JPH0786378A - Carbon support for semiconductor manufacturing equipment - Google Patents

Carbon support for semiconductor manufacturing equipment

Info

Publication number
JPH0786378A
JPH0786378A JP17483593A JP17483593A JPH0786378A JP H0786378 A JPH0786378 A JP H0786378A JP 17483593 A JP17483593 A JP 17483593A JP 17483593 A JP17483593 A JP 17483593A JP H0786378 A JPH0786378 A JP H0786378A
Authority
JP
Japan
Prior art keywords
less
purity
content
semiconductor
wafer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP17483593A
Other languages
Japanese (ja)
Inventor
Hisayuki Hamashima
久幸 浜島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokai Carbon Co Ltd
Original Assignee
Tokai Carbon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokai Carbon Co Ltd filed Critical Tokai Carbon Co Ltd
Priority to JP17483593A priority Critical patent/JPH0786378A/en
Publication of JPH0786378A publication Critical patent/JPH0786378A/en
Pending legal-status Critical Current

Links

Landscapes

  • Container, Conveyance, Adherence, Positioning, Of Wafer (AREA)
  • Ceramic Products (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

PURPOSE:To obtain semiconductor products high in yield always through an epitaxial growth process and a plasma etching process by a method wherein a semiconductor support is formed of glassy carbon specified in quality. CONSTITUTION:A semiconductor support is formed of glassy carbon material which has such constitutional and purity properties that a specific gravity is more than 1.47, pores smaller than 20mum in size are contained, porosity is less than 5%, total ash content is less than 5ppm, and sulfur content is less than 10ppm. A structure higher than 1.47 in specific gravity is small is pore content and high in structural density, so that these structural properties enable the structure to be relaxed in degree of wear and tear and lessened in discharge of soot when pares are exposed. On the other hand, a structure has such purity properties that total ash content is less than 5ppm and sulfur content is less than 10ppm, and these purity properties restrain a wafer from being contaminated with impurities so as not to deteriorate a semiconductor device in performance if soot is produced. These structural and purity properties are required to be satisfied.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、IC、LSI等の半導
体デバイスを製造する工程においてウエハーを載置する
ために使用する半導体製造装置用カーボン支持体に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a carbon support for a semiconductor manufacturing apparatus used for mounting a wafer in a process of manufacturing a semiconductor device such as an IC and an LSI.

【0002】[0002]

【従来の技術】コンピューターに代表される情報機器の
発展に伴い、それら機器の主要構成デバイスとなる半導
体集積回路(LSI) には集積度の向上が一層強く要求され
るようになってきている。半導体デバイスの製造時に
は、性能確保の面から原料はもとより製造工程段階にお
いても不純物の混入を極度に嫌うため、クリーンルーム
のような清浄環境下で作業が進められる。製造装置につ
いても不純物の発生がないことが重要であり、その構成
部材は半導体デバイスに対して悪影響を与える成分を含
まない高純度性が要求される。
2. Description of the Related Art With the development of information equipment typified by computers, semiconductor integrated circuits (LSIs), which are the main constituent devices of those equipment, are required to have a higher degree of integration. At the time of manufacturing a semiconductor device, from the viewpoint of ensuring performance, it is extremely reluctant to mix impurities not only in the raw material but also in the manufacturing process stage, and therefore work is carried out in a clean environment such as a clean room. It is important for a manufacturing apparatus not to generate impurities, and its constituent members are required to have high purity without containing components that adversely affect the semiconductor device.

【0003】半導体デバイスの重要な製造工程に、エピ
タキシャル成長工程とプラズマエッチング工程がある。
エピタキシャル成長工程はウエハー基材上に半導体単結
晶を成長させるプロセスで、Si半導体の場合には一般
にCVDによる気相成長法が採られている。この方法
は、エピタキシー装置内のサセプター(支持台)にSi
ウエハーを載置し、1000℃前後の温度に加熱しながらハ
ロゲン化珪素化合物を水素ガスに同伴させながら流入し
て熱分解反応により生成した単結晶Siをウエハー上に
析出成長させるもので、サセプターとしては高純度の緻
密質黒鉛もしくは前記黒鉛板の表面を高純度のSiCで
被覆した材料が従来から有用されている。一方、プラズ
マエッチング工程は装置内にセットされた電極と支持台
に載置したウエハーとの間にプラズマを発生させ、スパ
ッタリングによりウエハー面に所定のパターンを形成す
るプロセスで、この方法においてもウエハー支持台とし
て高純度のカーボン材料が用いられている。
An important manufacturing process for semiconductor devices is an epitaxial growth process and a plasma etching process.
The epitaxial growth process is a process for growing a semiconductor single crystal on a wafer substrate, and in the case of a Si semiconductor, a vapor phase growth method by CVD is generally adopted. This method uses Si on the susceptor (supporting table) in the epitaxy device.
A wafer is placed on the wafer, and while heating it to a temperature of around 1000 ° C, a silicon halide compound is introduced while entraining it in hydrogen gas, and the single crystal Si produced by the thermal decomposition reaction is deposited and grown on the wafer. High-purity dense graphite or a material obtained by coating the surface of the graphite plate with high-purity SiC has been conventionally used. On the other hand, the plasma etching process is a process in which plasma is generated between an electrode set in the apparatus and a wafer placed on a support table, and a predetermined pattern is formed on the wafer surface by sputtering. A high-purity carbon material is used as the base.

【0004】このように半導体製造装置用のウエハー支
持体としてカーボン材料あるいはこれを基材とした被覆
材料が用いられる理由は、カーボン材質が優れた耐熱性
と化学的安定性を備えているうえ、高純度化および材料
加工が容易にできるからである。ところが、通常のカー
ボン材料は組織が微細な粒子の集合体で構成されている
ため、処理過程で組織から微細なパーティクルが離脱、
飛散してウエハーの性能や歩留りを損ねることがある。
The reason why the carbon material or the coating material having the carbon material as the base material is used as the wafer support for the semiconductor manufacturing apparatus is that the carbon material has excellent heat resistance and chemical stability. This is because high purification and material processing can be easily performed. However, since an ordinary carbon material has a structure composed of an aggregate of fine particles, fine particles are separated from the structure during the treatment process.
It may scatter and impair the performance and yield of the wafer.

【0005】カーボン材料の中でも、ガラス状カーボン
材は無定形ガラス質の連続緻密組織を呈しており、通常
のカーボン材のようにカーボン粉末粒子の集合体からな
る組織とは全く異質な炭素構造体である。この特異な組
織性状に着目して、プラズマエッチング用電極材として
の用途目的に適用する試みは既に本出願人によって提案
されている(特開昭62−252942号公報) 。
Among the carbon materials, the glassy carbon material has an amorphous glassy continuous dense structure, and is a carbon structure which is completely different from the structure composed of aggregates of carbon powder particles like a normal carbon material. Is. The applicant of the present invention has already proposed an attempt to apply the composition as an electrode material for plasma etching by paying attention to this unique texture (Japanese Patent Application Laid-Open No. 62-252942).

【0006】[0006]

【発明が解決しようとする課題】ガラス状カーボン材
は、上記のようなガラス質の連続緻密組織を有している
ため半導体製造時に組織がパーティクルとして離脱する
現象を生じることはない。ところが、パーティクルとは
別に微細な煤状物が発生して製品歩留りを減退させるこ
とがあった。
Since the glassy carbon material has the vitreous continuous dense structure as described above, the structure does not separate as particles during semiconductor production. However, in addition to the particles, fine soot-like substances may be generated to reduce the product yield.

【0007】本発明者は前記の煤状物の発生機構につい
て解明研究を重ねた結果、これがガラス状カーボン材の
組織性状および純度特性と大きな係わりがあり、特定さ
れた材質性状のガラス状カーボンで半導体支持体を構成
した場合には、苛酷な条件による半導体製造過程におい
ても半導体デバイスに与える有害な影響は極めて僅少で
あることを見出した。
The inventors of the present invention have made extensive studies on the mechanism of generation of the soot-like substances, and as a result, this has a great relation to the texture properties and the purity characteristics of the glassy carbon material. It has been found that when a semiconductor support is constructed, the harmful influence on the semiconductor device is extremely small even in the semiconductor manufacturing process under severe conditions.

【0008】本発明は上記の知見に基づいて開発された
もので、その目的は、エピタキシャル成長工程やプラズ
マエッチング工程において常に歩留よく半導体製品を得
ることができる半導体製造装置用のカーボン支持体を提
供することにある。
The present invention was developed on the basis of the above findings, and an object thereof is to provide a carbon support for a semiconductor manufacturing apparatus which can always obtain a semiconductor product with a good yield in an epitaxial growth process and a plasma etching process. To do.

【0009】[0009]

【課題を解決するための手段】上記の目的を達成するた
めの本発明による半導体製造装置用カーボン支持体は、
比重1.47以上、含有ポアの大きさが20μm 未満でそのポ
ア含有率が5%以下の組織性状を有し、かつ総灰分が5
ppm 以下で硫黄含有量が10ppm 以下の純度特性を備える
ガラス状カーボン材により形成されたことを構成上の特
徴とする。
A carbon support for a semiconductor manufacturing apparatus according to the present invention for achieving the above object comprises:
It has a specific gravity of 1.47 or more, the size of the contained pores is less than 20 μm, the pore content is 5% or less, and the total ash content is 5%.
The structural feature is that it is made of a glassy carbon material having a sulfur content of 10 ppm or less and a sulfur content of 10 ppm or less.

【0010】上記構成において特定したガラス状カーボ
ンの各材質性状の値は、比重および総灰分についてはJ
IS R7222−1979「高純度黒鉛素材の物理試験方
法」、硫黄成分はJIS M8813−1988「石炭類及びコ
ークス類の元素分析方法」による測定値とし、またポア
径は光学顕微鏡あるいは走査型電子顕微鏡観察によって
測定した最大ポア径、ポア含有率(気孔率)は真比重と
比重からの算出値とする。
The value of each material property of the glassy carbon specified in the above constitution is J in terms of specific gravity and total ash content.
IS R7222-1979 "Physical test method for high-purity graphite material", sulfur content is measured according to JIS M8813-1988 "Elemental analysis method for coals and cokes", and pore diameter is observed by optical microscope or scanning electron microscope. The maximum pore diameter and the pore content (porosity) measured by are the true specific gravity and calculated values from the specific gravity.

【0011】発明者の検討によると、ガラス状カーボン
材の組織には製造時に不可避的に形成される微小なポア
が内在しており、ポアの内面には熱分解生成物が煤状に
沈着していることが解明された。このため、組織が加熱
や衝撃等によって表面から消耗して内在ポアが露出する
ようになると、前記の微細な煤状物が飛散し、ウエハー
に種々の悪影響を与えるようになる。本発明で特定した
比重1.47以上の組織は内在ポアの少ない高い組織緻密度
を保有しており、この組織性状が消耗度合を緩和すると
ともに、ポア露出時における煤状物の放出を少なくする
機能を営む。この機能は、組織に内在する含有ポアーの
大きさが20μm 未満で、そのポアー含有率が5%以下で
あると一層効果が助長される。
According to a study by the inventor, the microstructure of the glassy carbon material internally contains minute pores which are inevitably formed during the production, and thermal decomposition products are deposited in the form of soot on the inner surface of the pores. It has been clarified. For this reason, when the tissue is consumed from the surface due to heating, impact, etc. and the internal pores are exposed, the fine soot-like material is scattered and various adverse effects are exerted on the wafer. The tissue having a specific gravity of 1.47 or more specified in the present invention has a high tissue compactness with a small amount of internal pores, and this tissue property alleviates the degree of exhaustion, and also has the function of reducing the release of soot-like substances during pore exposure. Run. This function is further promoted when the size of the contained pores in the tissue is less than 20 μm and the pore content is 5% or less.

【0012】一方、総灰分が5ppm 以下で硫黄含有量が
10ppm 以下の純度特性は、煤状物の発生があった場合に
もウエハーに対する不純物汚染を半導体デバイスの性能
を低下させない程度に抑制するための機能要件となる。
これらの組織性状および純度特性は同時に満たす必要が
あり、例えば比重が1.47以下であっても、総灰分が5pp
m を越え硫黄含有量が10ppm を越える場合には、前記機
能をデバイスの性能ならびに歩留り低下を起こさないレ
ベルに維持することができなくなる。
On the other hand, when the total ash content is 5 ppm or less and the sulfur content is
The purity characteristic of 10 ppm or less is a functional requirement for suppressing the impurity contamination of the wafer to the extent that the performance of the semiconductor device is not deteriorated even when soot is generated.
These texture properties and purity characteristics must be satisfied at the same time. For example, even if the specific gravity is 1.47 or less, the total ash content is 5 pp
If the sulfur content exceeds m and the sulfur content exceeds 10 ppm, it becomes impossible to maintain the above-mentioned function at a level that does not reduce the device performance and yield.

【0013】本発明で特定された材質性状のガラス状カ
ーボン材は、従来プロセスによる製造技術において各工
程の条件を適宜に調整することによって得ることができ
る。まず、材質の高密度化を図るために、原料となる熱
硬化性樹脂として残炭率が少なくとも40%のフェノール
系、フラン系またはポリイミド系の樹脂を選択使用す
る。通常、原料樹脂の形態は粉状もしくは液状である
が、その形態に応じてモールド成形、射出成形、注型成
形、多重成形等から最も好適な成形手段を選定し、半導
体製造装置の支持体に適合する板状形体に成形し、 100
〜180 ℃の温度範囲で硬化処理を施す。この際、原料樹
脂の選択、成形および硬化の条件を制御することによっ
て目的とする比重、ポア径、ポア含有率を確保する。
The glassy carbon material having the material properties specified in the present invention can be obtained by appropriately adjusting the conditions of each step in the manufacturing technique by the conventional process. First, in order to increase the density of the material, a phenol-based, furan-based, or polyimide-based resin having a residual carbon rate of at least 40% is selectively used as a thermosetting resin as a raw material. Usually, the form of the raw material resin is powdery or liquid, but depending on the form, select the most suitable molding means from molding, injection molding, cast molding, multiple molding, etc., and use it as a support for the semiconductor manufacturing equipment. Mold into a compatible plate shape and
Curing is performed in the temperature range of ~ 180 ° C. At this time, the target specific gravity, pore diameter, and pore content rate are secured by controlling the conditions of selection of raw material resin, molding and curing.

【0014】焼成炭化処理は、硬化した樹脂成形体を黒
鉛坩堝に詰め、または黒鉛板で挟持した状態で、窒素、
アルゴン等の不活性ガスで置換された電気炉中で加熱す
るか、燃焼ガス加熱方式のリードハンマー炉中に炭素質
パッキングで被包充填して加熱する方法でおこなう。処
理温度は、通常 800〜1500℃程度であるが、必要に応じ
て2000℃以上の高温で黒鉛化処理する。
The firing and carbonizing treatment is carried out by filling the cured resin molded body in a graphite crucible or sandwiching it between graphite plates with nitrogen,
It is carried out by heating in an electric furnace which is replaced with an inert gas such as argon, or by encapsulating and heating in a lead gas furnace of a combustion gas heating system with carbonaceous packing. The treatment temperature is usually about 800 to 1500 ° C, but if necessary, graphitization is performed at a high temperature of 2000 ° C or higher.

【0015】総灰分が5ppm 以下で硫黄含有量が10ppm
以下の純度特性を確保するには、特別に製造された有機
質以外の成分を含有しない高純度の原料樹脂を外部から
の不純物汚染のない環境下で硬化、焼成を施す方法、常
法に従って製造したガラス状カーボン材をハロゲン系ガ
ス雰囲気中で加熱する二次的な精製処理を施す方法、あ
るいはこれら両者を組み合わせて適用する手段が用いら
れる。高純度の原料樹脂は、予め吸着分離あるいは高純
度蒸留、クロマトグラフィー等の手段で不純物を除去し
たのち、外部からの環境汚染を防止するためにクリーン
ルームまたはこれに準じた環境中で合成する。硬化およ
び焼成時の不純物汚染を防止するには、処理環境を外部
から遮断し、半導体製造時に使用されるような超高純度
のアルゴン、窒素ガス等の不活性ガスに置換しておこな
う。
Total ash content is 5 ppm or less and sulfur content is 10 ppm
In order to ensure the following purity characteristics, a specially manufactured high-purity raw material resin containing no components other than organic substances is cured and baked in an environment free from external impurity contamination, and manufactured according to a conventional method. A method of performing a secondary refining treatment by heating a glassy carbon material in a halogen-based gas atmosphere, or a means of applying both in combination is used. The high-purity raw material resin is preliminarily subjected to adsorption separation, high-purity distillation, chromatography or the like to remove impurities, and then synthesized in a clean room or an environment equivalent thereto in order to prevent environmental pollution from the outside. In order to prevent contamination of impurities during curing and baking, the processing environment is shielded from the outside and replaced with an inert gas such as ultra-high purity argon or nitrogen gas used in semiconductor manufacturing.

【0016】[0016]

【作用】上記のような特定性状のガラス状カーボン材か
ら形成された本発明の半導体製造装置用カーボン支持体
は、比重が1.47以上、含有ポアの大きさが20μm 未満で
そのポア含有率が5%以下の緻密な連続的組織性状が加
熱やプラズマによるスパッタリングを受けた場合の消耗
を緩和するとともに、微細な煤状物の発生を効果的に抑
制する。同時に総灰分が5ppm 以下で硫黄含有量10ppm
以下の高純度性状が、ウエハーに対する不純物の有害な
汚染現象を伴わない程度に抑止する。
The carbon support for a semiconductor manufacturing apparatus of the present invention formed from the glassy carbon material having the above-mentioned specific characteristics has a specific gravity of 1.47 or more, the size of the contained pores is less than 20 μm, and the pore content is 5%. % Or less dense continuous texture properties alleviate consumption when heated or sputtered by plasma, and effectively suppress generation of fine soot-like substances. At the same time, the total ash content is 5ppm or less and the sulfur content is 10ppm.
The following high-purity properties suppress the harmful contamination phenomenon of impurities to the wafer to the extent that they are not accompanied.

【0017】このような作用が相俟って、エピタキシャ
ル成長工程やプラズマエッチング工程等を通じて支持体
上に載置されたウエハーに悪影響を及ぼすことがなくな
り、常に優れた歩留りを保持しながら安定して半導体製
品を得ることが可能となる。
With such an action, the wafers mounted on the support are not adversely affected through the epitaxial growth process, the plasma etching process, etc., and the semiconductors are stably maintained while always maintaining an excellent yield. It becomes possible to obtain the product.

【0018】[0018]

【実施例】以下、本発明の実施例を比較例と対比して具
体的に説明する。
EXAMPLES Examples of the present invention will be specifically described below in comparison with comparative examples.

【0019】実施例1〜2、比較例1〜3 減圧蒸留により精製したフェノールおよびホルマリンを
原料とし、常法に従い付加縮合反応させてフェノール樹
脂初期縮合物(液状樹脂)を調製した。該フェノール樹
脂初期縮合物をポリプロピレン製のバットに流し込んで
真空デシケータに入れ、10torr以下の減圧下で脱気処理
をおこなったのち、電気オーブンに移し100 ℃の温度で
硬化して縦横300mm 、厚さ4mmの板状体の成形した。こ
の際、減圧度および脱気時間を制御して比重、ポア状態
を調整した。
Examples 1 and 2, Comparative Examples 1 to 3 Using phenol and formalin purified by vacuum distillation as raw materials, addition condensation reaction was carried out according to a conventional method to prepare a phenol resin initial condensate (liquid resin). The phenol resin initial condensate is poured into a polypropylene vat and placed in a vacuum desiccator, degassed under a reduced pressure of 10 torr or less, then transferred to an electric oven and cured at a temperature of 100 ° C to a length and width of 300 mm, thickness. A 4 mm plate was molded. At this time, the degree of pressure reduction and the deaeration time were controlled to adjust the specific gravity and the pore state.

【0020】ついで、成形された板状体を不純物5ppm
未満の高純度黒鉛板〔東海カーボン(株)製、G347SS〕
で挟み付けた状態で電気炉に詰め、周囲を総灰分5ppm
以下の高純度黒鉛粉で被包してから1000℃まで昇温して
焼成炭化処理を施した。引き続き、炉内に塩素ガスを導
入しながら2700℃の温度で熱処理して高純度精製をおこ
なった。
Then, the molded plate-like body is treated with impurities of 5 ppm.
High-purity graphite plate of less than [Tokai Carbon Co., Ltd., G347SS]
Packed in an electric furnace in a state of being sandwiched between, and the surrounding ash content is 5 ppm
After encapsulating with the following high-purity graphite powder, the temperature was raised to 1000 ° C. and calcined and carbonized. Subsequently, while introducing chlorine gas into the furnace, heat treatment was performed at a temperature of 2700 ° C. to perform high-purity purification.

【0021】このようにして製造した比重、含有ポアサ
イズ、ポア含有率、総灰分および硫黄含有量の異なるガ
ラス状カーボン板を、クリーンルーム内で直径200mm 、
厚さ3mmの円盤形状に加工した。このようにして作製し
たサセプターをピタキシャル成長装置にセットし、この
上にSiウエハーを載置してエピタキシャル操作をおこ
なった。得られた気相成長後のウエハーを用いて16メガ
ビットのLSIを製造した。この場合のLSI歩留率
(試験数 100個) をサセプターを形成したガラス状カー
ボン材の材質性状と対比させて表1に示した。なお、比
較例3は実施例と同等の純度を有する黒鉛材〔東海カー
ボン(株)製、G347SS 〕で形成したサセプターの例で
ある。
The glassy carbon plates produced in the above manner and having different specific gravities, contained pore sizes, pore contents, total ash content and sulfur content, had a diameter of 200 mm in a clean room,
It was processed into a disk shape with a thickness of 3 mm. The susceptor manufactured in this manner was set in a epitaxial growth apparatus, and a Si wafer was placed on the susceptor for epitaxial operation. A 16 megabit LSI was manufactured using the obtained wafer after vapor phase growth. The LSI yield rate (100 tests) in this case is shown in Table 1 in comparison with the material properties of the glassy carbon material on which the susceptor is formed. Comparative Example 3 is an example of a susceptor made of a graphite material [G347SS manufactured by Tokai Carbon Co., Ltd.] having the same purity as that of the example.

【0022】[0022]

【表1】 [Table 1]

【0023】表1の結果から、本発明のガラス状カーボ
ン製サセプターを用いた実施例は本発明の材質性状要件
を外れるガラス状カーボン部材を用いた比較例に比べて
消耗による煤状物の発生や不純物汚染が効果的に抑制さ
れ、LSI歩留率が著しく向上した。
From the results shown in Table 1, the examples using the glassy carbon susceptor of the present invention generate soot due to consumption as compared with the comparative example using the glassy carbon member that does not meet the material property requirements of the present invention. And impurity contamination were effectively suppressed, and the LSI yield rate was significantly improved.

【0024】実施例4〜6、比較例4〜5 実施例1〜3、比較例1〜2の製造方法に準じて組織性
状および純度特性に異なる板状のガラス状カーボン材を
調製した。これらのガラス状カーボン材をクリーンルー
ム内で加工して中ぐり円盤状のウエハー支持体を作製
し、プラズマエッチング装置に装備してSiウエハーを
嵌め込んで載置した。この状態でSiウエハーへのプラ
ズマエッチング処理をおこない、処理後のウエハーを用
いて16メガビットのLSIを製造した。この場合のLS
I歩留率(試験数 100個)を支持体を形成したガラス状
カーボン材の材質性状と対比させて表2に示した。
Examples 4 to 6 and Comparative Examples 4 to 5 According to the manufacturing methods of Examples 1 to 3 and Comparative Examples 1 and 2, plate-like glassy carbon materials having different texture properties and purity characteristics were prepared. These glassy carbon materials were processed in a clean room to prepare a boring disk-shaped wafer support, which was mounted in a plasma etching apparatus and fitted with a Si wafer. In this state, a plasma etching process was performed on the Si wafer, and the processed wafer was used to manufacture a 16-megabit LSI. LS in this case
The I retention rate (test number: 100) is shown in Table 2 in comparison with the material properties of the glassy carbon material forming the support.

【0025】[0025]

【表2】 [Table 2]

【0026】[0026]

【発明の効果】以上のとおり、本発明によればウエハー
に悪影響を及ぼさずに安定使用できる特定性状のガラス
状カーボン材により形成された半導体製造装置用カーボ
ン支持体が提供される。したがって、半導体のエピタキ
シャル成長工程あるいはプラズマエッチング工程等にお
いてウエハーを載置する支持体として、高性能のLSI
等を歩留りよく生産することが可能となる。
As described above, according to the present invention, there is provided a carbon support for a semiconductor manufacturing apparatus, which is formed of a glassy carbon material having a specific property and can be stably used without adversely affecting the wafer. Therefore, a high-performance LSI can be used as a support for mounting a wafer in a semiconductor epitaxial growth process or a plasma etching process.
And the like can be produced with high yield.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 比重1.47以上、含有ポアの大きさが20μ
m 未満でそのポア含有率が5%以下の組織性状を有し、
かつ総灰分が5ppm 以下で硫黄含有量が10ppm 以下の純
度特性を備えるガラス状カーボン材により形成された半
導体製造装置用カーボン支持体。
1. The specific gravity is 1.47 or more, and the size of the contained pores is 20 μm.
Possibility of less than 5% and having a pore content of 5% or less,
A carbon support for a semiconductor manufacturing apparatus, which is formed of a glassy carbon material having purity characteristics such that the total ash content is 5 ppm or less and the sulfur content is 10 ppm or less.
JP17483593A 1993-06-22 1993-06-22 Carbon support for semiconductor manufacturing equipment Pending JPH0786378A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17483593A JPH0786378A (en) 1993-06-22 1993-06-22 Carbon support for semiconductor manufacturing equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17483593A JPH0786378A (en) 1993-06-22 1993-06-22 Carbon support for semiconductor manufacturing equipment

Publications (1)

Publication Number Publication Date
JPH0786378A true JPH0786378A (en) 1995-03-31

Family

ID=15985492

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17483593A Pending JPH0786378A (en) 1993-06-22 1993-06-22 Carbon support for semiconductor manufacturing equipment

Country Status (1)

Country Link
JP (1) JPH0786378A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002029844A (en) * 2000-07-17 2002-01-29 Tokai Carbon Co Ltd Member for vapor phase grown apparatus
US9222545B2 (en) 2012-11-22 2015-12-29 Daido Kogyo Co., Ltd. Silent chain and silent chain transmission

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002029844A (en) * 2000-07-17 2002-01-29 Tokai Carbon Co Ltd Member for vapor phase grown apparatus
US9222545B2 (en) 2012-11-22 2015-12-29 Daido Kogyo Co., Ltd. Silent chain and silent chain transmission

Similar Documents

Publication Publication Date Title
JP3898278B2 (en) Method for manufacturing silicon carbide single crystal and apparatus for manufacturing the same
EP2520691B1 (en) Tantalum carbide-coated carbon material and manufacturing method for same
JP2873988B2 (en) Electrode plate for plasma etching
EP0899358B1 (en) Silicon carbide fabrication
KR101593922B1 (en) Polycrystal silicon carbide bulky part for a semiconductor process by chemical vapor deposition and preparation method thereof
EP1528121B1 (en) Method of manufacturing a silicon carbide coated graphite material
KR100427118B1 (en) Heat treatment jig and its manufacturing method
JPH1012692A (en) Dummy wafer
US6699401B1 (en) Method for manufacturing Si-SiC member for semiconductor heat treatment
JPH08188408A (en) Silicon carbide molded product by chemical vapor deposition and its production
JPH0786378A (en) Carbon support for semiconductor manufacturing equipment
JP4595153B2 (en) Silicon carbide body and method for producing the same
JPH10130055A (en) Production of electrode plate for plasma treatment device
CN1662471A (en) Method for forming semiconductor processing components
RU2374358C1 (en) Method of carbon-bearing coating receiving
JP4925152B2 (en) Semiconductor manufacturing equipment parts and semiconductor manufacturing equipment
JPH05246703A (en) Carbon member for ion implanting device
JPH0770746A (en) Target material for forming carbon coating film
US11827999B2 (en) Methods of forming silicon carbide coated base substrates at multiple temperatures
JPH06127922A (en) Fluidized bed reactor for producing polycrystalline silicon
JPH11310459A (en) Glass-like carbon material excellent in plasma resistance
WO2023008439A1 (en) Member for semiconductor production apparatus and method for producing said member
JP2001080991A (en) Member for liquid phase epitaxial growth
JP3255586B2 (en) Electrode plate for plasma etching
JP4495840B2 (en) Manufacturing method of high frequency transmission material