JPS6345523B2 - - Google Patents

Info

Publication number
JPS6345523B2
JPS6345523B2 JP14242081A JP14242081A JPS6345523B2 JP S6345523 B2 JPS6345523 B2 JP S6345523B2 JP 14242081 A JP14242081 A JP 14242081A JP 14242081 A JP14242081 A JP 14242081A JP S6345523 B2 JPS6345523 B2 JP S6345523B2
Authority
JP
Japan
Prior art keywords
image
light
optical system
control device
detection control
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP14242081A
Other languages
Japanese (ja)
Other versions
JPS5845515A (en
Inventor
Yoshisada Hayamizu
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Olympus Corp
Original Assignee
Olympus Optical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Olympus Optical Co Ltd filed Critical Olympus Optical Co Ltd
Priority to JP14242081A priority Critical patent/JPS5845515A/en
Publication of JPS5845515A publication Critical patent/JPS5845515A/en
Publication of JPS6345523B2 publication Critical patent/JPS6345523B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F23/00Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm
    • G01F23/22Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm by measuring physical variables, other than linear dimensions, pressure or weight, dependent on the level to be measured, e.g. by difference of heat transfer of steam or water
    • G01F23/28Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm by measuring physical variables, other than linear dimensions, pressure or weight, dependent on the level to be measured, e.g. by difference of heat transfer of steam or water by measuring the variations of parameters of electromagnetic or acoustic waves applied directly to the liquid or fluent solid material
    • G01F23/284Electromagnetic waves
    • G01F23/292Light, e.g. infrared or ultraviolet

Description

【発明の詳細な説明】 本発明は、スライド映写機や双眼実体顕微鏡等
の自動焦点調節に用いる面位置検出制御装置に関
するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a surface position detection control device used for automatic focus adjustment of slide projectors, binocular stereomicroscopes, and the like.

この種従来の面位置検出制御装置は、例えば第
1図に示した如く、光源1と、光源1の光をスリ
ツトSに集光せしめる集光レンズ2と、スリツト
7を発した光をフイル面等の被検面A上に像S1
して結像せしめる結像レンズ3と、面Aで正反射
した光を像S2として再結像せしめる結像レンズ4
と、受光面が像S2の結像面と一致するように配置
され且つ図示しない光学系移動装置と接続された
受光素子5とから成り、第2図に示した如く、面
Aが正しい位置から投影レンズL0の光軸方向に
距離Dだけ平行移動して面A′に移つたとすると、
像S1となるべき光が面A′で反射された後像S1′と
して結像し、像S1,S1′間の距離が2Dとなり、こ
の場合結像レンズ4の倍率がmであればもとの像
S2は受光素子5の受光面上をほぼ距離2mD移動
して像S2′となるので、距離2mDを受光素子5に
より光電的に検出し、距離2mDが零となるよう
にフイードバツクする即ち光学系移動装置により
投影レンズL0と本装置の光学系全体を一体とし
て投影レンズL0の光軸方向に移動せしめて像S1
が面A′上にくるように制御するものであつた。
ところが、この面位置検出制御装置は、その精度
自体が十分なものではなく、又面Aが傾むくと面
Aによる正反射光の傾きが変化して結像レンズ4
に対する入射位置が変化してしまい、これがその
まま像S2′の位置の変化としてあらわれるため検
出が正しく行われないという問題があつた。
This type of conventional surface position detection control device, as shown in FIG. an imaging lens 3 that forms an image S1 on a surface A to be inspected, and an imaging lens 4 that reimages the light specularly reflected by the surface A as an image S2 .
and a light-receiving element 5 which is arranged so that its light-receiving surface coincides with the imaging plane of the image S2 and which is connected to an optical system moving device (not shown), so that the surface A is in the correct position as shown in FIG. Suppose that the projection lens L0 is translated by a distance D in the direction of the optical axis from L0 to the surface A'.
The light that should become image S 1 is reflected by surface A' and then formed as image S 1 ', and the distance between images S 1 and S 1 ' is 2D. In this case, the magnification of the imaging lens 4 is m. If there is an original statue
Since S 2 moves approximately 2 mD on the light receiving surface of the light receiving element 5 to form an image S 2 ', the distance 2 mD is photoelectrically detected by the light receiving element 5, and feedback is performed so that the distance 2 mD becomes zero. The system moving device moves the projection lens L 0 and the entire optical system of this device as one in the optical axis direction of the projection lens L 0 to create an image S 1 .
was controlled so that it was on plane A'.
However, the precision of this surface position detection control device itself is not sufficient, and when surface A is tilted, the slope of the specularly reflected light by surface A changes, causing the imaging lens 4
There was a problem in that detection was not performed correctly because the incident position on the image S 2 ' changed and this appeared as a change in the position of the image S 2 '.

本発明は、上記問題点に鑑み、検出精度を大幅
に向上させると共に面の多少の傾きに対しても検
出が正しく行われ得るようにした面位置検出制御
装置を提供せんとするものであるが、以下第3図
乃至第5図に示した一実施例に基づき上記従来例
と同一の部材には同一符号を付してこれを説明す
れば、6は面位置検出用の指標であるスリツトS
から発した光を後述のプリズムの頂点に像S0とし
て結像せしめる結像レンズ、7は頂部が細長く研
摩されてスリツト状となつているプリズム、8は
像S0を発した光を被検面A上に像S1として結像せ
しめると共に像S1を発した光を再び像S0上に結像
せしめる結像レンズ、9は曲率中心が像S1上にあ
るように配置されていて面Aで正反射した光を反
射して再び像S1上に結像せしめる等倍実像反射光
学系である凹面鏡、10はプリズム7の一側方に
配置されていてプリズム7の一方の斜面で反射し
た光を同じく一側方に配置された受光素子11の
受光面に集光せしめる結像レンズ、12はプリズ
ム7の他の側方に配置されていてプリズム7の他
方の斜面で反射した光を同じく他の側方に配置さ
れた受光素子13の受光面に集光せしめる結像レ
ンズである。そして、両受光素子11,13は図
示しない光学系移動装置と接続されている。
In view of the above-mentioned problems, the present invention aims to provide a surface position detection control device that greatly improves detection accuracy and enables accurate detection even when the surface is slightly tilted. The following description will be made based on the embodiment shown in FIGS. 3 to 5, with the same reference numerals given to the same members as in the conventional example above. 6 is a slit S which is an index for surface position detection.
An imaging lens that forms the light emitted from the prism as an image S 0 on the vertex of the prism described later; 7 is a prism whose top is polished into a slit shape; 8 is a prism that emits the image S 0 ; An imaging lens 9 forms an image S 1 on the surface A and also forms the light emitted from the image S 1 onto an image S 0 again, and is arranged so that the center of curvature is on the image S 1 . A concave mirror 10, which is a real image reflection optical system of equal magnification, reflects the light specularly reflected by the surface A and forms it again on the image S1 , and is arranged on one side of the prism 7. An imaging lens 12 focuses the reflected light on the light receiving surface of the light receiving element 11 also placed on one side, and 12 is placed on the other side of the prism 7 and reflects the light on the other slope of the prism 7. This is an imaging lens that focuses the light onto the light-receiving surface of the light-receiving element 13, which is also placed on the other side. Both light receiving elements 11 and 13 are connected to an optical system moving device (not shown).

本発明による面位置検出制御装置は上述の如く
構成されているから、第4図に示した如く、面A
が投影レンズL0の光軸方向に距離Dだけ平行移
動して面A′に移つたとすると、像S1となるべき
光が面A′で反射された後像S1′として結像し、こ
の場合S1,S1′間の距離は2Dとなる。次に、像
S1′を発した光は凹面鏡9により反射されて像
S1′として結像しようとするがこの光は面A′で再
反射されて像S1として結像する。この場合、像
S1′,S1″間の距離がほぼ4Dとなるので、像S1,S1
間の距離もほぼ4Dとなる(像S1″,S1間の距
離はほぼ6Dである。)。次に、像S1を発した光
はプリズム7の頂部から外れた位置に像S0′とし
て結像し、像S0′を発した光はプリズム7の一方
の斜面で反射された後結像レンズ10より受光素
子11の受光面上に集光せしめられる。一方、面
Aが面A′と反対方向に移動したとすると、上記
と同様な原理によりスリツト像光線束はプリズム
7の他方の面で反射された後結像レンズ12によ
り受光素子13の受光面上に集光せしめられる。
従つて、受光素子11及び13の出力が零又は受
光素子11と13の出力差が零となるようにフイ
ードバツクする即ち光学系移動装置により投影レ
ンズL0と本装置の光学系全体を一体として投影
レンズL0の光軸方向に移動せしめる像S1が面
A′上にくるように制御すれば、投影レンズL0
ピントを面A′に合わせることが出来る。かくし
て、本装置の作動が行われるが、本装置は、上述
の如く面AがDだけ移動しただけで合焦時面A上
に結像すべき像S1と面A′や凹面鏡9で反射され
た後に出来る最終像S1との間の距離がほぼ4D
となるので、従来例に較べて感度が倍増し検出精
度が大幅に向上する。又、第5図に示した如く、
面Aが合焦状態において傾いて面A′となり正反
射光の傾きが変化したとしても、凹面鏡9の有効
径を十分大きくしておけば全ての正反射光を捕え
て反射し、元の光路に沿つてそのまま送り返して
プリズム7の頂部上に結像せしめることが出来る
ので、検出は正しく行われる。
Since the surface position detection control device according to the present invention is configured as described above, as shown in FIG.
Suppose that the image is translated by a distance D in the direction of the optical axis of the projection lens L 0 and transferred to the surface A', then the light that should form the image S 1 is reflected by the surface A' and then formed as the image S 1 '. , in this case the distance between S 1 and S 1 ' is 2D. Next, the statue
The light emitted by S 1 ′ is reflected by the concave mirror 9 and becomes an image.
An attempt is made to form an image as S 1 ', but this light is re-reflected by surface A' and is formed as image S 1 . In this case, the statue
Since the distance between S 1 ′ and S 1 ″ is approximately 4D, the images S 1 and S 1
The distance between them is also approximately 4D (the distance between images S 1 ″ and S 1 is approximately 6D).Next, the light emitted from image S 1 forms image S 0 at a position away from the top of prism 7. ', and the light emitted as an image S 0 ' is reflected by one slope of the prism 7 and then focused by the imaging lens 10 onto the light receiving surface of the light receiving element 11.On the other hand, the surface A is a surface Assuming that it moves in the opposite direction to A', the slit image ray bundle is reflected by the other surface of the prism 7 and then focused on the light receiving surface of the light receiving element 13 by the imaging lens 12 based on the same principle as above. .
Therefore, the projection lens L 0 and the entire optical system of this apparatus are projected as one by providing feedback so that the outputs of the light receiving elements 11 and 13 are zero or the difference in output between the light receiving elements 11 and 13 is zero. The image S 1 that is moved in the optical axis direction of the lens L 0 is a surface.
If the projection lens L0 is controlled so that it is placed on the plane A', the focus of the projection lens L0 can be adjusted to the plane A'. In this way, the operation of the present device is carried out, but as mentioned above, the present device is able to separate the image S1 that should be formed on the surface A at the time of focusing by moving the surface A only by D, and the image S1 reflected by the surface A' and the concave mirror 9. The distance between the final image S1 created after
Therefore, compared to the conventional example, the sensitivity is doubled and the detection accuracy is greatly improved. Also, as shown in Figure 5,
Even if surface A tilts in the focused state to become surface A' and the inclination of the specularly reflected light changes, if the effective diameter of the concave mirror 9 is made sufficiently large, all the specularly reflected light will be captured and reflected, returning to the original optical path. Since the light beam can be sent back along the same direction and focused on the top of the prism 7, the detection can be performed correctly.

第6図は第二の実施例を示しており、14はそ
の入射端面に結像レンズ6によりスリツトSから
発した光が集光せしめられるとその射出端面が一
種のスリツト状光源S0となるオプテイカルフアイ
バー又はオプテイカルフアイバーを一直線上に配
列して成るオプテイカルフアイバーシート、15
及び16は各入射端面がオプテイカルフアイバー
14の射出端面の両側に配置せしめられたオプテ
イカルフアイバー束であつて、これらが上記第一
の実施例のプリズム7の代りに設けられている。
従つて、ピントが合つている場合即ち面A上に像
S1がある場合はオプテイカルフアイバー束15及
び16のいずれにも光が戻らないが、ピントがず
れた場合即ち面Aが移動した場合は戻り光がオプ
テイカルフアイバー束15又は16のいずれか一
方で捕捉され、その結果受光素子11又は13の
いずれか一方に出力が発生するので、この情報を
フイードバツクすることにより面Aの自動焦点調
整が可能となる。尚、この実施例において、オプ
テイカルフアイバー束15及び16を何層かのオ
プテイカルフアイバーシートを入射端面において
は規則正しく整列積みし且つ射出端面においては
一層ずつ分離して複数受光素子の受光面に夫々導
くとか或いはそのまま規則正しく整列積みした状
態で位置検出素子に導くことにより構成すれば、
上記第一の実施例における像S0,S0′間に相当す
る距離を測定することも出来る。
FIG. 6 shows a second embodiment, in which when the light emitted from the slit S is focused by the imaging lens 6 on the incident end surface 14, the exit end surface becomes a kind of slit-shaped light source S0. Optical fiber sheet or optical fiber sheet formed by arranging optical fibers in a straight line, 15
and 16 are optical fiber bundles whose incident end faces are arranged on both sides of the exit end face of the optical fiber 14, and these are provided in place of the prism 7 of the first embodiment.
Therefore, if the image is in focus, that is, the image is on surface A.
If S 1 exists, the light does not return to either the optical fiber bundles 15 or 16, but if the focus shifts, that is, if the surface A moves, the returned light returns to either the optical fiber bundles 15 or 16. As a result, an output is generated on either the light receiving element 11 or 13, so automatic focusing of the surface A becomes possible by feeding back this information. In this embodiment, the optical fiber bundles 15 and 16 are formed by stacking several layers of optical fiber sheets in regular alignment at the input end face, and separating them one by one at the exit end face, respectively, onto the light receiving surfaces of the plurality of light receiving elements. If the structure is constructed by guiding the elements, or by guiding them to the position detection element in a regularly arranged and stacked state,
It is also possible to measure the distance corresponding to the images S 0 and S 0 ' in the first embodiment.

第7図は第三の実施例を示しており、17は結
像レンズ、18は平面反射鏡であつて、これらが
第一実施例の凹面鏡9の代りに設けられている。
又、19及び20は夫々第二の実施例の位置検出
素子の代りに設けられたCCD等の固体撮像素子
であつて、像S0の戻り光をプリズム7の斜面で反
射させた後に結像レンズ10又は12により固体
撮像素子19又は20上に結像させれば、第二の
実施例と同様に第一の実施例における像S0
S0′間に相当する距離を測定することが出来る。
FIG. 7 shows a third embodiment, in which 17 is an imaging lens and 18 is a plane reflecting mirror, which are provided in place of the concave mirror 9 of the first embodiment.
Further, 19 and 20 are solid-state imaging devices such as CCDs provided in place of the position detecting device of the second embodiment, which form an image after reflecting the return light of the image S0 on the slope of the prism 7. If an image is formed on the solid-state image sensor 19 or 20 by the lens 10 or 12, the image S 0 ,
The distance corresponding to S 0 ' can be measured.

第8図は第四の実施例を示しており、21及び
22は第一の実施例の結像レンズ8の代りに設け
られてていてこれらの間の光線を平行光線にして
いる結像レンズ、23は結像レンズ21及び22
間に配置されていて戻り光を側方に取り戻すため
の半透鏡、24は半透鏡23で反射された戻り光
を位置検出素子25上に像S2として結像せしめる
結像レンズである。従つて、像S2の位置の変化を
検出することにより面Aの変位距離Dを検出する
ことが出来る。
FIG. 8 shows a fourth embodiment, in which imaging lenses 21 and 22 are provided in place of the imaging lens 8 of the first embodiment, and make the rays between them parallel rays. , 23 are imaging lenses 21 and 22
A semi-transparent mirror 24 disposed between them for returning the returned light to the side is an imaging lens that forms the returned light reflected by the semi-transparent mirror 23 on the position detection element 25 as an image S 2 . Therefore, the displacement distance D of the surface A can be detected by detecting the change in the position of the image S2 .

第9図は第四の実施例を単対物方式の双眼実体
顕微鏡に応用した例を示しており、26は対物レ
ンズ、27及び28は右左光学系の結像レンズで
あつて、これらが対物光学系を構成し、結像レン
ズ27及び28と対物レンズ26との間の光線は
平行光線となつている。又、29及び30は平面
反射鏡である。従つて、スリツトSを発した光は
結像レンズ21により平行光線束となり、平面反
射鏡29で反射された後対物レンズ26により面
A上にスリツト像S1として結像せしめられる。続
いて面Aはほぼ正反射した光は対物レンズ26を
通過した後平行光線となつて平面反射鏡30に入
射し、平面反射鏡30で反射された光は対物レン
ズ26により面A上の像S1上に再び結像せしめら
れ、面Aでほぼ正反射した光は再び平面反射鏡2
9に入射せしめられる。更に、平面反射鏡29で
反射された光は半透鏡23で反射された後結像レ
ンズ24により位置検出素子25上に像S2として
結像せしめられている。従つて、面Aがピントか
ら外れると位置検出素子25上で像S2の位置ずれ
が生じるので、像S2の位置の変化を検出すること
により面Aの変位距離を検出することが出来る
し、これをフイードバツクして面Aに正しく自動
的にピント合わせすることも可能である。尚、こ
のような光学系においては、結像レンズ27及び
28の光軸を含む平面と、スリツトS、結像レン
ズ21、平面反射鏡29及び30、半透鏡23等
から成る検出系を含む平面を斜交させれば、全体
をコンパクトにまとめることが出来る。又、上記
第一、第二及び第三の実施例において結像レンズ
8の代りに双眼実体顕微鏡の対物光学系に置き換
えてやれば、この応用例と同様な応用例を構成す
ることが出来る。
FIG. 9 shows an example in which the fourth embodiment is applied to a single-objective type binocular stereomicroscope, where 26 is an objective lens, 27 and 28 are imaging lenses of the right and left optical systems, and these are the objective optical system. The light rays between the imaging lenses 27 and 28 and the objective lens 26 are parallel rays. Further, 29 and 30 are flat reflecting mirrors. Therefore, the light emitted from the slit S is turned into a parallel beam by the imaging lens 21, reflected by the plane reflecting mirror 29, and then imaged onto the surface A by the objective lens 26 as a slit image S1 . Subsequently, the light that is almost specularly reflected from the surface A passes through the objective lens 26 and becomes parallel light beams and enters the plane reflecting mirror 30, and the light reflected by the plane reflecting mirror 30 is converted into an image on the plane A by the objective lens 26. The light that is imaged again on S 1 and almost specularly reflected by surface A is reflected again on plane reflecting mirror 2.
9. Further, the light reflected by the plane reflecting mirror 29 is reflected by the semi-transparent mirror 23 and then focused on the position detecting element 25 as an image S 2 by the imaging lens 24 . Therefore, when surface A goes out of focus, the position of image S2 will shift on the position detection element 25, so by detecting the change in the position of image S2 , the displacement distance of surface A can be detected. , it is also possible to feed this back and automatically focus on surface A correctly. In addition, in such an optical system, there is a plane containing the optical axes of the imaging lenses 27 and 28, and a plane containing the detection system consisting of the slit S, the imaging lens 21, the flat reflecting mirrors 29 and 30, the semi-transparent mirror 23, etc. By intersecting them, you can make the whole thing more compact. Furthermore, if the imaging lens 8 in the first, second, and third embodiments is replaced with the objective optical system of a binocular stereomicroscope, an application similar to this application can be constructed.

尚、上記各実施例はいずれもスリツトSを用い
ているが、光量を増加させるためにスリツトSの
代りに微小な格子を用いても良いし、リング状の
スリツトを用いても良い。又、使用する光は、必
要に応じて赤外線又は紫外線の如き不可視光を用
いても良い。
Incidentally, each of the above embodiments uses the slit S, but in order to increase the amount of light, a minute grating may be used instead of the slit S, or a ring-shaped slit may be used. Further, as the light used, invisible light such as infrared rays or ultraviolet rays may be used as necessary.

上述の如く、本発明による面位置検出制御装置
は、検出精度が極めて高く且つ被検面の多少の傾
きに対しても正しい検出が行われるという優れた
利点を有している。
As described above, the surface position detection control device according to the present invention has the excellent advantage of extremely high detection accuracy and correct detection even if the surface to be detected is slightly tilted.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の面位置検出制御装置の光学系を
示す図、第2図は上記従来例において被検面が移
動した場合の結像状態を示す図、第3図は本発明
による面位置検出制御装置の一実施例の光学系を
示す図、第4図は上記実施例において被検面が移
動した場合の結像状態を示す図、第5図は上記実
施例において被検面が傾いた状態を示す図、第6
図乃至第8図は各々第二、第三及び第四の実施例
の光学系を示す図、第9図は上記第四の実施例を
単対物式の双眼実体顕微鏡に応用した例の光学系
を示す図である。 1……光源、6……結像レンズ、7……プリズ
ム、8……結像レンズ、9……凹面鏡、10,1
2……結像レンズ、11,13……受光素子、S
……スリツト、A……被検面。
FIG. 1 is a diagram showing the optical system of a conventional surface position detection control device, FIG. 2 is a diagram showing the image formation state when the surface to be detected moves in the conventional example, and FIG. 3 is a diagram showing the surface position according to the present invention. FIG. 4 is a diagram showing the optical system of an embodiment of the detection control device. FIG. 4 is a diagram showing the image formation state when the surface to be detected moves in the above embodiment. FIG. Figure 6 showing the state
Figures 8 to 8 are diagrams showing the optical systems of the second, third, and fourth embodiments, respectively, and Figure 9 is the optical system of an example in which the fourth embodiment is applied to a single-objective binocular stereoscopic microscope. FIG. 1... Light source, 6... Imaging lens, 7... Prism, 8... Imaging lens, 9... Concave mirror, 10,1
2... Imaging lens, 11, 13... Light receiving element, S
...Slit, A...Test surface.

Claims (1)

【特許請求の範囲】 1 検出用指標からの光を被検面に対して斜めに
投射して該被検面上に該検出用指標の像を形成す
る結像光学系と、反射部材を含んでいて前記被検
面が正規位置にある時は前記被検面からの反射光
を受け該反射部材で反射して前記指標像と同じ位
置に再び指標像を形成する等倍実像反射光学系
と、前記結像光学系内に配置されていて前記被検
面で反射してきた光の少なくとも一部を前記結像
光学系の光路外に取出す光学素子と、前記光学素
子により取出された光の光路上に配置されていて
該光を受光する光電変換手段とを備え、前記被検
面の位置の変化に伴う前記光電変換手段からの出
力信号の変化により前記被検面の位置を検出する
面位置検出制御装置。 2 上記検出用指標が一本のスリツト又は格子で
あることを特徴とする特許請求の範囲1に記載の
面位置検出制御装置。 3 上記等倍実像光学系が上記被検面上に曲率中
心を有する凹面鏡であることを特徴とする特許請
求の範囲1に記載の面位置検出制御装置。 4 上記等倍実像光学系が上記被検面上に焦点を
有する屈折反射光学系てあることを特徴とする特
許請求の範囲1に記載の面位置検出制御装置。
[Claims] 1. An imaging optical system that projects light from a detection target obliquely onto a surface to be tested to form an image of the detection target on the surface to be tested, and a reflecting member. and an equal-magnification real image reflecting optical system that receives reflected light from the test surface and reflects it on the reflecting member to form an index image again at the same position as the index image when the test surface is in a normal position. , an optical element disposed within the imaging optical system and extracting at least a part of the light reflected by the test surface to outside the optical path of the imaging optical system; and the light extracted by the optical element. and a photoelectric conversion means that is placed on the road and receives the light, and a surface position that detects the position of the test surface based on a change in an output signal from the photoelectric conversion means in accordance with a change in the position of the test surface. Detection control device. 2. The surface position detection control device according to claim 1, wherein the detection index is a slit or a grid. 3. The surface position detection control device according to claim 1, wherein the same-magnification real image optical system is a concave mirror having a center of curvature on the surface to be inspected. 4. The surface position detection control device according to claim 1, wherein the same-magnification real image optical system is a refractive/reflective optical system having a focal point on the surface to be inspected.
JP14242081A 1981-09-11 1981-09-11 Controller for detecting position of surface Granted JPS5845515A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14242081A JPS5845515A (en) 1981-09-11 1981-09-11 Controller for detecting position of surface

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14242081A JPS5845515A (en) 1981-09-11 1981-09-11 Controller for detecting position of surface

Publications (2)

Publication Number Publication Date
JPS5845515A JPS5845515A (en) 1983-03-16
JPS6345523B2 true JPS6345523B2 (en) 1988-09-09

Family

ID=15314910

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14242081A Granted JPS5845515A (en) 1981-09-11 1981-09-11 Controller for detecting position of surface

Country Status (1)

Country Link
JP (1) JPS5845515A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03103707A (en) * 1989-09-19 1991-04-30 Rohm Co Ltd Fine displacement measuring instrument

Also Published As

Publication number Publication date
JPS5845515A (en) 1983-03-16

Similar Documents

Publication Publication Date Title
JP2913984B2 (en) Tilt angle measuring device
EP0009983A1 (en) Optical beam splitting apparatus
KR20040032816A (en) Catoptric and catadioptric imaging systems
JP3379336B2 (en) Optical position detector
JP3085961B2 (en) Optical device for observing long objects
US4549802A (en) Focus detection apparatus
JPS6345523B2 (en)
US4412127A (en) In-focus detector for binocular stereoscope
JP2571859B2 (en) Scanning optical microscope
US4455065A (en) Optical device
GB2092854A (en) Focus detecting system
CN111090223B (en) Optical measurement system
JPH0949965A (en) Focal position detector
US4419574A (en) Focus detecting device with varying pitch cylindrical lens element
US4443079A (en) Method and apparatus for detecting focus condition of objective lens
US2747466A (en) Optical scanning objective lens system for inspection devices
JPH11325887A (en) Branch optical system automatic focus detector
JP3290705B2 (en) Confocal optics
JP3179162B2 (en) Focus detection device
JPS6234081B2 (en)
JPS589010A (en) Detector for micro-displacement angle
JPH06273664A (en) Focus detector
JP2636017B2 (en) Tilt detection head
JPS6117907A (en) Three-dimensional shape measuring instrument
JP2001083402A (en) Optical equipment