾きに対しても正
しい検出が行われるという優nた利点を有している。
As described above, the surface position detection control device according to the present invention has the advantage that detection accuracy is extremely high and correct detection is performed even if the surface to be detected is slightly tilted.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来の面位置検出制御装置の光学系を示す図、
第2図は上記従来例において被検面が移動した場合の結
像状態を示す図、第3図は本発明による面位置検出制御
装置の一実施例の光学系を示す図、第4図は上記実施例
において被検面が移動し几場合の結像状態を示す因、第
5図は上記実施例において被検面が傾い次状態を示す図
、第6図乃至第8図は各々第二、第三及び第四の実施例
の光学系を示す園、第9図は上記第四の実施例を単対物
式の双眼尖体顕微鏡に応用した例の光学系金示す図であ
る。 1・・・光源、6・・・結像レンズ、7・・・プリズム
、8・・・結像レンズ、9・・・凹面威、10.12・
・・結像レンズ、11.13・・・受光素子、S・・・
スリット、A・・・被検面。 1−6図   オフ図
FIG. 1 is a diagram showing the optical system of a conventional surface position detection control device.
FIG. 2 is a diagram showing the imaging state when the surface to be inspected moves in the conventional example, FIG. 3 is a diagram showing the optical system of an embodiment of the surface position detection control device according to the present invention, and FIG. FIG. 5 shows the state of image formation when the surface to be measured is tilted in the above embodiment, and FIG. 6 to FIG. FIG. 9 is a diagram showing the optical system of an example in which the fourth embodiment is applied to a single-objective binocular apex microscope. 1... Light source, 6... Imaging lens, 7... Prism, 8... Imaging lens, 9... Concave surface power, 10.12.
...Imaging lens, 11.13... Light receiving element, S...
Slit, A...Test surface. Figure 1-6 Off view

Claims (4)

【特許請求の範囲】[Claims] (1)微小図形を結像光学系により被検面上に結像させ
、その結像光の上記被検面による反射光を等倍実像反射
光学系により再び上記被検面上に結像させ、更にその結
像光の上記被検面による反射元金光電素子の受光面上に
導き、上記受光面上の結像位置の変化を検出して上記被
検面の位置の検出・制御を行うようにして成る面位置検
出制御装置。
(1) A microscopic figure is imaged on the test surface by an imaging optical system, and the reflected light of the imaged light from the test surface is imaged again on the test surface by a real image reflection optical system. Further, the imaging light is reflected by the test surface and guided onto the light-receiving surface of the gold photoelectric element, and the change in the image-forming position on the light-receiving surface is detected to detect and control the position of the test surface. A surface position detection control device constructed as follows.
(2)上記微小図形が一本のスリット又は格子であるこ
とを特徴とする特許請求の範囲(1) [記載の面位置
検出制御装置。
(2) The surface position detection control device according to claim (1), wherein the minute figure is a single slit or a grid.
(3)上記等倍実像光学系が上記被検面上に曲率中心を
有する凹面鏡であることを特徴とする特許請求の範囲(
1)に記載の面位置検出制御装置。
(3) Claims characterized in that the equal-magnification real image optical system is a concave mirror having a center of curvature on the test surface (
1) The surface position detection control device according to item 1).
(4)上記等倍実像光学系が上記被検面上に焦点を有す
る屈折反射光学系であることを特徴とする特許請求の範
囲(1)に記載の面位置検出制御装置。
(4) The surface position detection control device according to claim (1), wherein the equal-magnification real image optical system is a refractive/reflective optical system having a focal point on the test surface.
JP14242081A 1981-09-11 1981-09-11 Controller for detecting position of surface Granted JPS5845515A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14242081A JPS5845515A (en) 1981-09-11 1981-09-11 Controller for detecting position of surface

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14242081A JPS5845515A (en) 1981-09-11 1981-09-11 Controller for detecting position of surface

Publications (2)

Publication Number Publication Date
JPS5845515A true JPS5845515A (en) 1983-03-16
JPS6345523B2 JPS6345523B2 (en) 1988-09-09

Family

ID=15314910

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14242081A Granted JPS5845515A (en) 1981-09-11 1981-09-11 Controller for detecting position of surface

Country Status (1)

Country Link
JP (1) JPS5845515A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03103707A (en) * 1989-09-19 1991-04-30 Rohm Co Ltd Fine displacement measuring instrument

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03103707A (en) * 1989-09-19 1991-04-30 Rohm Co Ltd Fine displacement measuring instrument

Also Published As

Publication number Publication date
JPS6345523B2 (en) 1988-09-09

Similar Documents

Publication Publication Date Title
JP2913984B2 (en) Tilt angle measuring device
US6552852B2 (en) Catoptric and catadioptric imaging systems
JPS6355002B2 (en)
EP1030160A1 (en) Optical position sensor
JPS61111402A (en) Position detector
JPH08152308A (en) Confocal optical apparatus
JP3379336B2 (en) Optical position detector
US4549802A (en) Focus detection apparatus
JP3085961B2 (en) Optical device for observing long objects
JP2007010951A (en) Focus detecting device and imaging apparatus
JPS5845515A (en) Controller for detecting position of surface
US4455065A (en) Optical device
US7577348B2 (en) Focus detection apparatus and optical apparatus
CN111090223B (en) Optical measurement system
JP2003083723A (en) Three-dimensional shape measuring optical system
JP3290705B2 (en) Confocal optics
EP3751327A1 (en) Method of and apparatus for monitoring a focus state of a microscope
JP3337528B2 (en) Distance measuring device
JP3179162B2 (en) Focus detection device
JPH0145882B2 (en)
JP2534789B2 (en) Focus detection optical system
JP2636017B2 (en) Tilt detection head
JPH06273664A (en) Focus detector
JPH0460603A (en) Focus detector and observation device equipped with the same
RU2039347C1 (en) Device for determining mutual disposition of cells of volumetric structure made of elastic material