JPH0784319B2 - Swell compensator controller - Google Patents

Swell compensator controller

Info

Publication number
JPH0784319B2
JPH0784319B2 JP63044189A JP4418988A JPH0784319B2 JP H0784319 B2 JPH0784319 B2 JP H0784319B2 JP 63044189 A JP63044189 A JP 63044189A JP 4418988 A JP4418988 A JP 4418988A JP H0784319 B2 JPH0784319 B2 JP H0784319B2
Authority
JP
Japan
Prior art keywords
pulley
moving
cable
hydraulic cylinder
tension
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP63044189A
Other languages
Japanese (ja)
Other versions
JPH01220699A (en
Inventor
滋美 三森
正 楠瀬
恭三 金森
正司 藤本
雅裕 後河内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP63044189A priority Critical patent/JPH0784319B2/en
Publication of JPH01220699A publication Critical patent/JPH01220699A/en
Publication of JPH0784319B2 publication Critical patent/JPH0784319B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Jib Cranes (AREA)

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、海上調査船等において、船上から繰り出され
た観測機器等の懸吊用ケーブルに適用されるスウエルコ
ンペンセータの制御装置に関するものである。
Description: TECHNICAL FIELD The present invention relates to a control device for a swell compensator applied to a cable for suspending an observation instrument or the like fed from a ship in a marine research ship or the like. is there.

(従来の技術) 前記スウエルコンペンセータの従来例を第3,4図によっ
て説明すると、最上調査船のウインチ(2)から繰り出
された懸吊用のケーブル(3)は、フレーム(5)上部
の滑車(6)を介して海中に懸吊され観測機器(7)を
昇降操作する構造になっている。
(Prior Art) A conventional example of the swell compensator will be described with reference to FIGS. 3 and 4. The suspension cable (3) unreeled from the winch (2) of the uppermost survey ship is connected to the upper part of the frame (5). The observation equipment (7) is suspended in the sea via a pulley (6) and is operated to move up and down.

従来のスウエルコンペンセータ(10)は、第4図に示す
ようにラム式油圧シリンダ(11)と、ラム式油圧シリン
ダの上、下端部に軸支された固定滑車(12)、移動滑車
(13)、ラム式油圧シリンダ(11)の油圧室の油圧管
(14)を介し連設された空気バネ装置(15)等からな
り、該空気バネ装置(15)は、油圧管(14)に連設され
た作動油加圧タンク(15a)、圧気管(15b)で連設され
た空気ボンベユニツト(15c)、排気弁(15d)、給気弁
(15e)および空気圧縮機(15f)等からなる。
As shown in FIG. 4, a conventional swell compensator (10) includes a ram type hydraulic cylinder (11), a fixed pulley (12) pivotally supported at the upper and lower ends of the ram type hydraulic cylinder, and a movable pulley (13). ), An air spring device (15), etc., which are continuously provided via a hydraulic pipe (14) in a hydraulic chamber of a ram type hydraulic cylinder (11), and the air spring device (15) is connected to the hydraulic pipe (14). From the installed hydraulic oil pressure tank (15a), air cylinder unit (15c), exhaust valve (15d), air supply valve (15e), air compressor (15f), etc., which are connected in series by the pressure pipe (15b) Become.

前記スウエルコンペンセータ(10)は、船体(9)上に
配設されて固定滑車(12)と移動滑車(13)にケーブル
(3)が掛け廻しされ、ケーブル(3)の張力をラム式
油圧シリンダ(11)の作動油を介して空気ボンベユニツ
ト(15c)の圧縮空気に伝達し、圧縮空気の空気バネで
前記張力を緩衝、支持するとともに、船体(9)の上下
動揺に伴うケーブル(3)の張力変化も緩衝し、二次的
に海中の観測機器(7)の位置(深度)変化を防止す
る。
The swell compensator (10) is arranged on the hull (9), and the cable (3) is wound around the fixed pulley (12) and the moving pulley (13), and the tension of the cable (3) is ram type hydraulic pressure. It is transmitted to the compressed air of the air cylinder unit (15c) through the hydraulic oil of the cylinder (11), and the tension is buffered and supported by the air spring of the compressed air, and the cable (3 ) Also buffers the change in tension, and secondarily prevents changes in the position (depth) of the underwater observation device (7).

また、移動滑車の位置検出装置(図示省略)、排気弁
(15d)、給気弁(15e)等からなる中立点補正装置によ
って、空気ボンベユニツト(15c)の空気圧、即ち空気
バネ力を調整し、観測機器(7)の投入水深の変化等に
よって増減するケーブル(3)の張力に対応させて、移
動滑車(13)の中立点(X)を調整する。
In addition, the air pressure of the air cylinder unit (15c), that is, the air spring force, is adjusted by the neutral point correction device including the position detection device (not shown) of the moving pulley, the exhaust valve (15d), the air supply valve (15e), etc. The neutral point (X) of the moving pulley (13) is adjusted according to the tension of the cable (3) that increases or decreases due to changes in the input water depth of the observation equipment (7).

即ちケーブル(3)に作用する張力が増加すると、空気
ボンベユニツト(15c)内の圧縮空気が圧縮されて、移
動滑車(13)のストローク範囲は第4図(イ)のような
中立点(X)の移動でl1>l2となり、張力が減少する
と、圧縮空気が膨張し第4図(ロ)のようにl1<l2
なる。
That is, when the tension acting on the cable (3) increases, the compressed air in the air cylinder unit (15c) is compressed, and the stroke range of the moving pulley (13) becomes the neutral point (X) as shown in FIG. ), L 1 > l 2 , and when the tension decreases, the compressed air expands and l 1 <l 2 as shown in FIG. 4 (b).

移動滑車(13)のストローク範囲が前記のように変化し
たままで放置すると、張力の増減により移動滑車(13)
の有効ストローク範囲(L)を越えるようになり、張力
緩衝機能が失われるため、l1>l2になると、給気弁
(15e)を開き空気圧縮機(15f)から圧縮空気を補給し
て、空気ボンベユニツト(15c)内の空気圧を増加し、
1<l2になると、排気弁(15d)を開き空気圧を減少
して、第4図(c)のようにl1≒l2となるように調整
し、張力緩衝機能を確保する。
If the stroke range of the moving pulley (13) is left unchanged as described above, the moving pulley (13) may change due to the increase or decrease in tension.
Since the effective stroke range (L) is exceeded and the tension buffering function is lost, when l 1 > l 2 , the air supply valve (15e) is opened and compressed air is replenished from the air compressor (15f). , Increase the air pressure in the air cylinder unit (15c),
When l 1 <l 2 , the exhaust valve (15d) is opened and the air pressure is reduced to adjust l 1 ≈l 2 as shown in FIG. 4 (c) to secure the tension buffering function.

(発明が解決しようとする課題) 従来の前記スウエルコンペンセータは、波浪等による船
体の上昇時に、ケーブルを介して観測機器に上昇力が作
用し、水抵抗によってケーブル張力が増加するが、移動
滑車、ラム式油圧シリンダの作動油を介し空気ボンベユ
ニツト内の圧縮空気が圧縮されて同ラム式油圧シリンダ
が短縮し、固定滑車と移動滑車の距離短縮により両滑車
間のケーブルが繰り出され、ケーブル張力の増加および
観測機器の位置(深度)変化を防止し、船体の下降時
は、逆の働きでケーブルを巻き込みケーブル張力の減
少、観測機器の位置(深度)変化を防止する。
(Problems to be Solved by the Invention) In the conventional swell compensator, when the hull is lifted due to waves or the like, the lifting force acts on the observation equipment via the cable, and the cable tension increases due to water resistance. , The compressed air in the air cylinder unit is compressed through the hydraulic oil of the ram type hydraulic cylinder, and the ram type hydraulic cylinder is shortened, and the cable between both pulleys is extended by shortening the distance between the fixed pulley and the moving pulley, and the cable tension is increased. To prevent changes in the position (depth) of the observation equipment, and when the hull is descending, the cable works backwards to reduce the cable tension and prevent changes in the position (depth) of the observation equipment.

前記のように受動的な制御になっているため、船体の動
揺速度が小さい場合は、張力の変化が小さく該スウエル
コンペンセータは不作動となり、観測機器の位置変化の
防止には全く用をなさない。また、張力の増減に対応し
てケーブルの繰り出し、巻き込みを行うのみであって、
観測機器の位置(深度)の変化防止は、実際上不可能と
言える。
Since the passive control is performed as described above, when the shaking speed of the hull is small, the change in tension is small and the swell compensator becomes inoperative, so it is completely useless to prevent the position change of the observation equipment. Absent. In addition, it only pays out and winds the cable according to the increase and decrease in tension,
It is practically impossible to prevent changes in the position (depth) of observation equipment.

本発明は、前記のような実状に鑑みて開発されたもので
あって、その目的とする処は、ラム式油圧シリンダに連
設した空気バネ装置の空気バネによるケーブルの張力変
化の緩衝性能とともに、滑車移動用油圧シリンダによる
移動滑車の移動制御性能、信頼性を高めて、船体上下動
揺に対する観測機器等の懸吊物の位置(深度)の安定性
能を向上させたスウエルコンペンセータの制御装置を提
供するにある。
The present invention was developed in view of the above-mentioned circumstances, and an object of the present invention is to provide a buffering function for changing the tension of a cable by an air spring of an air spring device connected to a ram type hydraulic cylinder. , A control device for a swell compensator that improves the movement control performance and reliability of a moving pulley by a hydraulic cylinder for moving pulleys and improves the stability performance of the position (depth) of suspended objects such as observation equipment against vertical movement of the hull. To provide.

(課題を解決するための手段) 本発明は、ラム式油圧シリンダに連設された空気バネ装
置の空気バネによって、同ラム式油圧シリンダを介し移
動滑車を緩衝支持してケーブルの張力変化を緩衝すると
ともに、船体上下動揺とケーブル張力および移動滑車変
位の各検出に基づき制御されるシリンダ駆動制御装置に
よって滑車移動用油圧シリンダを駆動制御し、該滑車移
動用油圧シリンダで移動滑車を船体上下動揺に対応させ
て強制的に移動制御することによって、船体上下動揺に
対応させたケーブルの自動繰り出し巻込みを可能として
懸吊物の位置安定性を向上させている。
(Means for Solving the Problems) According to the present invention, an air spring of an air spring device connected to a ram type hydraulic cylinder cushions a moving pulley through the ram type hydraulic cylinder to cushion a change in cable tension. In addition, the hydraulic cylinder for moving the pulley is driven and controlled by the cylinder drive control device that is controlled based on the detection of the vertical movement of the hull, the cable tension, and the displacement of the moving pulley, and the hydraulic pulley for moving the pulley causes the movable pulley to move up and down. By correspondingly forcibly controlling the movement of the hull, it is possible to automatically unwind and wind the cable in response to the vertical motion of the hull, thereby improving the position stability of the suspended object.

(作用) ラム式油圧シリンダに連設された空気バネ装置の空気バ
ネによって、同ラム式油圧シリンダを介し移動滑車を緩
衝、支持してケーブルの張力変化が吸収、緩衝されると
ともに、船体上下動揺とケーブル張力および移動滑車変
位の各検出に基づく制御信号でシリンダ駆動制御装置が
制御され、該シリンダ駆動制御装置によって滑車移動用
油圧シリンダが駆動制御され移動滑車を強制的に移動制
御し、移動滑車の該移動制御によって船体の上下動揺に
対応したケーブルの繰り出し巻き取りが自動的に行わ
れ、ケーブルによる懸吊物の位置が安定される。
(Operation) The air spring of the air spring device connected to the ram hydraulic cylinder absorbs and buffers the tension change of the cable by buffering and supporting the moving pulley through the ram hydraulic cylinder. And a cylinder drive control device is controlled by control signals based on detection of cable tension and displacement of the moving pulley, and the cylinder driving control device drives and controls the hydraulic cylinder for moving the pulley to forcibly move and control the moving pulley. By the movement control, the cable is automatically fed and wound corresponding to the vertical motion of the hull, and the position of the suspended object by the cable is stabilized.

(実施例) 第1図および第2図に本発明の一実施例を示し、図中
(11)はラム式油圧シリンダ、(12)はラム式油圧シリ
ンダ(11)のヘツドカバー側の端部に軸受フレームを介
して軸支された固定滑車、(13)はラム式油圧シリンダ
(11)のロツドエンド側に軸受フレームを介し軸支され
た移動滑車であって、ラム式油圧シリンダ(11)の伸縮
によって固定滑車(12)に対し移動滑車(13)が移動し
両滑車間の距離が増減されて、固定滑車(12)と移動滑
車(13)に掛け廻しされている懸吊用のケーブル(3)
の掛け廻し量が増減、即ちケーブル(3)が繰り出し、
巻き込みされる構造になっており、ラム式油圧シリンダ
(11)の両端部に配設され船(9)上の懸吊用ケーブル
(3)が掛け廻しされた固定滑車(12)と移動滑車(1
3)を具備したスウエルコンペンセータにおいて、ラム
式油圧シリンダ(11)に連設され空気バネでケーブル
(3)の張力変化を緩衝する空気バネ装置(15)と、移
動滑車(13)に連設され船体上下動揺に対応させて移動
滑車(13)を移動制御する滑車移動用油圧シリンダ(2
0)と、滑車移動用油圧シリンダ(20)に連設され船体
上下動揺とケーブル張力および移動滑車変位の各検出に
基づく制御信号で制御されるシリンダ駆動制御装置を具
備したスウエルコンペンセータの制御装置になってい
る。
(Embodiment) One embodiment of the present invention is shown in FIGS. 1 and 2, in which (11) is a ram type hydraulic cylinder and (12) is a head cover side end of the ram type hydraulic cylinder (11). A fixed pulley that is rotatably supported by a bearing frame, and a moving pulley that is rotatably supported by a ram type hydraulic cylinder (11) on the rod end side of the ram hydraulic cylinder (11). The moving pulley (13) moves with respect to the fixed pulley (12) to increase or decrease the distance between the two pulleys, and the suspension cable (3) hung around the fixed pulley (12) and the moving pulley (13). )
Increase or decrease the amount of wrapping around, that is, the cable (3) extends,
A fixed pulley (12) and a movable pulley (), which are structured to be rolled up and are arranged at both ends of a ram type hydraulic cylinder (11) and around which a suspension cable (3) on a ship (9) is wound. 1
In a swell compensator equipped with 3), an air spring device (15) that is connected to a ram type hydraulic cylinder (11) and buffers the tension change of the cable (3) with an air spring, and is connected to a moving pulley (13). The hydraulic cylinder for moving the pulley (2) that controls the movement of the moving pulley (13) according to the vertical movement of the hull.
0) and a cylinder drive control device that is connected to a hydraulic cylinder (20) for moving pulleys and is controlled by control signals based on detection of vertical motion of the hull, cable tension, and displacement of the moving pulleys. It has become.

前記空気バネ装置(15)は、ラム式油圧シリンダ(11)
の油圧室に油圧管(14)を介して連設された作動油加圧
タンク(15a)、圧気管(15b)で連設された空気ボンベ
ユニツト(15c)、排気弁(15d)、給気弁(15e)、空
気圧縮機(15f)等からなる。
The air spring device (15) is a ram type hydraulic cylinder (11).
Hydraulic pressure tank (15a) that is connected to the hydraulic chamber of the engine through a hydraulic pipe (14), an air cylinder unit (15c) that is connected by a pneumatic pipe (15b), an exhaust valve (15d), and air supply It consists of a valve (15e), an air compressor (15f), etc.

前記滑車移動用油圧シリンダ(20)は、ラム式油圧シリ
ンダ(11)のヘツドカバー側に配設されピストンロツド
の先端部を移動滑車(13)の軸部に連設した構造になっ
ており、図示のように複数配設される。
The pulley moving hydraulic cylinder (20) is arranged on the head cover side of the ram type hydraulic cylinder (11) and has a structure in which the tip of the piston rod is connected to the shaft of the moving pulley (13). A plurality of them are arranged.

前記シリンダ駆動制御装置は、滑車移動用油圧シリンダ
(20)に油圧管(21)を介して連設された制御弁ユニツ
ト(22)と油圧パワーユニツト(23)等からなる駆動装
置(21,22,23)、および制御弁ユニツト(22)の制御装
置(25)からなり、該制御装置(25)は、船体上下動揺
の変位を検出する船体変位検出器(31)、船体変位検出
器(31)の出力信号を平滑して船体上下動揺の検出信号
(32a)として出力するフイルタ(23)、ケーブル
(3)の張力を検出してケーブル張力の検出信号(33
a)を出力するケーブル張力計(33)、移動滑車(13)
の変位を検出して検出信号(34a)を出力する滑車変位
検出器(34)、ケーブル張力の設定信号発生器(36)、
ケーブル張力の設定信号ケーブル張力の検出信号(33
a)の偏差をとる加減器(37)、加減器(37)の出力信
号を比例、積分、微分演算するPIDコントローラ(3
8)、PIDコントローラ(38)の出力信号と船体上下動揺
の検出出力信号(32a)を加算する加算器(39)、加算
器(39)の出力信号と移動滑車変位の検出信号(34a)
を加減算する加減算器(40)等からなる。
The cylinder drive control device includes a drive device (21, 22) including a control valve unit (22) and a hydraulic power unit (23) which are connected to a hydraulic cylinder (20) for moving a pulley via a hydraulic pipe (21). , 23) and a control device (25) for the control valve unit (22). The control device (25) includes a hull displacement detector (31) and a hull displacement detector (31) for detecting displacement of vertical motion of the hull. ) Output signal is smoothed and is output as a detection signal (32a) for hull ups and downs, and the tension of the cable (3) is detected to detect the cable tension detection signal (33).
Cable tension meter (33) that outputs a), mobile pulley (13)
Displacement detector (34) that detects the displacement of the cable and outputs a detection signal (34a), a cable tension setting signal generator (36),
Cable tension setting signal Cable tension detection signal (33
The PID controller (3) that calculates the output of the adder / subtractor (37) and the adder / subtractor (37) that takes the deviation of a)
8), an adder (39) for adding the output signal of the PID controller (38) and the detection output signal (32a) of the vertical motion of the hull, the output signal of the adder (39) and the detection signal of the moving sheave displacement (34a)
And an adder / subtractor (40) for adding and subtracting.

前記制御装置(25)は、船体上下動揺の検出信号(32
a)とケーブル張力の検出信号(33a)および移動滑車変
位の検出信号(34a)に基づき、加減算器(40)から制
御信号(40a)を出力し、該制御信号(40a)によって駆
動装置(21,22,23)の制御弁ユニツト(22)を制御し、
駆動装置(21,22,23)によって滑車移動用油圧シリンダ
(20)を駆動し、船体上下動揺に対応させて移動滑車
(13)を強制的に移動制御する。
The control device (25) detects a detection signal (32
a), a cable tension detection signal (33a) and a moving pulley displacement detection signal (34a), a control signal (40a) is output from the adder / subtractor (40), and the drive device (21) is output by the control signal (40a). , 22,23) control valve unit (22)
A drive device (21, 22, 23) drives a hydraulic cylinder (20) for moving a pulley to forcefully control the movement of the moving pulley (13) in response to vertical motion of the hull.

本発明は、前記のような構成になっており作用について
詳述すると、船体(9)が波浪等により押し上げられ引
き下げられる上下動揺の場合に、船体変位検出器(31)
とフイルタ(32)による船体上下動揺の検出信号(32
a)がフイードフオワード制御信号となり、また、ケー
ブル張力計(33)によるケーブル張力の検出信号(33
a)と滑車変位検出器(34)による移動滑車(13)変位
の検出信号(34a)がフイードバツク信号となって、さ
らに設定信号発生器(36)からのケーブル張力設定信号
が加味され、第2図に示すような回路による前記各信号
の演算、加、減算により加減算器(40)から制御信号
(40a)が出力されて、該制御信号(40a)によって制御
弁ユニツト(22)が制御される。即ち、駆動装置(21,2
2,23)は、前記のように制御されて油圧パワーユニツト
(23)で発生した油圧力を制御弁ユニツト(22)で必要
な油量に制御し、油圧管(21)を経て滑車移動用油圧シ
リンダ(20)のP1側あるいはP2側に圧油が送り込ま
れ、滑車移動用油圧シリンダ(20)の伸縮作動によって
ラム式油圧シリンダ(11)のラムおよび移動滑車(13)
側が移動制御されて固定滑車(12)との相互間隔が伸縮
され、両滑車間のケーブル(3)の掛け廻し長さが伸縮
され巻き込みあるいは繰り出される。
The present invention is configured as described above, and the operation will be described in detail. When the hull (9) is vertically swayed by being pushed up and pulled down by waves or the like, the hull displacement detector (31)
And the filter (32) detect the vertical motion of the hull (32
a) becomes the feedforward control signal, and the cable tension detection signal (33) is detected by the cable tension meter (33).
a) and the displacement detection signal (34a) of the displacement of the moving pulley (13) by the pulley displacement detector (34) become a feedback signal, and the cable tension setting signal from the setting signal generator (36) is also added, A control signal (40a) is output from the adder / subtractor (40) by calculation, addition, and subtraction of each signal by a circuit as shown in the figure, and the control valve unit (22) is controlled by the control signal (40a). . That is, the drive device (21, 2
2,23) controls the hydraulic pressure generated in the hydraulic power unit (23) as described above to the required amount of oil in the control valve unit (22), and moves the pulley through the hydraulic pipe (21). Pressure oil is sent to the P 1 side or P 2 side of the hydraulic cylinder (20), and the ram of the ram type hydraulic cylinder (11) and the movable pulley (13) are expanded and contracted by the hydraulic movement of the pulley moving hydraulic cylinder (20).
The side is controlled to move so that the mutual distance between the pulley and the fixed pulley (12) is expanded / contracted, and the length of the cable (3) between the pulleys is expanded / contracted so as to be wound or unwound.

ケーブル(3)の前記巻き込みあるいは繰り出しは、船
体上下動揺に対応した自動制御となり、先端部で観測機
器(7)を懸吊しているケーブル(3)の海中側が船体
上下動揺に対応して繰り出されあるいは巻き込まれて、
船体上下動揺に伴う観測機器(7)の昇降が防止され、
原位置(深度)に安定される。
The winding or unwinding of the cable (3) is automatically controlled corresponding to the vertical motion of the hull, and the underwater side of the cable (3) suspending the observation device (7) at the tip part is unreeled in response to the vertical motion of the hull. Be caught or
The observation equipment (7) is prevented from moving up and down due to the vertical motion of the hull,
It is stabilized at its original position (depth).

ラム式油圧シリンダ(11)の上、下端部に軸支された固
定滑車(12)、移動滑車(13)の個数、ケーブル(3)
の掛け廻し回数、移動滑車(13)の有効ストローク
(L)は、観測機器(7)の操作ならびに船体上下動揺
の状態に対応させて設計される。
Number of fixed pulleys (12), movable pulleys (13) pivotally supported on the upper and lower ends of the ram type hydraulic cylinder (11), cables (3)
The number of times of wrapping around and the effective stroke (L) of the movable pulley (13) are designed in accordance with the operation of the observation equipment (7) and the state of vertical motion of the hull.

また、前記滑車移動用油圧シリンダ(20)による移動滑
車(13)の移動制御とともに、給気弁(15e)、排気弁
(15d)で空気バネ装置(15)における空気ボンベユニ
ツト(15c)の空気バネ力の調整が行われて、該空気バ
ネ力は移動滑車(13)の前記移動制御とバランスされ、
滑車移動用油圧シリンダ(20)による移動制御の精度、
信頼性が高められている。
In addition to the movement control of the movable pulley (13) by the hydraulic cylinder (20) for moving the pulley, the air of the air cylinder unit (15c) in the air spring device (15) is controlled by the air supply valve (15e) and the exhaust valve (15d). A spring force adjustment is made to balance the air spring force with the movement control of the moving pulley (13),
Accuracy of movement control by hydraulic cylinder (20) for pulley movement,
Reliability is enhanced.

移動滑車(13)の支持力は、基本的に空気バネ装置(1
5)の空気バネ力で確保され、該空気バネ力による支持
は移動滑車(13)の程よい移動を可能とし、滑車移動用
油圧シリンダ(20)の必要とする出力は、ラム式油圧シ
リンダ(11)のストロークに伴う空気圧の上昇、下降に
相当する推力の変化分に相当することになり、その所要
動力が大幅に軽減され、移動滑車(13)の強制移動制御
の信頼性が高められている。
The supporting force of the moving pulley (13) basically depends on the air spring device (1
It is secured by the air spring force of 5), and the support by the air spring force enables the moving pulley (13) to move appropriately, and the output required for the pulley moving hydraulic cylinder (20) is the ram type hydraulic cylinder (11). ) Corresponds to the amount of change in thrust that corresponds to the rise and fall of air pressure associated with the stroke, the power required is greatly reduced, and the reliability of the forced movement control of the moving pulley (13) is improved. .

以上、本発明の実施例について説明したが、本発明は勿
論このような実施例に局限されるものではなく、本発明
の精神を逸脱しない範囲内で種々の設計改変を施し得
る。
Although the embodiments of the present invention have been described above, the present invention is not of course limited to such embodiments, and various design modifications can be made without departing from the spirit of the present invention.

(発明の効果) 本発明は、前述のような構成になっており、ラム式油圧
シリンダに連設された空気バネ装置の空気バネによっ
て、同ラム式油圧シリンダを介して移動滑車が緩衝、支
持されケーブルの張力変化が吸収、緩衝されるととも
に、船体上下動揺とケーブル張力および移動滑車変位の
各検出に基づくシリンダ駆動制御装置の制御、滑車移動
用油圧シリンダの駆動制御による移動滑車の強制的な移
動制御によって、船体上下動揺に対応してケーブルの繰
り出し巻き取りが自動的に行われ、移動滑車の移動制御
性能、信頼性が高められ、船体上下動揺に対する観測機
器等の懸吊物の位置(深度)の安定性能が著しく向上さ
れている。
(Effects of the Invention) The present invention is configured as described above, and the moving pulley is buffered and supported via the ram hydraulic cylinder by the air spring of the air spring device connected to the ram hydraulic cylinder. The change in cable tension is absorbed and buffered, and the cylinder drive controller is controlled based on the detection of vertical movement of the hull and cable tension and displacement of the moving pulley. The movement control automatically unwinds and winds the cable in response to the vertical movement of the hull, which improves the movement control performance and reliability of the moving pulley, and the position of suspended objects such as observation equipment against the vertical movement of the hull ( Depth) stability performance is significantly improved.

空気バネ装置の併設によって、滑車移動用油圧シリンダ
の消費動力を大幅に軽減するとともに、移動滑車の強制
移動の信頼性が著しく高められている。
By providing the air spring device, the power consumption of the hydraulic cylinder for moving the pulley is significantly reduced, and the reliability of the forced movement of the moving pulley is significantly improved.

【図面の簡単な説明】 第1図(A)は本発明の一実施例を示す全体機構図、第
1図(B)は第1図(A)のスウエルコンペンセータ主
体部の側視図、第2図は第1図(A)の制御装置の詳細
図、第3図は船上のスウエルコンペンセータの配置図、
第4図は従来例の全体機構図である。 3:ケーブル、11:ラム式油圧シリンダ、12:固定滑車、1
3:移動滑車、15:空気バネ装置、20:滑車移動用油圧シリ
ンダ、21,22,23,25:シリンダ駆動制御装置。
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 (A) is an overall mechanical view showing an embodiment of the present invention, FIG. 1 (B) is a side view of the main part of the swell compensator of FIG. 1 (A), FIG. 2 is a detailed view of the control device of FIG. 1 (A), and FIG. 3 is a layout view of the swell compensator on the ship,
FIG. 4 is an overall mechanism diagram of a conventional example. 3: Cable, 11: Ram hydraulic cylinder, 12: Fixed pulley, 1
3: Moving pulley, 15: Air spring device, 20: Hydraulic cylinder for moving pulley, 21, 22, 23, 25: Cylinder drive control device.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 藤本 正司 山口県下関市彦島江の浦町6丁目16番1号 三菱重工業株式会社下関造船所内 (72)発明者 後河内 雅裕 山口県下関市彦島江の浦町6丁目16番1号 三菱重工業株式会社下関造船所内 (56)参考文献 特開 昭61−45891(JP,A) 特開 昭60−234091(JP,A) ─────────────────────────────────────────────────── ─── Continuation of front page (72) Inventor Shoji Fujimoto 6-16-1, Hinoshima Enoura-cho, Shimonoseki City, Yamaguchi Prefecture Mitsubishi Heavy Industries, Ltd. Shimonoseki Shipyard (72) Inventor Masahiro Gokawachi 6 Hinoshima-Enoura Town, Shimonoseki City, Yamaguchi Prefecture No. 16-1 Mitsubishi Heavy Industries Ltd. Shimonoseki Shipyard (56) References JP 61-45891 (JP, A) JP 60-234091 (JP, A)

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】ラム式油圧シリンダの両端部に配設され船
上の懸吊用ケーブルが掛け廻しされた固定滑車と移動滑
車を具備したスウエルコンペンセータにおいて、前記ラ
ム式油圧シリンダに連設され空気バネで前記ケーブルの
張力変化を緩衝する空気バネ装置と、前記移動滑車に連
設され船体上下動揺に対応させて同移動滑車を移動制御
する滑車移動用油圧シリンダと、該滑車移動用油圧シリ
ンダに連設され船体上下動揺とケーブル張力および移動
滑車変位の各検出に基づく制御信号で制御されるシリン
ダ駆動制御装置を具備したことを特徴とするスウエルコ
ンペンセータの制御装置。
1. A swell compensator having fixed pulleys and movable pulleys, which are arranged at both ends of a ram type hydraulic cylinder and around which a cable for suspension on a ship is hung, and are connected to the ram type hydraulic cylinder. An air spring device for buffering the change in tension of the cable with a spring, a pulley cylinder for moving the pulley that is connected to the moving pulley and controls the movement of the moving pulley in response to vertical motion of the hull, and a hydraulic cylinder for moving the pulley. A control device for a swell compensator, comprising a cylinder drive control device that is connected in series and is controlled by a control signal based on detection of cable tension and displacement of a moving pulley.
JP63044189A 1988-02-29 1988-02-29 Swell compensator controller Expired - Lifetime JPH0784319B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63044189A JPH0784319B2 (en) 1988-02-29 1988-02-29 Swell compensator controller

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63044189A JPH0784319B2 (en) 1988-02-29 1988-02-29 Swell compensator controller

Publications (2)

Publication Number Publication Date
JPH01220699A JPH01220699A (en) 1989-09-04
JPH0784319B2 true JPH0784319B2 (en) 1995-09-13

Family

ID=12684624

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63044189A Expired - Lifetime JPH0784319B2 (en) 1988-02-29 1988-02-29 Swell compensator controller

Country Status (1)

Country Link
JP (1) JPH0784319B2 (en)

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60234091A (en) * 1984-05-07 1985-11-20 Agency Of Ind Science & Technol Tension controller for suspension cable in submersible-body elevation apparatus
DE3418026A1 (en) * 1984-05-15 1985-11-21 Mannesmann Rexroth GmbH, 8770 Lohr Winch for picking up floating loads, especially in a swell

Also Published As

Publication number Publication date
JPH01220699A (en) 1989-09-04

Similar Documents

Publication Publication Date Title
US4025055A (en) Apparatus for use in raising or lowering a load in a condition of relative motion
CN109422204B (en) Laying and recycling system for offshore operation
DK2896589T3 (en) Method and apparatus.
AU780589B2 (en) Marine heave compensating device and winch drive
US20200255269A1 (en) Winch apparatus having automatic tension function
US5381909A (en) Winch for towing submerged objects
GB1569595A (en) Cranes
JPH0784319B2 (en) Swell compensator controller
JPH01104596A (en) Auto-tensioner device
JPH0640218Y2 (en) Swell compensator
EP0040210A1 (en) Heave compensator
JP2539464B2 (en) Auto tensioner device
Adamson Efficient heave motion compensation for cable-suspended systems
JP3206248B2 (en) Oscillation absorption device during offshore cargo handling
NL1037953C2 (en) Heave compensated chute.
JPH0445099A (en) Swell compensator controller
JP2539474B2 (en) Auto tensioner device
JP2584798B2 (en) Auto tensioner device
JPH11335078A (en) Suspension load heave control device for crane
KR102415564B1 (en) A floating crane
JP2508087B2 (en) Anti-sway method for object suspension device
JPH11171471A (en) Vibration reducer
JP3087449B2 (en) Long object suspension device
JP3064663B2 (en) Bar suspension equipment
JP3517895B2 (en) Offshore structure rocking device