JPH0786069A - Manufacture of rare earth sintered magnet - Google Patents

Manufacture of rare earth sintered magnet

Info

Publication number
JPH0786069A
JPH0786069A JP5175086A JP17508693A JPH0786069A JP H0786069 A JPH0786069 A JP H0786069A JP 5175086 A JP5175086 A JP 5175086A JP 17508693 A JP17508693 A JP 17508693A JP H0786069 A JPH0786069 A JP H0786069A
Authority
JP
Japan
Prior art keywords
rare earth
mineral oil
fine powder
sintered magnet
powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5175086A
Other languages
Japanese (ja)
Inventor
Akira Kikuchi
亮 菊地
Kimio Uchida
公穂 内田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proterial Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Priority to JP5175086A priority Critical patent/JPH0786069A/en
Publication of JPH0786069A publication Critical patent/JPH0786069A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/057Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B
    • H01F1/0571Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes
    • H01F1/0575Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together
    • H01F1/0577Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together sintered

Landscapes

  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Hard Magnetic Materials (AREA)
  • Manufacturing Cores, Coils, And Magnets (AREA)
  • Powder Metallurgy (AREA)

Abstract

PURPOSE:To stably manufacture a sintered body of low oxygen and low carbon, by dipping raw material fine powder for an R-Fe-B rare earth sintered magnet in mineral oil or compound oil, and molding and sintering the powder coated with the mineral oil or the compound oil. CONSTITUTION:A specific amount of electrolytic iron, ferro boron and Nd is weighed, which are melted and cast in a high frequency melting furnace. Ingot manufactured by the above process is ground to be rough powder and then pulverized by using a jet mill. The obtained fine powder is dipped in mineral oil whose fractional distillation temperature is 400 deg.C or lower in a nitrogen atmosphere, and turned into a mixture of the fine powder and mineral oil. The mixture is divided into the fine powder and the mineral oil by a centrifugal separator. The powder is oriented in a magnetic field and molded. The temperature of the molded object is raised up to 500 deg.C by a rate of 10 deg.C/min or smaller and at a pressure of 1Torr or lower. After that, the molded body is sintered at a temperature of 950-1150 deg.C and a pressure of 1Torr or lower.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、R−Fe−B系希土類
焼結磁石の製造方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing an R-Fe-B system rare earth sintered magnet.

【0002】[0002]

【従来の技術】希土類焼結磁石は、原料金属を溶解し、
鋳型に注湯して得られたインゴットを粉砕、成形、焼
結、熱処理、加工の粉末冶金技術を用いて製造される
が、その中でR−Fe−B系希土類焼結磁石(RはYを
含む希土類元素のうち一種または二種以上)は、高性能
磁石として注目されている。しかし、インゴットを粉砕
して得られた希土類焼結磁石用合金粉末は、化学的に非
常に活性であるため、大気中において極めて急激に酸化
し、磁気特性の劣化を招いてしまう。また、希土類焼結
磁石用合金粉末は、急激な酸化により発熱するだけでな
く甚だしい場合は、発火してしまうため安全性の面でも
問題があった。従来は、このような急激な酸化を防止す
る方法として、窒素、アルゴン等の不活性ガス中に長時
間放置し表面を安定化する処理が行われていた。
2. Description of the Related Art Sintered rare earth magnets dissolve raw metal,
The ingot obtained by pouring into a mold is crushed, molded, sintered, heat-treated, and processed by a powder metallurgical technique, such as R-Fe-B rare earth sintered magnet (where R is Y. One or more of rare earth elements including is attracting attention as a high-performance magnet. However, the alloy powder for a rare earth sintered magnet obtained by crushing an ingot is chemically very active, so that it is extremely rapidly oxidized in the atmosphere, resulting in deterioration of magnetic properties. Further, the alloy powder for a rare earth sintered magnet not only generates heat due to abrupt oxidation but also ignites in an extreme case, which is also a problem in terms of safety. Conventionally, as a method for preventing such a rapid oxidation, a treatment of stabilizing the surface by leaving it in an inert gas such as nitrogen or argon for a long time has been performed.

【0003】[0003]

【発明が解決しようとする課題】しかしこれらの方法は
処理に長時間を要するため量産性に問題があった。更
に、希土類焼結磁石用合金粉末は吸湿性があり、大気中
に放置すると大気中の水分を吸着し、製造された希土類
焼結磁石の特性を劣化させるという問題点があった。
However, these methods have a problem in mass productivity because the processing takes a long time. Further, the alloy powder for a rare earth sintered magnet has a hygroscopic property, and when left in the atmosphere, it adsorbs moisture in the atmosphere, thereby deteriorating the characteristics of the manufactured rare earth sintered magnet.

【0004】[0004]

【課題を解決するための手段】本発明者らは、これらの
問題点を解決するため種々検討した結果、希土類焼結磁
石用合金粉末を鉱物油または合成油に浸漬した後分離す
ることにより大気中で安定して取り扱える希土類焼結磁
石用合金粉末とできることを知見するに至った。即ち、
希土類焼結磁石用合金粉末の表面を鉱物油または合成油
で被覆することにより大気中の酸素および水分の吸着を
抑えることが可能になり、希土類焼結磁石用合金粉末を
安定して大気中で取り扱うことができる。以下、本発明
を具体的に説明する。本発明における希土類焼結磁石用
合金はR−Fe−B系であればよいが、望ましくはR−
Fe(Co)−B−M系が良く、RはYを含む希土類元
素のうち一種または二種以上を25〜35重量%、Bは
0.8〜1.2重量%、MはAl、Nb、Ti、V、Z
r、Mo、W、Ga、Cu、Zn、Ge、Snのうち一
種または二種以上を5重量%以下、残部が不可避的な混
入物をのぞきFeまたはFeとCoからなる。合金系と
して、Nd−Fe−B−Al−Nb、Nd−Fe−Co
−B−Al−Nb、Nd−Fe−B−Al−Ga、Nd
−Fe−Co−B−Al−Ga、Nd−Dy−Fe−B
−Al−Nb、Nd−Dy−Fe−Co−B−Al−N
b、Nd−Dy−Fe−B−Al−Ga、Nd−Fe−
Dy−Co−B−Al−Ga等が例示されるが、これら
に限定されるものではない。
Means for Solving the Problems As a result of various investigations for solving these problems, the present inventors have found that the alloy powder for rare earth sintered magnets is immersed in mineral oil or synthetic oil and then separated to remove air from the atmosphere. We have come to discover that the alloy powder for rare earth sintered magnets can be stably handled. That is,
By coating the surface of the alloy powder for rare earth sintered magnets with mineral oil or synthetic oil, the adsorption of oxygen and moisture in the atmosphere can be suppressed, and the alloy powder for rare earth sintered magnets can be stably maintained in the atmosphere. It can be handled. Hereinafter, the present invention will be specifically described. The rare earth sintered magnet alloy according to the present invention may be of the R-Fe-B type, but is preferably R-
Fe (Co) -BM system is preferable, R is 25 to 35% by weight of one or more rare earth elements including Y, B is 0.8 to 1.2% by weight, M is Al, Nb. , Ti, V, Z
One or two or more of r, Mo, W, Ga, Cu, Zn, Ge, and Sn are contained in an amount of 5% by weight or less, and the balance is Fe or Fe and Co except for inevitable contaminants. As an alloy system, Nd-Fe-B-Al-Nb, Nd-Fe-Co
-B-Al-Nb, Nd-Fe-B-Al-Ga, Nd
-Fe-Co-B-Al-Ga, Nd-Dy-Fe-B
-Al-Nb, Nd-Dy-Fe-Co-B-Al-N
b, Nd-Dy-Fe-B-Al-Ga, Nd-Fe-
Dy-Co-B-Al-Ga and the like are exemplified, but the present invention is not limited thereto.

【0005】含有酸素量が3000ppm以下の低酸素
希土類焼結磁石用合金微粉末を得るためには、乾式では
低酸素雰囲気のジェットミル、湿式ではボールミル、ア
トライター粉砕等があげられる。そして粉砕して得られ
る微粉末を鉱物油または合成油に浸漬するには、乾式粉
砕の場合、粉砕後還元性もしくは非酸化性雰囲気の状態
のまま鉱物油または合成油中に浸漬し、湿式粉砕の場合
は、粉砕前に原料粗粉を鉱物油または合成油に浸漬して
おけば良い。ここで使用する鉱物油または合成油は分留
点の最高値が400℃以下がよい。これ以上の分留点の
最高値を持つ鉱物油または合成油では焼結時後述する方
法により焼結しても鉱物油または合成油と成形体の希土
類元素が反応し炭化物を成形するため焼結に必要な液相
を十分に生成できなくなる場合があるからである。次
に、鉱物油または合成油中から浸漬された微粉末を分離
する方法として、自然濾過、減圧濾過、遠心分離等が考
えられるが、いずれの方法でも良い。この微粉末を、一
般に行われているように磁場中で配向させた状態で加圧
成形し、成形体とする。
In order to obtain a low-oxygen rare-earth sintered magnet alloy fine powder having an oxygen content of 3000 ppm or less, there are a jet mill in a low-oxygen atmosphere in a dry system, a ball mill, an attritor pulverization in a wet system and the like. Then, in order to immerse the fine powder obtained by crushing in mineral oil or synthetic oil, in the case of dry crushing, after crushing, soak in mineral oil or synthetic oil in a reducing or non-oxidizing atmosphere and wet crush In this case, the raw material coarse powder may be immersed in mineral oil or synthetic oil before crushing. The mineral oil or synthetic oil used here preferably has a maximum distillation point of 400 ° C. or lower. For mineral oils or synthetic oils with the highest fractional boiling points higher than this, sintering will occur because the mineral oils or synthetic oils and the rare earth elements of the compact react to form carbides even if sintered by the method described below during sintering. This is because it may not be possible to sufficiently generate the liquid phase required for the above. Next, as a method for separating the fine powder soaked from the mineral oil or the synthetic oil, natural filtration, vacuum filtration, centrifugal separation and the like can be considered, but any method may be used. This fine powder is pressure-molded in a state of being orientated in a magnetic field as is generally done to obtain a molded body.

【0006】得られた成形体は、焼結炉中で焼結される
が、1Torr以下の減圧下で室温から500℃以上の
温度に20℃/min以上の昇温速度で加熱すると成形
体中に残留している鉱物油または合成油と成形体の希土
類元素とが反応し炭化物を形成し、焼結に必要な液相を
十分に生成できなくなる場合がある。これを防止するた
めには、次の方法を採用するのがよい。 (1)室温から500℃までの昇温速度を10℃/mi
n以下、この間および焼結中の圧力を1Torr以下と
する。 (2)室温から500℃までの昇温過程で1点または2
点以上の温度で30min以上温度を保持し、この間お
よび焼結中の圧力を1Torr以下とする。 (3)(1)および(2)の方法を併用する。
The obtained compact is sintered in a sintering furnace, but when heated from room temperature to a temperature of 500 ° C. or more at a temperature rising rate of 20 ° C./min or more under a reduced pressure of 1 Torr or less, In some cases, the residual mineral oil or synthetic oil reacts with the rare earth element of the compact to form a carbide, and the liquid phase required for sintering cannot be sufficiently generated. To prevent this, the following method should be adopted. (1) The temperature rising rate from room temperature to 500 ° C. is 10 ° C./mi
The pressure during this period and during sintering is set to 1 Torr or less. (2) 1 point or 2 in the temperature rising process from room temperature to 500 ° C
The temperature is maintained for 30 min or more at a temperature above the point, and the pressure during this and during sintering is set to 1 Torr or less. (3) The methods of (1) and (2) are used together.

【0007】[0007]

【実施例】以下、本発明を実施例をもって具体的に説明
するが、本発明の内容は、これに限定されるものではな
い。 (実施例1)希土類焼結磁石用の出発原料として、電解
鉄、フェロボロン、Ndを所定量秤量し、高周波溶解炉
にて溶解、鋳造することにより、重量%でNd=31.
0%、B=1.0%、Al=0.3%、残部Feなるイ
ンゴットを製造した。このインゴットを粗粉砕し、次い
でジェットミルを用い雰囲気の酸素量が10ppmの窒
素中で微粉砕した。微粉末の平均粒径は4.1μmであ
った。粉砕して得られた微粉末を窒素雰囲気中で分留点
が200〜300℃、室温での動粘度が2.0cStの
鉱物油(出光興産製、商品名MC OIL P−02)に
浸漬し、微粉と鉱物油の混合物とした。この混合物を遠
心分離機により微粉末と鉱物油に分離し、配向磁場強度
15kOeで配向させ成形し、成形体とした。この成形
体を焼結炉に挿入し室温から500℃まで10℃/mi
n、圧力0.1Torrで昇温、その後同じ圧力で11
00℃まで30℃/minで昇温、2時間保持の後炉冷
した。得られた焼結体を900℃で1時間、600℃で
1時間時効処理した後、焼結体の酸素量、炭素量および
磁気特性を測定したところ表1に示すように十分な特性
が得られた。
EXAMPLES The present invention will be specifically described below with reference to examples, but the contents of the present invention are not limited thereto. (Example 1) As starting materials for rare earth sintered magnets, predetermined amounts of electrolytic iron, ferroboron, and Nd were weighed, melted and cast in a high-frequency melting furnace, and Nd = 31.
An ingot having 0%, B = 1.0%, Al = 0.3% and the balance Fe was manufactured. The ingot was coarsely pulverized, and then finely pulverized by using a jet mill in nitrogen having an oxygen content of 10 ppm. The average particle size of the fine powder was 4.1 μm. The fine powder obtained by pulverization was immersed in a nitrogen atmosphere in a mineral oil having a fractionation point of 200 to 300 ° C. and a kinematic viscosity of 2.0 cSt at room temperature (manufactured by Idemitsu Kosan Co., Ltd., trade name MCOIL P-02). , A mixture of fine powder and mineral oil. The mixture was separated into fine powder and mineral oil by a centrifuge, oriented with an orientation magnetic field strength of 15 kOe, and shaped to obtain a shaped body. This compact was inserted into a sintering furnace and the temperature was raised from room temperature to 500 ° C at 10 ° C / mi.
n, heating at 0.1 Torr, then 11 at the same pressure
The temperature was raised to 00 ° C. at 30 ° C./min, the temperature was maintained for 2 hours, and then the furnace was cooled. The obtained sintered body was aged at 900 ° C. for 1 hour and at 600 ° C. for 1 hour, and then the oxygen content, carbon content and magnetic characteristics of the sintered body were measured and sufficient characteristics were obtained as shown in Table 1. Was given.

【0008】(実施例2)希土類焼結磁石用の出発原料
として、電解鉄、フェロボロン、Ndを所定量秤量し、
高周波溶解炉にて溶解、鋳造することにより、重量%で
Nd=29%、B=1.0%、Al=0.3%、残部F
eなるインゴットを製造した。このインゴットを粗粉砕
し、次いでジェットミルを用い雰囲気の酸素量が10p
pmの窒素中で微粉砕した。微粉末の平均粒径は4.1
μmであった。粉砕して得られた微粉末を窒素雰囲気中
で分留点が200〜300℃、室温での動粘度が2.0
cStの鉱物油(出光興産製、商品名MC OIL P−
02)の鉱物油に浸漬し、微粉と鉱物油の混合物とし
た。この混合物を遠心分離機により微粉末と鉱物油に分
離し、配向磁場強度15kOeで配向させ成形し、成形
体とした。この成形体を焼結炉に挿入し室温から500
℃まで10℃/min、圧力0.1Torrで昇温、そ
の後同じ圧力で1100℃まで30℃/minで昇温、
2時間保持の後炉冷した。得られた焼結体を実施例1と
同様の熱処理を行い酸素量、炭素量および磁気特性の測
定をしたところ表1に示すように十分な特性が得られ
た。
Example 2 As starting materials for a rare earth sintered magnet, electrolytic iron, ferroboron and Nd were weighed in predetermined amounts,
By melting and casting in a high-frequency melting furnace, Nd = 29% by weight, B = 1.0%, Al = 0.3%, balance F
An ingot called e was manufactured. This ingot was roughly crushed, and then the amount of oxygen in the atmosphere was 10 p using a jet mill.
Milled in pm nitrogen. The average particle size of the fine powder is 4.1.
was μm. The fine powder obtained by pulverization has a distillation point in a nitrogen atmosphere of 200 to 300 ° C. and a kinematic viscosity of 2.0 at room temperature.
Mineral oil of cSt (made by Idemitsu Kosan, trade name MC OIL P-
It was immersed in the mineral oil of No. 02) to prepare a mixture of fine powder and mineral oil. The mixture was separated into fine powder and mineral oil by a centrifuge, oriented with an orientation magnetic field strength of 15 kOe, and shaped to obtain a shaped body. Insert this compact into a sintering furnace and remove from room temperature to 500
Up to 10 ° C / min at a pressure of 0.1 Torr, then at the same pressure up to 1100 ° C at 30 ° C / min,
After holding for 2 hours, the furnace was cooled. The obtained sintered body was subjected to the same heat treatment as in Example 1 to measure the amount of oxygen, the amount of carbon and the magnetic properties, and sufficient properties were obtained as shown in Table 1.

【0009】(実施例3)実施例1と同一組成の希土類
焼結磁石用合金を実施例1と同様の工程により成形体と
した。この成形体を焼結炉に挿入し、圧力0.1Tor
rで室温から350℃まで10℃/minで昇温し3時
間保持の後500℃まで10℃/min、500℃から
1100℃まで20℃/minで昇温、2時間保持の後
炉冷した。得られた焼結体を実施例1と同様の熱処理を
行い酸素量、炭素量および磁気特性の測定をしたところ
表1に示すように十分な特性が得られた。 (実施例4)実施例2と同一組成の希土類焼結磁石用合
金を実施例2と同様の工程により成形体とした。この成
形体を焼結炉に挿入し、圧力0.1Torrで室温から
350℃まで10℃/minで昇温し3時間保持の後5
00℃まで10℃/min、500℃から1100℃ま
で30℃/minで昇温、2時間保持の後炉冷した。得
られた焼結体を実施例1と同様の熱処理を行い酸素量、
炭素量および磁気特性の測定をしたところ表1に示すよ
うに十分な特性が得られた。
Example 3 A rare earth sintered magnet alloy having the same composition as in Example 1 was formed into a compact by the same steps as in Example 1. This compact was inserted into a sintering furnace and the pressure was 0.1 Torr.
At r, the temperature was raised from room temperature to 350 ° C. at 10 ° C./min, held for 3 hours, then raised to 500 ° C. at 10 ° C./min, raised from 500 ° C. to 1100 ° C. at 20 ° C./min, held for 2 hours and cooled in the furnace. . The obtained sintered body was subjected to the same heat treatment as in Example 1 to measure the amount of oxygen, the amount of carbon and the magnetic properties, and sufficient properties were obtained as shown in Table 1. (Example 4) A rare earth sintered magnet alloy having the same composition as in Example 2 was formed into a compact by the same steps as in Example 2. This compact was inserted into a sintering furnace, heated from room temperature to 350 ° C. at 10 ° C./min at a pressure of 0.1 Torr, and held for 3 hours, then 5
The temperature was raised from 00 ° C. to 10 ° C./min, from 500 ° C. to 1100 ° C. at 30 ° C./min, held for 2 hours, and then cooled in the furnace. The obtained sintered body was heat treated in the same manner as in Example 1 to obtain an oxygen content,
When the amount of carbon and the magnetic properties were measured, sufficient properties were obtained as shown in Table 1.

【0010】(実施例5)実施例1と同じ組成の希土類
焼結磁石用合金を、分留点が200〜400℃、室温で
の動粘度が5.0cStの鉱物油(出光興産製、商品名
MC OIL P−05)を用い実施例1と同様の工程で
成形体とした。この成形体を圧力0.1Torrで室温
から1100℃まで20℃/minで昇温、同じ圧力で
2時間保持後炉冷した。得られた焼結体を実施例1と同
様の熱処理を行い、酸素量、炭素量および磁気特性を測
定したところ、表1に示されるように実施例1と同程度
の低い酸素量を実現できた。 (実施例6)実施例1と同じ組成の希土類焼結磁石用合
金を、分留点が300〜500℃、室温での動粘度が3
1.5cStの鉱物油(出光興産製、商品名MC OI
L S−32)を用い実施例1と同様の工程で成形体と
した。この成形体を圧力0.1Torrで室温から11
00℃まで20℃/minで昇温、同じ圧力で2時間保
持後炉冷した。得られた焼結体を実施例1と同様の熱処
理を行い、酸素量、炭素量および磁気特性を測定したと
ころ、表1に示されるように実施例1〜4と同程度の低
い酸素量を実現できた。
(Example 5) A rare earth sintered magnet alloy having the same composition as in Example 1 was used as a mineral oil having a fractional distillation point of 200 to 400 ° C and a kinematic viscosity of 5.0 cSt at room temperature (manufactured by Idemitsu Kosan Co., Ltd. Using the name MC OIL P-05), a molded product was obtained in the same process as in Example 1. This molded body was heated at a pressure of 0.1 Torr from room temperature to 1100 ° C. at 20 ° C./min, kept at the same pressure for 2 hours, and then cooled in a furnace. The obtained sintered body was subjected to the same heat treatment as in Example 1 and the amount of oxygen, the amount of carbon and the magnetic properties were measured. As shown in Table 1, it was possible to realize an oxygen amount as low as in Example 1. It was (Example 6) An alloy for rare earth sintered magnets having the same composition as in Example 1 was used, with a fractionation point of 300 to 500 ° C and a kinematic viscosity of 3 at room temperature.
1.5 cSt mineral oil (made by Idemitsu Kosan, trade name MC OI
L S-32) was used to obtain a molded product in the same process as in Example 1. This molded body was pressed at a pressure of 0.1 Torr from room temperature to 11
The temperature was raised to 00 ° C. at 20 ° C./min, held at the same pressure for 2 hours, and then cooled in the furnace. The obtained sintered body was subjected to the same heat treatment as in Example 1 to measure the amount of oxygen, the amount of carbon, and the magnetic properties. As shown in Table 1, the amount of oxygen as low as in Examples 1 to 4 was obtained. It was realized.

【0011】(実施例7)希土類焼結磁石用の出発原料
として、電解鉄、フェロボロン、Ndを所定量秤量し、
高周波溶解炉にて溶解、鋳造することにより、重量%で
Nd=31%、B=1.0%、Al=0.3%、残部F
eなるインゴットを製造した。このインゴットを粗粉砕
し、次いでジェットミルを用い雰囲気の酸素量が10p
pmの窒素中で微粉砕した。微粉末の平均粒径は4.0
μmであった。粉砕して得られた微粉末を窒素雰囲気中
で分留点が200〜300℃、室温での動粘度が2.5
cStの合成油(出光興産製、商品名:ダフニクリーナ
ーH)に浸漬し、微粉と合成油の混合物とした。この混
合物を遠心分離機により微粉末と合成油に分離し、配向
磁場強度15kOeで配向させ成形し、成形体とした。
この成形体を焼結炉に挿入し室温から500℃まで10
℃/min、圧力0.1Torrで昇温、その後同じ圧
力で1100℃まで30℃/minで昇温、2時間保持
の後炉冷した。得られた焼結体を実施例1と同様の熱処
理を行い酸素量、炭素量および磁気特性の測定をしたと
ころ表1に示すように十分な特性が得られた。
(Example 7) As starting materials for a rare earth sintered magnet, electrolytic iron, ferroboron and Nd were weighed in predetermined amounts,
By melting and casting in a high-frequency melting furnace, weight% Nd = 31%, B = 1.0%, Al = 0.3%, balance F
An ingot called e was manufactured. This ingot was roughly crushed, and then the amount of oxygen in the atmosphere was 10 p using a jet mill.
Milled in pm nitrogen. The average particle size of the fine powder is 4.0.
was μm. The fine powder obtained by pulverization has a fractionation point of 200 to 300 ° C. in a nitrogen atmosphere and a kinematic viscosity of 2.5 at room temperature.
A synthetic oil of cSt (manufactured by Idemitsu Kosan Co., Ltd., trade name: Daphne Cleaner H) was dipped into a mixture of fine powder and synthetic oil. This mixture was separated into fine powder and synthetic oil by a centrifuge, oriented with an orientation magnetic field strength of 15 kOe, and shaped to obtain a shaped body.
Insert this compact into a sintering furnace and increase the temperature from room temperature to 500 ° C.
The temperature was raised at a temperature of 0.1 ° C./min and a pressure of 0.1 Torr, then the temperature was raised to 1100 ° C. at a rate of 30 ° C./min, and the furnace was cooled after holding for 2 hours. The obtained sintered body was subjected to the same heat treatment as in Example 1 to measure the amount of oxygen, the amount of carbon and the magnetic properties, and sufficient properties were obtained as shown in Table 1.

【0012】(実施例8)希土類焼結磁石用の出発原料
として、電解鉄、フェロボロン、Ndを所定量秤量し、
高周波溶解炉にて溶解、鋳造することにより、重量%で
Nd=29%、B=1.0%、Al=0.3%、残部F
eなるインゴットを製造した。このインゴットを粗粉砕
し、次いでジェットミルを用い雰囲気の酸素量が10p
pmの窒素中で微粉砕した。微粉末の平均粒径は3.9
μmであった。粉砕して得られた微粉末を窒素雰囲気中
で分留点が200〜300℃、室温での動粘度が2.5
cStの合成油(出光興産製、商品名:ダフニクリーナ
ーH)に浸漬し、微粉と合成油の混合物とした。この混
合物を遠心分離機により微粉末と合成油に分離し、配向
磁場強度15kOeで配向させ成形し、成形体とした。
この成形体を焼結炉に挿入し室温から500℃まで10
℃/min、圧力0.1Torrで昇温、その後同じ圧
力で1100℃まで30℃/minで昇温、2時間保持
の後炉冷した。得られた焼結体を実施例1と同様の熱処
理を行い酸素量、炭素量および磁気特性の測定をしたと
ころ表1に示すように十分な特性が得られた。
(Embodiment 8) As starting materials for rare earth sintered magnets, predetermined amounts of electrolytic iron, ferroboron and Nd are weighed,
By melting and casting in a high-frequency melting furnace, Nd = 29% by weight, B = 1.0%, Al = 0.3%, balance F
An ingot called e was manufactured. This ingot was roughly crushed, and then the amount of oxygen in the atmosphere was 10 p using a jet mill.
Milled in pm nitrogen. The average particle size of the fine powder is 3.9.
was μm. The fine powder obtained by pulverization has a fractionation point of 200 to 300 ° C. in a nitrogen atmosphere and a kinematic viscosity of 2.5 at room temperature.
A synthetic oil of cSt (manufactured by Idemitsu Kosan Co., Ltd., trade name: Daphne Cleaner H) was dipped into a mixture of fine powder and synthetic oil. This mixture was separated into fine powder and synthetic oil by a centrifuge, oriented with an orientation magnetic field strength of 15 kOe, and shaped to obtain a shaped body.
Insert this compact into a sintering furnace and increase the temperature from room temperature to 500 ° C.
The temperature was raised at a temperature of 0.1 ° C./min and a pressure of 0.1 Torr, then the temperature was raised to 1100 ° C. at a rate of 30 ° C./min, and the furnace was cooled after holding for 2 hours. The obtained sintered body was subjected to the same heat treatment as in Example 1 to measure the amount of oxygen, the amount of carbon and the magnetic properties, and sufficient properties were obtained as shown in Table 1.

【0013】(実施例9)希土類焼結磁石用の出発原料
として、電解鉄、フェロボロン、Ndを所定量秤量し、
高周波溶解炉にて溶解、鋳造することにより、重量%で
Nd=31%、B=1.0%、Al=0.3%、残部F
eなるインゴットを製造した。このインゴットを粗粉砕
し、次いでジェットミルを用い雰囲気の酸素量が10p
pmの窒素中で微粉砕した。微粉末の平均粒径は3.8
μmであった。粉砕して得られた微粉末を窒素雰囲気中
で分留点が200〜300℃、室温での動粘度が2.5
cStの合成油(出光興産製、商品名:ダフニクリーナ
ーH)に浸漬し、微粉と合成油の混合物とした。この混
合物を減圧濾過により微粉末と合成油に分離し、配向磁
場強度15kOeで配向させ成形し、成形体とした。こ
の成形体を焼結炉に挿入し室温から500℃まで10℃
/min、圧力0.1Torrで昇温、その後同じ圧力
で1100℃まで30℃/minで昇温、2時間保持の
後炉冷した。得られた焼結体を実施例1と同様の熱処理
を行い酸素量、炭素量および磁気特性の測定をしたとこ
ろ表1に示すように十分な特性が得られた。 (比較例1)実施例1と同じ組成の希土類焼結磁石用合
金を実施例1と同様の粉砕を行い、得られた微粉末を大
気中に取り出したところ即座に発火し、大気中での微粉
末の取扱いはできなかった。 (比較例2)実施例1と同じ組成の希土類焼結磁石用合
金を、実施例1と同様に粉砕し、得られた微粉末をAr
雰囲気中で48時間安定化処理を行った。この微粉末を
実施例1と同様に成形し、圧力0.1Torrで室温か
ら1100℃まで20℃/minで昇温、2時間保持の
後炉冷し焼結体を得た。この焼結体を実施例1と同様の
熱処理を行い酸素量、炭素量および磁気特性を測定した
ところ、酸素量が高く磁気特性も実施例1に比べ低い値
となった。
Example 9 As starting materials for a rare earth sintered magnet, electrolytic iron, ferroboron and Nd were weighed in predetermined amounts,
By melting and casting in a high-frequency melting furnace, weight% Nd = 31%, B = 1.0%, Al = 0.3%, balance F
An ingot called e was manufactured. This ingot was roughly crushed, and then the amount of oxygen in the atmosphere was 10 p using a jet mill.
Milled in pm nitrogen. The average particle size of the fine powder is 3.8.
was μm. The fine powder obtained by pulverization has a fractionation point of 200 to 300 ° C. in a nitrogen atmosphere and a kinematic viscosity of 2.5 at room temperature.
A synthetic oil of cSt (manufactured by Idemitsu Kosan Co., Ltd., trade name: Daphne Cleaner H) was dipped into a mixture of fine powder and synthetic oil. This mixture was separated into fine powder and synthetic oil by filtration under reduced pressure, oriented with an orientation magnetic field strength of 15 kOe, and shaped to obtain a shaped body. Insert this compact into a sintering furnace and change from room temperature to 500 ° C at 10 ° C.
/ Min, the temperature was raised at a pressure of 0.1 Torr, then the temperature was raised to 1100 ° C at 30 ° C / min at the same pressure, and the furnace was cooled after holding for 2 hours. The obtained sintered body was subjected to the same heat treatment as in Example 1 to measure the amount of oxygen, the amount of carbon and the magnetic properties, and sufficient properties were obtained as shown in Table 1. (Comparative Example 1) A rare earth sintered magnet alloy having the same composition as in Example 1 was pulverized in the same manner as in Example 1, and when the obtained fine powder was taken out into the air, it immediately ignited, The fine powder could not be handled. (Comparative Example 2) A rare earth sintered magnet alloy having the same composition as in Example 1 was pulverized in the same manner as in Example 1, and the fine powder obtained was Ar.
Stabilization was performed for 48 hours in the atmosphere. This fine powder was molded in the same manner as in Example 1, heated from room temperature to 1100 ° C. at a temperature of 20 ° C./min at a pressure of 0.1 Torr, held for 2 hours, and then cooled in a furnace to obtain a sintered body. When this sintered body was subjected to the same heat treatment as in Example 1 and the oxygen content, carbon content and magnetic characteristics were measured, the oxygen content was high and the magnetic characteristics were lower than in Example 1.

【0014】[0014]

【表1】 ──────────────────────────────── ρs 酸素量 炭素量 Br iHc (BH)max g/cm3 ppm ppm kG kOe MGOe ──────────────────────────────── 実施例1 7.59 1890 580 13.2 14.6 41.6 実施例2 7.59 2140 520 13.5 13.7 42.2 実施例3 7.59 1910 560 13.4 14.4 42.1 実施例4 7.59 1880 510 13.8 13.7 43.8 実施例5 7.58 2020 850 13.2 13.5 40.8 実施例6 7.58 1990 890 13.1 13.5 40.6 実施例7 7.59 1860 250 13.2 15.0 41.7 実施例8 7.59 1900 200 13.5 13.8 42.5 実施例9 7.60 1950 230 13.2 14.8 41.6 比較例2 7.32 5800 480 11.3 5.6 3.5 ρs:焼結体密度[Table 1] ──────────────────────────────── ρs oxygen content carbon content Br iHc (BH) max g / cm3 ppm ppm kG kOe MGOe ──────────────────────────────── Example 1 7.59 1890 580 13.2 14.6 41.6 Example 2 7.59 2140 520 13.5 13.7 42.2 Example 3 7.59 1910 560 13.4 14.4 42.1 Example 4 7.59 1880 510 13.8 13.7 43.8 Example 5 7.58 2020 850 13.2 13.5 40.8 Example 6 7.58 1990 890 13.1 13.5 40.6 Example 7 7.59 1860 250 13.2 15.0 41.7 Example 8 7.59 1900 200 13.5 13.8 42.5 Example 9 7.60 1950 230 13.2 14.8 41.6 Comparative Example 2 7.32 5800 480 11.3 5.6 3.5 ρs: sintered body density

【0015】[0015]

【発明の効果】このように、本発明により方法により希
土類焼結磁石を製造することにより、低酸素、低炭素の
焼結体を安定に製造することができる。
As described above, by producing a rare earth sintered magnet by the method according to the present invention, a low oxygen and low carbon sintered body can be stably produced.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 R−Fe−B(RはYを含む希土類元素
のうち1種または2種以上からなる)系希土類焼結磁石
用原料微粉末を鉱物油または合成油に浸漬した後これを
分離して鉱物油または合成油で被覆された粉末を得、こ
れを成形、焼結することを特徴とする希土類焼結磁石の
製造方法。
1. A raw material fine powder for an R-Fe-B (R is one or more of rare earth elements including Y) -based rare earth sintered magnet is immersed in a mineral oil or a synthetic oil, and then this is immersed. A method for producing a rare earth sintered magnet, characterized in that a powder coated with mineral oil or synthetic oil is obtained after separation, and the powder is molded and sintered.
【請求項2】 R−Fe−B(RはYを含む希土類元素
のうち1種または2種以上からなる)系希土類焼結磁石
用原料微粉末を浸漬する鉱物油または合成油の分留点の
最高値が400℃以下である請求項1に記載の希土類焼
結磁石の製造方法。
2. A fractional distillation point of a mineral oil or a synthetic oil in which an R-Fe-B (R is one or more kinds of rare earth elements including Y) -based rare earth sintered magnet raw material fine powder is immersed. 2. The method for producing a rare earth sintered magnet according to claim 1, wherein the maximum value of is less than or equal to 400 ° C.
【請求項3】 成形体を圧力1Torr以下、昇温速度
10℃/min以下で500℃まで昇温し、その後95
0〜1150℃、圧力1Torr以下で焼結する請求項
1または請求項2に記載の希土類焼結磁石の製造方法。
3. The molded body is heated to 500 ° C. at a pressure of 1 Torr or less and a temperature rising rate of 10 ° C./min or less, and then 95
The method for producing a rare earth sintered magnet according to claim 1 or 2, wherein the sintering is performed at 0 to 1150 ° C and a pressure of 1 Torr or less.
【請求項4】 成形体を500℃以下、圧力1Torr
以下で1点または2点以上保持しその後950〜115
0℃、圧力1Torr以下で焼結する請求項1または請
求項2に記載の希土類焼結磁石の製造方法。
4. The molded body is kept at 500 ° C. or lower at a pressure of 1 Torr.
Hold 1 or 2 or more points below and then 950-115
The method for producing a rare earth sintered magnet according to claim 1, wherein the sintering is performed at 0 ° C. and a pressure of 1 Torr or less.
JP5175086A 1993-04-26 1993-07-15 Manufacture of rare earth sintered magnet Pending JPH0786069A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5175086A JPH0786069A (en) 1993-04-26 1993-07-15 Manufacture of rare earth sintered magnet

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP9825793 1993-04-26
JP5-98257 1993-04-26
JP5175086A JPH0786069A (en) 1993-04-26 1993-07-15 Manufacture of rare earth sintered magnet

Publications (1)

Publication Number Publication Date
JPH0786069A true JPH0786069A (en) 1995-03-31

Family

ID=26439451

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5175086A Pending JPH0786069A (en) 1993-04-26 1993-07-15 Manufacture of rare earth sintered magnet

Country Status (1)

Country Link
JP (1) JPH0786069A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100379247B1 (en) * 2000-09-06 2003-04-08 한국과학기술연구원 Method for Preparing Rare-Earth Base Permanent Magnets

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100379247B1 (en) * 2000-09-06 2003-04-08 한국과학기술연구원 Method for Preparing Rare-Earth Base Permanent Magnets

Similar Documents

Publication Publication Date Title
JP6108029B2 (en) Method for producing RTB-based sintered magnet
JP5999106B2 (en) Method for producing RTB-based sintered magnet
JP5348124B2 (en) Method for producing R-Fe-B rare earth sintered magnet and rare earth sintered magnet produced by the method
WO2010113465A1 (en) Alloy for sintered r-t-b-m magnet and method for producing same
JPWO2009016815A1 (en) R-Fe-B rare earth sintered magnet
JP6500907B2 (en) Method of manufacturing RTB based sintered magnet
KR900006193B1 (en) Making method for nd-fe-b permanent magnet
KR20170093951A (en) Magnetic-material sputtering target and method for producing same
JPH06340902A (en) Production of sintered rare earth base permanent magnet
JP2731337B2 (en) Manufacturing method of rare earth sintered magnet
CN115315764A (en) R-T-B permanent magnet, method for producing same, motor, and automobile
EP0286324A1 (en) Magnets
CN111052276B (en) Method for producing R-T-B sintered magnet
JPH0786069A (en) Manufacture of rare earth sintered magnet
CA1036842A (en) Copper-hardened permanent-magnet alloy
JPH0475304B2 (en)
JPH0790469A (en) Production of rare earth metal sintered magnet
JPH09289127A (en) Manufacture of rare earth permanent magnet, and the rare earth permanent magnet
JP4613186B2 (en) Rare earth permanent magnet manufacturing method
JPS5848608A (en) Production of permanent magnet of rare earths
JPH0869908A (en) Manufacture of rare-earth permanent magnet
JPH1064712A (en) R-fe-b rare earth sintered magnet
JP7315889B2 (en) Alloy for RTB Permanent Magnet and Method for Producing RTB Permanent Magnet
JPH0888133A (en) Manufacture of rare earth element magnet
JPH05175026A (en) Manufacture of rare earth permanent magnet