JPH0786405B2 - Straightness measuring device - Google Patents
Straightness measuring deviceInfo
- Publication number
- JPH0786405B2 JPH0786405B2 JP63075884A JP7588488A JPH0786405B2 JP H0786405 B2 JPH0786405 B2 JP H0786405B2 JP 63075884 A JP63075884 A JP 63075884A JP 7588488 A JP7588488 A JP 7588488A JP H0786405 B2 JPH0786405 B2 JP H0786405B2
- Authority
- JP
- Japan
- Prior art keywords
- measured
- axis direction
- axis
- air slide
- reference surfaces
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Landscapes
- A Measuring Device Byusing Mechanical Method (AREA)
- Length Measuring Devices With Unspecified Measuring Means (AREA)
Description
【発明の詳細な説明】 (産業上の利用分野) 本発明は、被測定物面の真直度を測定するための真直度
測定装置に関する。The present invention relates to a straightness measuring device for measuring the straightness of a surface of an object to be measured.
(従来の技術及び解決すべき課題) 従来、例えば第3図及び第4図のような被測定物上面の
平面度の測定は、光学的手段によりオプチカルフラット
と比較して行っていた。しかし、これでは平面度の測定
結果を高精度(サブミクロンオーダー)の具体的数値と
して得ることができない嫌いがある。(Prior Art and Problems to be Solved) Conventionally, the flatness of the upper surface of the object to be measured as shown in FIGS. 3 and 4, for example, is measured by optical means in comparison with optical flat. However, there is a dislike that the measurement result of the flatness cannot be obtained as a specific value with high accuracy (submicron order).
本発明は、上記の点に鑑み、被測定物の真直度、ひいて
は平面度、円筒度、同軸度等の形状の測定を高精度で実
行可能で、測定結果をコンピュータ等の処理が容易な電
気信号として得ることができる真直度測定装置を提供す
ることを目的とする。In view of the above points, the present invention is capable of accurately measuring the straightness of an object to be measured, and thus the flatness, cylindricity, coaxiality, and the like with high accuracy, and the measurement result is easily processed by a computer or the like. An object is to provide a straightness measuring device that can be obtained as a signal.
(課題を解決するための手段) 本発明は、上記課題を解決するために、防振台上に配置
されかつX軸方向に摺動自在であって、駆動源によりワ
イヤを介し前記X軸方向に駆動されるエアスライドテー
ブルと、 該エアスライドテーブル上に配設されていて前記X軸方
向に直交するY軸方向に移動自在な前後テーブルと、 該前後テーブル上に配設されていてテーブル面が傾動自
在な傾斜テーブルと、 該傾斜テーブルのテーブル面上に配設されていて複数箇
所の平坦な基準面を有する被測定物を保持するバキュー
ムチャックと、 前記複数箇所の基準面にそれぞれ対向配置されていて対
向する基準面との間隔を測定する複数の変位センサを有
しており、前記被測定物のX軸との平行度を測定する傾
き測定部と、 前記防振台上に立設された上下コラムを前記X軸及びY
軸に垂直なZ軸方向に移動自在である昇降ブロックに取
り付けられていて前記被測定物の真直度を測定する検出
部としての粗さ測定用スタイラスと、 前記検出部の出力電気信号をA/D変換するA/D変換手段及
び前記X軸の値に対応したA/D変換後の前記Z軸の値を
記憶するメモリを有するコンピュータとを備え、 前記複数の変位センサで測定した前記間隔が等しくなる
ように前記傾斜テーブルのテーブル面の傾斜を調整して
前記X軸方向と前記複数箇所の基準面との平行度を一定
値以下とした状態において、前記エアスライドテーブル
をX軸方向に移動させて前記粗さ測定用スタイラスで前
記複数箇所の基準面及び前記被測定物の被測定面の前記
Z軸方向の高さを検出し、前記コンピュータにより前記
複数箇所の基準面の高さから基準線Pを演算し、該基準
線Pと前記被測定物の被測定面との段差を算出可能とし
た構成としている。(Means for Solving the Problems) In order to solve the above-mentioned problems, the present invention is arranged on a vibration-isolating table and is slidable in the X-axis direction, and is driven by a drive source through a wire in the X-axis direction. Driven air slide table, a front and rear table disposed on the air slide table and movable in a Y-axis direction orthogonal to the X-axis direction, and a table surface disposed on the front and rear table. A tiltable table, a vacuum chuck disposed on the table surface of the tiltable table for holding an object to be measured having a plurality of flat reference surfaces, and a plurality of reference surfaces arranged to face the reference surfaces. And a plurality of displacement sensors for measuring the distance between the reference surfaces facing each other, and an inclination measuring section for measuring the parallelism with the X-axis of the object to be measured, and standing on the vibration isolation table. Top and bottom Photoshop The X-axis and Y
A stylus for measuring roughness, which is attached to an elevating block movable in the Z-axis direction perpendicular to the axis and measures the straightness of the object to be measured, and an output electric signal of the detector is A / A computer having an A / D conversion means for D conversion and a memory for storing the value of the Z axis after A / D conversion corresponding to the value of the X axis, wherein the intervals measured by the plurality of displacement sensors are The air slide table is moved in the X-axis direction in a state where the tilt of the table surface of the tilt table is adjusted so that the parallelism between the X-axis direction and the reference surfaces at the plurality of positions is equal to or less than a certain value. Let the roughness measuring stylus detect the heights of the plurality of reference surfaces and the measured surface of the object to be measured in the Z-axis direction, and use the computer as a reference from the heights of the plurality of reference surfaces. Calculate line P , And the calculated possible and with the structure of the step between the between the reference line P measured surface of the measured object.
(作用) 本発明の真直度測定装置においては、複数箇所の平坦な
基準面を有する被測定物を傾斜テーブル上のバキューム
チャックで変形が生じないように吸着保持した状態で、
前記複数箇所の平坦な基準面にそれぞれ対向配置された
複数の変位センサで前記基準面との間隔をそれぞれ測定
し、前記傾斜テーブルを調整することで前記被測定物と
X軸との平行度を良好な状態に設定することができ、以
後の検出部(粗さ測定用スタイラス)による真直度測定
においてオーバーレンジ等の不都合が発生しないように
することができる。(Operation) In the straightness measuring device of the present invention, in a state in which the object to be measured having a plurality of flat reference surfaces is suction-held so as not to be deformed by the vacuum chuck on the tilt table,
The parallelism between the object to be measured and the X axis is measured by adjusting the tilt table by measuring the distances from the reference planes by a plurality of displacement sensors that are arranged to face the flat reference planes at the plurality of locations. It can be set in a good state, and it is possible to prevent inconveniences such as overrange from occurring in the straightness measurement by the detection unit (the roughness measuring stylus) thereafter.
また、検出部による真直度の測定は、前記被測定物の上
面に検出部となる粗さ測定用スタイラスを接触させ、エ
アスライドテーブルをX軸方向に走査することにより行
い、これにより前記被測定物の上面のX軸方向の真直度
を測定することができる。前記スタイラスは被測定物上
面の高さ(X軸及びY軸に垂直なZ軸方向の位置)に応
じた電気信号を出すから、これをA/D変換してコンピー
タ処理する。その際、前記検出部の出力電気信号をA/D
変換するA/D変換手段及び前記X軸の値に対応したA/D変
換後の前記Z軸の値を記憶するメモリを有するコンピュ
ータを用いて、前記複数箇所の平坦な基準面の高さ(Z
軸の値)から基準線Pを演算し、該基準線Pと前記被測
定物の被測定面との段差を算出するようにしているの
で、前記傾斜テーブルによる前記被測定物の平行度の調
整に誤差があって前記被測定物とX軸との平行度にずれ
があっても、基準線Pと前記被測定物の被測定面との段
差には前記平行度のずれは影響を及ぼすことがなく、高
精度の真直度測定が可能である。The straightness is measured by the detection unit by bringing a roughness measuring stylus serving as the detection unit into contact with the upper surface of the object to be measured and scanning the air slide table in the X-axis direction. It is possible to measure the straightness of the upper surface of the object in the X-axis direction. The stylus outputs an electric signal corresponding to the height of the upper surface of the object to be measured (position in the Z-axis direction perpendicular to the X-axis and the Y-axis), and the signal is A / D converted for computer processing. At that time, the output electric signal of the detection unit is A / D
Using a computer having an A / D converting means for converting and a memory for storing the value of the Z axis after A / D conversion corresponding to the value of the X axis, the heights of the flat reference planes at the plurality of positions ( Z
Since the reference line P is calculated from the (axis value) and the step between the reference line P and the measurement surface of the measurement object is calculated, the parallelism of the measurement object is adjusted by the tilt table. Even if there is an error in the parallelism between the object to be measured and the X axis, the deviation in parallelism affects the step between the reference line P and the surface to be measured of the object to be measured. Highly accurate straightness measurement is possible.
さらに、エアスライドテーブルを用いることにより、測
定時にX軸方向に摺動させる場合のがたつき等を除去で
き、前記被測定物を支えるテーブル側に起因する誤差を
少なくすることができる。そのエアスライドテーブルの
X軸方向の駆動はワイヤを介してモータ等の駆動源で行
われるので、エアスライドテーブルをX軸方向に駆動す
るための機構に起因する誤差の発生を極力除去できる。
また、前後テーブルをX軸に直交するY軸方向に移動し
て、異なるY軸方向の位置に対して上記スタライスのX
軸方向の走査を行い、同一X軸方向位置における2点以
上のY軸方向位置の測定値を比較することにより、Y軸
方向の真直度の測定もできる。Further, by using the air slide table, it is possible to eliminate rattling and the like when sliding in the X-axis direction at the time of measurement, and it is possible to reduce errors due to the table side supporting the object to be measured. Since the drive of the air slide table in the X-axis direction is performed by a drive source such as a motor via a wire, the occurrence of an error caused by a mechanism for driving the air slide table in the X-axis direction can be eliminated as much as possible.
In addition, the front and rear tables are moved in the Y-axis direction orthogonal to the X-axis, and the X-rays of the Stalice are moved to different positions in the Y-axis direction.
It is also possible to measure the straightness in the Y-axis direction by performing scanning in the axial direction and comparing the measured values at two or more Y-axis direction positions at the same X-axis direction position.
これらのX軸方向及びY軸方向の測定により、被測定物
の平面度、円筒度、同軸度等の形状の測定を高精度で実
行可能である。By measuring in the X-axis direction and the Y-axis direction, it is possible to accurately measure the flatness, cylindricity, coaxiality and the like of the object to be measured.
(実施例) 以下、本発明に係る真直度測定装置の実施例を図面に従
って説明する。(Example) Hereinafter, an example of a straightness measuring device according to the present invention will be described with reference to the drawings.
第1は真直度測定装置の機械的構成を示し、第2図は真
直度測定装置の制御及び信号処理系を示すものである。The first shows the mechanical structure of the straightness measuring device, and FIG. 2 shows the control and signal processing system of the straightness measuring device.
第1図において、防振台1上にはエアスライドガイド2
が立設固定され、該エアスライドガイド2に対してエア
スライドテーブル3がX軸方向に摺動自在に設けられて
いる。該エアスライドテーブル3のX軸方向の位置は防
振台1上に配置されたリニアスケール4で検出される。
エアスライドテーブル3は例えば上下方向の真直度(単
体)が0.1μm/100mm程度以下のものである。In FIG. 1, an air slide guide 2 is provided on the vibration isolation table 1.
Is fixed upright and an air slide table 3 is provided slidably in the X-axis direction with respect to the air slide guide 2. The position of the air slide table 3 in the X-axis direction is detected by the linear scale 4 arranged on the vibration isolation table 1.
The air slide table 3 has a vertical straightness (single unit) of about 0.1 μm / 100 mm or less.
前記防振台1とは別の基台5上には駆動源としてのモー
タ6が配置固定され、該モータ6の回転軸に固着された
プーリー7A、エアスライドガイド2の両端上下に配置さ
れたプーリー7B,7C,7D,7E間にワイヤ8が張架され、該
ワイヤ8の両端はエアスライドテーブル3に接続されて
いる。従って、モータ6の回転によりエアスライドテー
ブル3はX軸方向に駆動される。A motor 6 as a drive source is arranged and fixed on a base 5 different from the vibration isolation table 1, and a pulley 7A fixed to a rotation shaft of the motor 6 and air slide guides 2 are arranged above and below both ends of the air slide guide 2. A wire 8 is stretched between the pulleys 7B, 7C, 7D and 7E, and both ends of the wire 8 are connected to the air slide table 3. Therefore, the rotation of the motor 6 drives the air slide table 3 in the X-axis direction.
該エアスライドテーブル3上にはX軸に直交するY軸方
向に摺動自在な前後テーブル9が取付固定され、該前後
テーブル9のテーブル面上には傾斜テーブル10が取付固
定されている。傾斜テーブル10のテーブル面は例えば±
2゜の範囲で傾動可能である。傾斜テーブル10のテーブ
ル面上にはバキュームチャック11が固着されている。該
バキュームチャック11は、第3図及び第4図のように測
定対象面20と基準面22とを上面に有する被測定物21を吸
着保持するものである。基準面22は予め平坦に研摩され
ている。A front and rear table 9 which is slidable in the Y-axis direction orthogonal to the X-axis is mounted and fixed on the air slide table 3, and a tilt table 10 is mounted and fixed on the table surface of the front and rear table 9. The table surface of the tilt table 10 is, for example, ±
Can be tilted in the range of 2 °. A vacuum chuck 11 is fixed on the table surface of the tilt table 10. The vacuum chuck 11 sucks and holds an object to be measured 21 having an object surface 20 and a reference surface 22 on the upper surface as shown in FIGS. 3 and 4. The reference surface 22 is previously ground flat.
なお、前記バキュームチャック11は前記被測定物21が変
形しないように適切な真空吸引力で吸着保持可能であ
る。The vacuum chuck 11 can be held by suction with an appropriate vacuum suction force so that the measured object 21 is not deformed.
前記防振台1上にはセンサスタンド12が立設固定され、
該センサスタンド12に2個の変位センサ13が取り付けら
れる。2個の変位センサ13は前記被測定物21の2箇所の
基準面22に対向するように配置されていて、各変位セン
サ13と2箇所の基準面22との間隔をそれぞれ測定するも
のである。そして、2箇所の基準面22に対応したそれぞ
れの間隔が等しくなるように前記傾斜テーブル10の傾斜
を調整し、X軸方向と前記2箇所の基準面22の平行度を
一定値以下(例えば1μm以下)にする。これは、後述
の検出部16における真直度測定においてZ軸方向(X軸
及びY軸に垂直)の測定倍率が大きく(×5000〜×2000
0)、オーバーレンジにならぬようにするためである。A sensor stand 12 is erected and fixed on the vibration isolation table 1,
Two displacement sensors 13 are attached to the sensor stand 12. The two displacement sensors 13 are arranged so as to face the two reference surfaces 22 of the object to be measured 21, and measure the distance between each displacement sensor 13 and the two reference surfaces 22. . Then, the tilt of the tilt table 10 is adjusted so that the respective intervals corresponding to the two reference surfaces 22 are equal, and the parallelism between the X-axis direction and the two reference surfaces 22 is equal to or less than a certain value (for example, 1 μm). Below). This is because the measurement magnification in the Z-axis direction (perpendicular to the X-axis and the Y-axis) is large (× 5000 to × 2000 in the straightness measurement by the detecting unit 16 described later).
0), to prevent overrange.
また、前記防振台1上には上下コラム14が立設固定さ
れ、該上下コラム14のZ軸方向に昇降する昇降ブロック
15に前記被測定物21の上面の真直度を測定する検出部16
が取り付けられている。該検出部16は粗さ測定用のスタ
イラスで構成され、スタイラス先端を被測定物21の上面
に0.4g程度の測定荷重で接触させて測定を実行するもの
である。スタイラスの分解能は0.01μm程度である。Also, an upper and lower column 14 is erected and fixed on the vibration isolating table 1, and an elevating block that moves up and down in the Z-axis direction of the upper and lower column 14.
15 includes a detection unit 16 for measuring the straightness of the upper surface of the object 21 to be measured.
Is attached. The detection unit 16 is composed of a roughness measuring stylus, and the stylus tip is brought into contact with the upper surface of the object to be measured 21 with a measuring load of about 0.4 g to perform the measurement. The resolution of the stylus is about 0.01 μm.
第2図に示すように、X軸駆動用のモータ6及び上下コ
ラム14のZ軸駆動用モータは、シーケンサ30でシーケン
ス制御されるドライバ31,32を介して駆動制御されるよ
うになっており、前記検出部16の出力である電気信号は
ヘッドアンプ33、レンジアンプ34で所定電圧にまで増幅
され、コンピュータ40のA/D基板41に入力される。コン
ピュータ40はA/D基板41の他に、CPU42、I/O基板43、マ
ウス44及びメモリ45を有している。コンピュータ出力
は、CRT46やX−Yプロッタ47で表示されるようになっ
ている。前記リニアスケール4の出力は分周回路48で分
周されてI/O基板43に加えられる。また、I/O基板43内で
はサンプリングパルスが作成される。コンピュータ40は
サンプリングパルス毎にX軸の値及びこれに対応したZ
軸の値をA/D変換してメモリ45に記憶する。記憶データ
はCRT46やX−Yプロッタ47で表示することができる。As shown in FIG. 2, the X-axis driving motor 6 and the Z-axis driving motors of the upper and lower columns 14 are driven and controlled via the drivers 31 and 32 which are sequence-controlled by the sequencer 30. The electric signal output from the detection unit 16 is amplified to a predetermined voltage by the head amplifier 33 and the range amplifier 34 and input to the A / D board 41 of the computer 40. The computer 40 has a CPU 42, an I / O board 43, a mouse 44, and a memory 45 in addition to the A / D board 41. The computer output is displayed on the CRT 46 or the XY plotter 47. The output of the linear scale 4 is frequency-divided by the frequency dividing circuit 48 and applied to the I / O substrate 43. In addition, a sampling pulse is created in the I / O board 43. The computer 40 displays the value of the X-axis and the corresponding Z for each sampling pulse.
The value of the axis is A / D converted and stored in the memory 45. The stored data can be displayed on the CRT 46 or the XY plotter 47.
以上の実施例の構成において、傾斜テーブル10、変位セ
ンサ13により被測定物21の2つの基準面22を水平にセッ
ト(X軸に平行に)し、上下コラム14で検出部16の高さ
(Z軸方向の位置)を適当に設定した後、測定対象面20
及び基準面22を持つ被測定物21上を第3図の線(i)の
ようにX軸方向に走査し(エアスライドテーブル3をX
軸方向に移動させ)、検出部(スタイラス)16で左側の
測定対象面20、左側の基準面22、右側の基準面22及び右
側の測定対象面20のそれぞれ上面の高さ(Z軸方向の位
置)を検出する。これにより、検出部16の信号を増幅し
たレンジアンプ34の出力として例えば第5図のような波
形が得られ、これがCRT46で拡大表示される。そして、
左側の基準面22の中央部(例えばc点)、右側の基準面
22の中央部(例えばd点)の高さ(Z軸方向の位置)を
ピックアップして最小自乗法により第5図の点線で示さ
れる基準線(平均線)Pをコンピュータ40で演算する。
それから、基準線Pと測定対象面20の上面との間の段差
Z1乃至Z4(測定点a,b,e,fはマウス44で適当な位置を選
択できる)を算出し、段差が所定範囲内かどうか、すな
わち真直度の良否を判定する。In the configuration of the above embodiment, the two reference surfaces 22 of the object to be measured 21 are set horizontally (parallel to the X-axis) by the tilt table 10 and the displacement sensor 13, and the height of the detection unit 16 is set by the upper and lower columns 14 ( After setting the position in the Z-axis direction appropriately, the measurement target surface 20
And the object 21 having the reference surface 22 is scanned in the X-axis direction as indicated by line (i) in FIG.
(Moving in the axial direction), and using the detection unit (stylus) 16, the height of the upper surface of each of the left measurement target surface 20, the left reference surface 22, the right reference surface 22, and the right measurement target surface 20 (in the Z-axis direction). Position). As a result, a waveform as shown in, for example, FIG. 5 is obtained as the output of the range amplifier 34, which is obtained by amplifying the signal of the detector 16, and this is enlarged and displayed on the CRT 46. And
Central part of left reference surface 22 (eg point c), right reference surface
The height (position in the Z-axis direction) of the central portion of 22 (for example, point d) is picked up, and the computer 40 calculates the reference line (average line) P shown by the dotted line in FIG. 5 by the method of least squares.
Then, the step between the reference line P and the upper surface of the measurement target surface 20
Z 1 to Z 4 (measurement points a, b, e, and f can select appropriate positions with the mouse 44) are calculated to determine whether the step is within a predetermined range, that is, whether the straightness is good or bad.
次に、前後テーブル9を動かしてY軸方向の位置を変
え、X軸方向の走査を第3図の線(ii)に沿って行い、
前述の第5図の場合と同じ様式の波形を得る。そして、
基準線を同様に算出し、被測定物の測定対象面との段差
を算出して真直度の評価を同様に実施する。Y軸方向の
測定回数、測定位置は適当に選択できる。Next, the front-back table 9 is moved to change the position in the Y-axis direction, and scanning in the X-axis direction is performed along the line (ii) in FIG.
A waveform in the same manner as in the case of FIG. 5 described above is obtained. And
The reference line is calculated in the same manner, the step between the measured object and the surface to be measured is calculated, and the straightness is evaluated in the same manner. The number of measurements in the Y-axis direction and the measurement position can be appropriately selected.
なお、被測定物の形状及び配置は適宜変更可能であり、
第6図(A)の螺子頭面50の真直度(円筒度)や、第6
図(B)の螺子溝面51の真直度(同軸度、深さ、ばらつ
き)や、第6図(C)の平板上の溝底52の真直度(平行
度、平面度、粗さ)等を測定できる。また、基準線の算
出のためのピックアップ点は被測定物の形状に応じて適
宜変更すればよい。The shape and arrangement of the DUT can be changed as appropriate.
The straightness (cylindricity) of the screw head surface 50 in FIG.
Straightness (coaxiality, depth, variation) of the screw groove surface 51 in FIG. 6B, straightness (parallelism, flatness, roughness) of the groove bottom 52 on the flat plate in FIG. 6C, etc. Can be measured. Further, the pickup point for calculating the reference line may be appropriately changed according to the shape of the object to be measured.
(発明の効果) 以上説明したように、本発明の真直度測定装置によれ
ば、防振台上に配置されかつX軸方向に摺動自在であっ
て、駆動源によりワイヤを介し前記X軸方向に駆動され
るエアスライドテーブルと、 該エアスライドテーブル上に配設されている前記X軸方
向に直交するY軸方向に移動自在な前後テーブルと、 該前後テーブル上に配設されていてテーブル面が傾動自
在な傾斜テーブルと、 該傾斜テーブルのテーブル面上に配設されていて複数箇
所の平坦な基準面を有する被測定物を保持するバキュー
ムチャックと、 前記複数箇所の基準面にそれぞれ対向配置されていて対
向する基準面との間隔を測定する複数の変位センサを有
しており、前記被測定物のX軸との平行度を測定する傾
き測定部と、 前記防振台上に立設された上下コラムを前記X軸及びY
軸に垂直なZ軸方向に移動自在である昇降ブロックに取
り付けられていて前記被測定物の真直度を測定する検出
部としての粗さ測定用スタイラスと、 前記検出部の出力電気信号をA/D変換するA/D変換手段及
び前記X軸の値に対応したA/D変換後の前記Z軸の値を
記憶するメモリを有するコンピュータとを備え、 前記複数の変位センサで測定した前記間隔が等しくなる
ように前記傾斜テーブルのテーブル面の傾斜を調整して
前記X軸方向と前記複数箇所の基準面との平行度を一定
値以下とした状態において、前記エアスライドテーブル
をX軸方向に移動させて前記粗さ測定用スタイラスで、
前記複数箇所の基準面及び前記被測定物の被測定面の前
記Z軸方向の高さを検出し、前記コンピュータにより前
記複数箇所の基準面の高さから基準線Pを演算し、該基
準線Pと前記被測定物の被測定面との段差を算出するよ
うにしたので、被測定面の真直度の測定を高精度(例え
ばサブミクロン以下)で実行可能である。すなわち、エ
アスライドテーブルを用いることにより、測定時にX軸
方向に摺動させる場合のがたつき等を除去でき、前記被
測定物を支えるテーブル側に起因する誤差を少なくする
ことができ、さらに複数の変位センサの測定結果により
傾斜テーブルの傾斜を調整して前記被測定物の複数箇所
の基準面とX軸方向との平行度を一定値以下としておく
ことで、検出部(粗さ測定用スタイラス)による真直度
測定においてオーバーレンジ等の不都合が発生しないよ
うにすることが可能であり、そのうえ前記被測定物の有
する複数箇所の平坦な基準面の高さから基準線Pを演算
し、該基準線Pと被測定面との段差を算出するようにし
ているので、前記傾斜テーブルによる前記被測定物の平
行度の調整誤差を除去できる。なお、前記エアスライド
テーブルのX軸方向の駆動はワイヤを介してモータ等の
駆動源で行われるので、エアスライドテーブルをX軸方
向に駆動するための機構に起因する誤差の発生も除去で
きる。(Effects of the Invention) As described above, according to the straightness measuring apparatus of the present invention, the straightness measuring device is arranged on the vibration isolation table and is slidable in the X-axis direction. Direction driven air slide table, a front and rear table disposed on the air slide table and movable in a Y-axis direction orthogonal to the X-axis direction, and a table disposed on the front and rear table. A tilt table whose surface can be tilted; a vacuum chuck which is arranged on the table surface of the tilt table and holds an object to be measured having a plurality of flat reference surfaces; It has a plurality of displacement sensors that are arranged and measure the distances between the opposing reference planes, and an inclination measuring unit that measures the parallelism with the X-axis of the object to be measured; Up and down Said arm X-axis and Y
A stylus for measuring roughness, which is attached to an elevating block movable in the Z-axis direction perpendicular to the axis and measures the straightness of the object to be measured, and an output electric signal of the detector is A / A computer having an A / D conversion means for D conversion and a memory for storing the value of the Z axis after A / D conversion corresponding to the value of the X axis, wherein the intervals measured by the plurality of displacement sensors are The air slide table is moved in the X-axis direction in a state where the tilt of the table surface of the tilt table is adjusted so that the parallelism between the X-axis direction and the reference surfaces at the plurality of positions is equal to or less than a certain value. Let the stylus for roughness measurement
The heights of the plurality of reference planes and the measured surface of the object to be measured in the Z-axis direction are detected, and the computer calculates a reference line P from the heights of the plurality of reference planes. Since the step between P and the surface to be measured of the object to be measured is calculated, the straightness of the surface to be measured can be measured with high accuracy (for example, submicron or less). That is, by using the air slide table, it is possible to remove rattling and the like when sliding in the X-axis direction at the time of measurement, and it is possible to reduce an error due to the table side supporting the object to be measured. By adjusting the tilt of the tilt table according to the measurement result of the displacement sensor, the parallelism between the reference planes at the plurality of points of the object to be measured and the X-axis direction is set to a certain value or less, thereby detecting the stylus (roughness measuring stylus). It is possible to prevent inconveniences such as overrange from occurring in the straightness measurement by), and further, the reference line P is calculated from the heights of the flat reference planes at a plurality of points of the object to be measured, and the reference line P is calculated. Since the step difference between the line P and the surface to be measured is calculated, an error in adjusting the parallelism of the object to be measured due to the tilt table can be eliminated. Since the drive of the air slide table in the X-axis direction is performed by a drive source such as a motor via a wire, it is possible to eliminate an error caused by a mechanism for driving the air slide table in the X-axis direction.
第1図は本発明に係る真直度測定装置の実施例であって
機械的構成を示す正面図、第2図は実施例の制御及び信
号処理系を示すブロック図、第3図は被測定物の形状を
示す平面図、第4図は同正面図、第5図は検出部出力を
増幅して得た波形図、第6図は他の被測定物の形状を示
す説明図である。 1……防振台、2……エアスライドガイド、3……エア
スライドテーブル、4……リニアスケール、6……モー
タ、7A,7B,7C,7D,7E……プーリー、8……ワイヤ、9…
…前後テーブル、10……傾斜テーブル、11……バキュー
ムチャック、13……変位センサ、14……上下コラム、16
……検出部、20……測定対象面、21……被測定物、22…
…基準面、30……シーケンサ、40……コンピュータ、46
……CRT、47……X−Yプロッタ。1 is a front view showing a mechanical structure of an embodiment of a straightness measuring apparatus according to the present invention, FIG. 2 is a block diagram showing a control and signal processing system of the embodiment, and FIG. 3 is an object to be measured. FIG. 4 is a plan view showing the shape of FIG. 4, FIG. 4 is a front view of the same, FIG. 5 is a waveform diagram obtained by amplifying the output of the detection unit, and FIG. 6 is an explanatory view showing the shape of another measured object. 1 ... Anti-vibration base, 2 ... Air slide guide, 3 ... Air slide table, 4 ... Linear scale, 6 ... Motor, 7A, 7B, 7C, 7D, 7E ... Pulley, 8 ... Wire, 9 ...
… Front and back table, 10 …… Tilt table, 11 …… Vacuum chuck, 13 …… Displacement sensor, 14 …… Upper and lower columns, 16
…… Detector, 20 …… Measurement target surface, 21 …… DUT, 22…
… Reference surface, 30 …… Sequencer, 40 …… Computer, 46
…… CRT, 47 …… XY plotter.
Claims (1)
在であって、駆動源によりワイヤを介し前記X軸方向に
駆動されるエアスライドテーブルと、 該エアスライドテーブル上に配設されていて前記X軸方
向に直交するY軸方向に移動自在な前後テーブルと、 該前後テーブル上に配設されていてテーブル面が傾動自
在な傾斜テーブルと、 該傾斜テーブルのテーブル面上に配設されていて複数箇
所の平坦な基準面を有する被測定物を保持するバキュー
ムチャックと、 前記複数箇所の基準面にそれぞれ対向配置されていて対
向する基準面との間隔を測定する複数の変位センサを有
しており、前記被測定物のX軸との平行度を測定する傾
き測定部と、 前記防振台上に立設された上下コラムを前記X軸及びY
軸に垂直なZ軸方向に移動自在である昇降ブロックに取
り付けられていて前記被測定物の真直度を測定する検出
部としての粗さ測定用スタイラスと、 前記検出部の出力電気信号をA/D変換するA/D変換手段及
び前記X軸の値に対応したA/D変換後の前記Z軸の値を
記憶するメモリを有するコンピュータとを備え、 前記複数の変位センサで測定した前記間隔が等しくなる
ように前記傾斜テーブルのテーブル面の傾斜を調整して
前記X軸方向と前記複数箇所の基準面との平行度を一定
値以下とした状態において、前記エアスライドテーブル
をX軸方向に移動させて前記粗さ測定用スタイラスで前
記複数箇所の基準面及び前記被測定物の被測定面の前記
Z軸方向の高さを検出し、前記コンピュータにより前記
複数箇所の基準面の高さから基準線(P)を演算し、該
基準線(P)と前記被測定物の被測定面との段差を算出
可能としたことを特徴とする真直度測定装置。1. An air slide table which is arranged on a vibration isolating table and is slidable in the X axis direction and which is driven in the X axis direction by a drive source through a wire; and an air slide table arranged on the air slide table. A front and rear table that is provided and is movable in the Y-axis direction that is orthogonal to the X-axis direction; a tilt table that is disposed on the front-and-back table and has a tiltable table surface; and a table surface of the tilt table. A plurality of vacuum chucks arranged to hold an object to be measured having flat reference surfaces at a plurality of positions, and a plurality of displacements arranged to face the reference surfaces at the plurality of positions and to measure intervals between the facing reference surfaces. An inclination measuring unit having a sensor for measuring the parallelism with the X-axis of the object to be measured, and an upper and lower column erected on the anti-vibration table are provided with the X-axis and the Y-axis.
A stylus for measuring roughness, which is attached to an elevating block movable in the Z-axis direction perpendicular to the axis and measures the straightness of the object to be measured, and an output electric signal of the detector is A / A computer having an A / D conversion means for D conversion and a memory for storing the value of the Z axis after A / D conversion corresponding to the value of the X axis, wherein the intervals measured by the plurality of displacement sensors are The air slide table is moved in the X-axis direction in a state where the tilt of the table surface of the tilt table is adjusted so that the parallelism between the X-axis direction and the reference surfaces at the plurality of positions is equal to or less than a certain value. Let the roughness measuring stylus detect the heights of the plurality of reference surfaces and the measured surface of the object to be measured in the Z-axis direction, and use the computer as a reference from the heights of the plurality of reference surfaces. Line (P) Calculated, and the reference line (P) and the straightness measuring device being characterized in that to enable calculating a level difference between the measured surface of the measured object.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP63075884A JPH0786405B2 (en) | 1988-03-31 | 1988-03-31 | Straightness measuring device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP63075884A JPH0786405B2 (en) | 1988-03-31 | 1988-03-31 | Straightness measuring device |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH01250702A JPH01250702A (en) | 1989-10-05 |
JPH0786405B2 true JPH0786405B2 (en) | 1995-09-20 |
Family
ID=13589162
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP63075884A Expired - Lifetime JPH0786405B2 (en) | 1988-03-31 | 1988-03-31 | Straightness measuring device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0786405B2 (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106382909B (en) * | 2016-11-02 | 2018-08-28 | 合肥工业大学 | A method of promoting fixed bridge plate span level meter measuring straightness error precision |
CN111121708A (en) * | 2019-12-19 | 2020-05-08 | 无锡日升量仪有限公司 | Long tube straightness accuracy intellectual detection system mechanism |
Family Cites Families (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3903735A (en) * | 1974-01-25 | 1975-09-09 | Gould Inc | Slope error compensating apparatus for use with profile measuring equipment |
JPS5197458A (en) * | 1975-02-24 | 1976-08-27 | Bannokeijoseidono sokuteihoho | |
JPS5833523Y2 (en) * | 1975-12-22 | 1983-07-27 | 株式会社井上ジャパックス研究所 | Chiyotsukakudo Mataha Enchiyokudo Hanbetsu Sochi |
JPS5728206A (en) * | 1980-07-26 | 1982-02-15 | Tokyo Seimitsu Co Ltd | Shape measuring device |
JPS5750241A (en) * | 1980-09-09 | 1982-03-24 | Hitachi Metals Ltd | Casting method |
JPH0351685Y2 (en) * | 1985-11-25 | 1991-11-07 | ||
JPS62177409A (en) * | 1986-01-31 | 1987-08-04 | Toshiba Corp | Noncontact straightness measuring instrument |
JPS62261916A (en) * | 1986-05-08 | 1987-11-14 | Kobe Steel Ltd | Measuring instrument for surface shape |
-
1988
- 1988-03-31 JP JP63075884A patent/JPH0786405B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JPH01250702A (en) | 1989-10-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR100724169B1 (en) | Placing table drive device and probe method | |
JP2911753B2 (en) | A calibration method that detects and compensates for different contact force ratios in a multi-coordinate contact system | |
JP2000258153A (en) | Plane flatness measurement device | |
JP2006125924A (en) | Roundness/cylindrical shape measuring apparatus | |
CA1336532C (en) | Probe motion guiding device, position sensing apparatus and position sensing method | |
JP4034906B2 (en) | Surface texture measuring machine | |
JPH0786405B2 (en) | Straightness measuring device | |
US7051449B2 (en) | Coordinate measuring device | |
US6242926B1 (en) | Method and apparatus for moving an article relative to and between a pair of thickness measuring probes to develop a thickness map for the article | |
JPH0649958U (en) | Semiconductor wafer thickness measuring machine | |
JPH10311715A (en) | Measurement method and device | |
JP3366052B2 (en) | Comparative length measuring device | |
JP3034286U (en) | Wafer carrier strain measurement device | |
JP2553352Y2 (en) | Automatic dimension measuring device | |
JP2982663B2 (en) | Three-dimensional measuring method and device | |
JP2549802Y2 (en) | Automatic dimension measuring device | |
JPH02130408A (en) | Coordinates measuring machine | |
CN114593697A (en) | Device for detecting product gap and flatness | |
JP2841732B2 (en) | Height measurement method using laser light | |
JPH09145722A (en) | Scanning probe microscope | |
JPH10198428A (en) | Mobile object device | |
JP3031496B2 (en) | Parts cassette inspection device | |
JPH10332364A (en) | Straightness measuring device | |
JPH02253112A (en) | Form measuring instrument | |
JPH07218208A (en) | Surface shape measuring apparatus |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20070920 Year of fee payment: 12 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080920 Year of fee payment: 13 |
|
EXPY | Cancellation because of completion of term | ||
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080920 Year of fee payment: 13 |