JPH0784186A - Optical communication device - Google Patents
Optical communication deviceInfo
- Publication number
- JPH0784186A JPH0784186A JP5187478A JP18747893A JPH0784186A JP H0784186 A JPH0784186 A JP H0784186A JP 5187478 A JP5187478 A JP 5187478A JP 18747893 A JP18747893 A JP 18747893A JP H0784186 A JPH0784186 A JP H0784186A
- Authority
- JP
- Japan
- Prior art keywords
- communication
- mirror
- light beam
- light
- optical
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Optical Communication System (AREA)
- Lenses (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は光通信光学装置に関し、
特に通信相手に自分の位置を知らせる為の標識光束を用
いて通信相手を補足し、常に良好な状態で光通信が行え
るようにした、例えば人工衛星と他の人工衛星との間の
光通信や、人工衛星と地上局との間の光通信等に好適な
光通信光学装置に関するものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an optical communication optical device,
Especially, the communication light is supplemented by using the marker light flux for notifying the communication partner of his / her position, and the optical communication is always performed in a good condition, for example, the optical communication between the artificial satellite and another artificial satellite or The present invention relates to an optical communication optical device suitable for optical communication between an artificial satellite and a ground station.
【0002】[0002]
【従来の技術】一般に人工衛星間又は人工衛星と地上局
との間で行われる光通信に於いて、良好な通信状態を確
保する為には、送信側より射出する通信光束の方向と受
信アンテナの向きを正確に一致させる必要がある。2. Description of the Related Art Generally, in optical communication performed between artificial satellites or between an artificial satellite and a ground station, in order to ensure a good communication state, a direction of a communication light beam emitted from a transmitting side and a receiving antenna are used. The orientations of must match exactly.
【0003】このとき信号伝達に使用する通信光束はア
ンテナゲインを大きくする為に、光束の広がりを約1/
1000秒程度に狭めて使用している。これに対し、人
工衛星の姿勢制御能力は1/10〜1/100秒程度で
あり、そのままでは通信光束の射出方向と受信アンテナ
の向きとを一致させることは不可能に近い。At this time, the communication light flux used for signal transmission has a spread of about 1 / th in order to increase the antenna gain.
It is used after being narrowed down to about 1000 seconds. On the other hand, the attitude control capability of the artificial satellite is about 1/10 to 1/100 seconds, and it is almost impossible to match the emission direction of the communication light flux with the direction of the receiving antenna as it is.
【0004】そこで通信光束とは別に標識光束(ビーコ
ンビーム)を用いて通信相手の位置を検出し、該検出結
果に基づき通信光束を通信相手に向けて(所謂ポインテ
ィング操作をして)射出している。Therefore, in addition to the communication light flux, a beacon light beam is used to detect the position of the communication partner, and the communication light flux is emitted toward the communication partner (by so-called pointing operation) based on the detection result. There is.
【0005】即ち、受信者側がまず自分の正確な位置を
送信者に知らせる為、送信者が捕捉し易いよう若干広が
りを持たせた光束をビーコンビームとして送信者側に射
出し、これを送信側が受信してビーコンビームの到来方
向を正確に検出し、その方向に通信光束を射出してい
る。That is, in order for the receiver side to inform the sender of his / her exact position, the transmitter side emits a light beam with a slight spread so that the sender can easily capture it, as a beacon beam, and the transmitter side outputs this. The direction of arrival of the beacon beam is detected accurately, and the communication light beam is emitted in that direction.
【0006】図4(A)は従来の光通信光学装置30の
要部光路図、図4(B),図4(C)は図4(A)の一
部分の拡大説明図である。FIG. 4A is an optical path diagram of a main part of a conventional optical communication optical device 30, and FIGS. 4B and 4C are enlarged explanatory views of a part of FIG. 4A.
【0007】図中、31は主鏡であり、通信相手側に凹
面を向けた放物状の反射面である。21は副鏡であり、
主鏡31側に凸状の反射面を向け配置している。主鏡3
1と副鏡21は所謂カセグレン式の反射光学系32を構
成している。22は正のパワーを持つコリメーターレン
ズであり、焦点位置が反射光学系32の焦点位置Pと光
軸La上で一致するように配置されている。In the figure, reference numeral 31 is a main mirror, which is a parabolic reflecting surface having a concave surface facing the communication partner. 21 is a secondary mirror,
A convex reflecting surface is arranged facing the main mirror 31 side. Primary mirror 3
1 and the sub mirror 21 constitute a so-called Cassegrain type reflection optical system 32. Reference numeral 22 denotes a collimator lens having a positive power, which is arranged so that the focal position coincides with the focal position P of the reflective optical system 32 on the optical axis La.
【0008】33はポインティング手段であり、全反射
ミラー28,29を有している。ポインティング手段3
3は全反射ミラー28と全反射ミラー29とを相対的に
傾けることにより、全反射ミラー29以降の光学要素が
成す光軸Lbと反射光学系32やコリメーターレンズ2
2の成す光軸Laとの傾きを調整し、射出する通信光束
の方向を通信相手の方向に正確に向けている。Reference numeral 33 is a pointing means, which has total reflection mirrors 28 and 29. Pointing means 3
Reference numeral 3 indicates the optical axis Lb formed by optical elements after the total reflection mirror 29, the reflection optical system 32, and the collimator lens 2 by inclining the total reflection mirror 28 and the total reflection mirror 29 relatively.
The inclination of the optical axis La formed by 2 is adjusted, and the direction of the outgoing communication light flux is accurately directed to the direction of the communication partner.
【0009】24は光束を波長により透過光と、反射光
とに分割するビームスプリッタであり、同図では通信光
束を透過し、標識光束を反射している。Reference numeral 24 denotes a beam splitter which splits a light beam into a transmitted light and a reflected light depending on the wavelength. In the figure, a communication light beam is transmitted and a marker light beam is reflected.
【0010】26は凸レンズ、23は通信光束送受信手
段である。通信光束送受信手段23は通信光束受信部3
4や通信光束送信部35、そしてハーフミラー39等を
有している。通信相手からの通信光束は凸レンズ26で
収斂されハーフミラー39を透過し、通信光束受信部3
4上に集光されて光電変換される。また通信光束送信部
35からの通信光束はハーフミラー39で反射され凸レ
ンズ26で平行光束とされている。Reference numeral 26 is a convex lens, and 23 is a communication light flux transmitting / receiving means. The communication light flux transmitting / receiving means 23 is a communication light flux receiving unit 3
4, the communication light flux transmitter 35, the half mirror 39, and the like. The communication light flux from the communication partner is converged by the convex lens 26 and transmitted through the half mirror 39, and the communication light flux receiver 3
It is condensed on 4 and photoelectrically converted. The communication light flux from the communication light flux transmitter 35 is reflected by the half mirror 39 and made into a parallel light flux by the convex lens 26.
【0011】27は凸レンズ、25は標識光束送受信手
段である。標識光束送受信部25は標識光束受信部36
や標識光束送信部37、そしてハーフミラー38等を有
している。通信相手からのビーコンビームは凸レンズ2
7で収斂され標識光束送受信手段25のハーフミラー3
8を介し、標識光束受信部36上に集光されて光電変換
される。Reference numeral 27 is a convex lens, and 25 is a marker light beam transmitting / receiving means. The marker light flux transmitting / receiving unit 25 is a marker light flux receiving unit 36.
It has a marker light flux transmitter 37, a half mirror 38, and the like. Beacon beam from communication partner is convex lens 2
Half mirror 3 of the labeled light flux transmitting / receiving means 25 converged by 7
Then, the light is focused on the marker light beam receiving unit 36 via 8 and photoelectrically converted.
【0012】標識光束送信部37は凸レンズ27の焦点
位置から光軸方向へ僅かにずらした位置に配置してお
り、該標識光束送信部37より射出するビーコンビーム
はハーフミラー38で反射され凸レンズ27でやや広が
りを有した平行光束とされている。また凸レンズ27は
光軸L′方向に移動可能に設けられており、標識光束送
信部37に対して焦点位置を変えてビーコンビームのビ
ーム幅を変更可能にしている。The marker light beam transmitter 37 is arranged at a position slightly shifted from the focal position of the convex lens 27 in the optical axis direction, and the beacon beam emitted from the marker light beam transmitter 37 is reflected by the half mirror 38 to be convex lens 27. It is a parallel light beam with a little spread. The convex lens 27 is provided so as to be movable in the direction of the optical axis L ', and the beam width of the beacon beam can be changed by changing the focal position with respect to the marker light beam transmitting unit 37.
【0013】光通信を行う場合、まず自分と通信相手の
軌道位置及び姿勢方向を計算で算出し、本装置30が略
通信相手方向に向くよう姿勢制御を行う。In the case of optical communication, first, the orbital position and the posture direction of the communication partner and that of the communication partner are calculated, and the posture control is performed so that the device 30 is oriented substantially in the direction of the communication partner.
【0014】次に受信側は送信側へ自分の正確な位置を
伝えるために、ビーコンビームを射出する。そして該ビ
ーコンビームを受光した送信者は受信者の位置を求め、
受信者の位置と、送信しようとする通信光束の光軸との
ズレを算出し、該光軸のズレを補正するようにポインテ
ィング手段33を調整して通信光束を射出し、光通信を
行っている。Next, the receiving side emits a beacon beam in order to convey its exact position to the transmitting side. And the sender who received the beacon beam seeks the position of the receiver,
The deviation between the position of the receiver and the optical axis of the communication light beam to be transmitted is calculated, and the pointing means 33 is adjusted to correct the deviation of the optical axis to emit the communication light beam for optical communication. There is.
【0015】[0015]
【発明が解決しようとする課題】図4に示す光通信光学
装置に於てビーコンビームは送信側が受信し易いよう
に、若干広がりを有しているので、図5に示すように副
鏡21で光束の外側が制限され、利用できる主鏡31の
面積が限られてしまい、これを補うためには大きな面積
の主鏡が必要と成り装置全体が大型化するといった問題
点があった。In the optical communication optical device shown in FIG. 4, the beacon beam has a slight spread so that the transmitting side can easily receive it. Therefore, as shown in FIG. There is a problem that the outside of the light flux is limited and the usable area of the primary mirror 31 is limited, so that a primary mirror with a large area is required to compensate for this and the size of the entire apparatus becomes large.
【0016】また、ビーコンビームの中心が副鏡21に
遮られて、光軸と垂直な面内に於て強度分布が周辺部で
強く中心部で弱い、所謂ドーナツ状に成ってしまう。特
に、本来強度の強い光束中心付近が影に成ることによ
り、総合出力が大幅に低下してしまうという問題点があ
った。Further, the center of the beacon beam is blocked by the secondary mirror 21, and the intensity distribution in a plane perpendicular to the optical axis becomes so-called donut shape in which the intensity is strong in the peripheral portion and weak in the central portion. In particular, there is a problem in that the total output is significantly reduced due to the shadow around the center of the light flux, which is originally strong.
【0017】更に、通信相手がビーコンビームを用いて
ポインティング操作を行う際に、ドーナツ状であること
を考慮しなければならず、ポインティング操作のアルゴ
リズムに非常に大きな影響を与えるという欠点があっ
た。Further, when the communication partner performs the pointing operation using the beacon beam, it is necessary to consider that it is in a donut shape, which has a drawback that it greatly affects the algorithm of the pointing operation.
【0018】本発明はビーコンビームを副鏡に設けた光
通過領域を介して射出することにより、効率良く高い強
度で射出することができ、通信相手に与える光強度分布
を均一として、常に良好な状態での光通信を可能とした
光通信光学装置の提供を目的としている。According to the present invention, the beacon beam is emitted through the light passage area provided in the secondary mirror, so that the beacon beam can be emitted efficiently and with high intensity, and the light intensity distribution given to the communication partner is made uniform and always good. An object of the present invention is to provide an optical communication optical device that enables optical communication in a state.
【0019】[0019]
【課題を解決するための手段】本発明の光通信光学装置
は通信相手側に凹面を向けた主鏡に対して副鏡を対向配
置した反射光学系と、通信相手からの通信光束を該反射
光学系の主鏡と副鏡の順に反射させて受光し光通信を行
う通信光束受信部と、通信相手に自分の位置を知らせる
標識光束を該副鏡に設けた光通過領域を介して該反射光
学系の光軸と略同方向の通信相手側へ射出する標識光束
送信部と、を有したことを特徴としている。An optical communication optical device of the present invention is a reflection optical system in which a sub-mirror is arranged opposite to a main mirror having a concave surface facing the communication partner, and a communication light beam from the communication partner is reflected by the reflection optical system. A communication light flux receiving unit that performs optical communication by reflecting and receiving in order the primary mirror and the secondary mirror of the optical system, and a reflection light beam that notifies the communication partner of its own position through the light passage area provided in the secondary mirror. And a marker light beam transmitter that emits light to a communication partner side in substantially the same direction as the optical axis of the optical system.
【0020】この他、通信相手側に凹面を向けた主鏡に
対して副鏡を対向配置した反射光学系と、通信相手から
の通信光束を該反射光学系の主鏡と副鏡の順に反射させ
て受光し光通信を行う通信光束受信部と、通信相手に自
分の位置を知らせる標識光束を該反射光学系の光軸と略
同方向の通信相手側へ標識光束用レンズ系と該副鏡に設
けた光通過領域とを介して射出する標識光束送信部とを
有し、該副鏡の光通過領域の径をD2、該標識光束用レ
ンズ系の副鏡側の最終レンズ面を通る該標識光束の光束
径をD1、該最終レンズ面と該副鏡までの光軸上の距離
をL、該最終レンズ面と該最終レンズ面を通過した標識
光束の集光位置との距離をXとしたとき、In addition, a reflection optical system in which a sub-mirror is arranged to face a main mirror having a concave surface facing the communication partner, and a communication light beam from the communication partner is reflected in the order of the main mirror and the sub mirror of the reflection optical system. A communication light beam receiving unit for receiving and receiving optical communication, and a marker light beam for notifying the communication partner of his / her position to the communication partner side substantially in the same direction as the optical axis of the reflection optical system and the marker light beam lens system and the secondary mirror. And a marker light beam transmitting unit that emits light through the light beam passing area provided in the second mirror, the diameter of the light beam passing area of the secondary mirror is D2, and the marker light beam passing through the final lens surface on the secondary mirror side of the marker light beam lens system. The diameter of the marker light beam is D1, the distance on the optical axis from the final lens surface to the sub-mirror is L, and the distance between the final lens surface and the converging position of the marker light beam passing through the final lens surface is X. When I did
【0021】[0021]
【数2】 を満足することを特徴としている。[Equation 2] It is characterized by satisfying.
【0022】[0022]
【実施例】図1は本発明の実施例1の要部概略図であ
る。本実施例では通信光束を用いて、例えば人工衛星間
での光通信を行なうものであり、通信光束と異なる波長
の標識光束(ビーコンビーム)で通信相手の位置を確認
してポインティング操作を行っている。Embodiment 1 FIG. 1 is a schematic view of the essential portions of Embodiment 1 of the present invention. In this embodiment, for example, optical communication is performed between artificial satellites using a communication light beam, and the position of a communication partner is confirmed by a beacon light beam having a wavelength different from that of the communication light beam to perform a pointing operation. There is.
【0023】図中1は主鏡であり、通信相手側に凹面を
向けた放物面より成る反射面1aを有している。2は副
鏡であり、主鏡1側に凸面を向けた反射面2aを有し、
該反射面2aの略中央部に貫通穴(光通過領域)2bを
設けている。In the figure, reference numeral 1 denotes a primary mirror, which has a reflecting surface 1a consisting of a parabolic surface with a concave surface facing the communication partner. 2 is a secondary mirror, which has a reflecting surface 2a having a convex surface facing the primary mirror 1,
A through hole (light passage region) 2b is provided at a substantially central portion of the reflecting surface 2a.
【0024】主鏡1と副鏡2は所謂カセグレン式の反射
光学系12を構成している。The primary mirror 1 and the secondary mirror 2 constitute a so-called Cassegrain type reflection optical system 12.
【0025】3は正のパワーを有するコリメーターレン
ズであり、焦点位置が反射光学系12の焦点位置Pと光
軸La上で一致するように配置している。Reference numeral 3 denotes a collimator lens having a positive power, which is arranged so that the focal position coincides with the focal position P of the reflective optical system 12 on the optical axis La.
【0026】7はポインティング手段であり、全反射鏡
8,9を有し、該全反射鏡8と全反射鏡9とを相対的に
かたむけることにより全反射鏡9以降の光学素子の成す
光軸Lbと反射光学系12やコリメーターレンズ3の成
す光軸Laとの傾きを調整して、射出する通信光束を通
信相手へ正確に向けている。A pointing means 7 has total reflection mirrors 8 and 9, and the total reflection mirror 8 and the total reflection mirror 9 are relatively bent to form an optical axis formed by optical elements after the total reflection mirror 9. By adjusting the inclination between Lb and the optical axis La formed by the reflection optical system 12 and the collimator lens 3, the outgoing communication light flux is accurately directed to the communication partner.
【0027】4は光束を波長により透過光と反射光とに
分割するビームスプリッターであり、本発明では通信光
束を透過させ、ビーコンビームを反射している。Reference numeral 4 denotes a beam splitter that splits a light beam into a transmitted light and a reflected light depending on the wavelength. In the present invention, the communication light beam is transmitted and the beacon beam is reflected.
【0028】6は凸レンズ、11は通信光束送受信手段
である。通信光束送受信手段11は通信光束受信部13
や通信光束送信部14、そしてハーフミラー15等を有
している。通信相手からの通信光束は凸レンズ6で収斂
されハーフミラー15を介し、通信光束受信部13上に
集光されて光電変換される。また通信光束送信部14か
らの通信光束はハーフミラー15で反射され凸レンズ6
で平行光束とされている。Reference numeral 6 is a convex lens, and 11 is a communication light flux transmitting / receiving means. The communication light flux transmitting / receiving means 11 is a communication light flux receiving unit 13.
It has a communication light flux transmitter 14, a half mirror 15, and the like. The communication light flux from the communication partner is converged by the convex lens 6, passes through the half mirror 15, and is condensed on the communication light flux receiver 13 to be photoelectrically converted. Further, the communication light flux from the communication light flux transmitter 14 is reflected by the half mirror 15 and the convex lens 6
Is a parallel light flux.
【0029】5は凸レンズ、16は標識光束送受信手段
である。標識光束送受信手段16は標識光束送信部18
や標識光束受信部17、ハーフミラー19などを有して
いる。凸レンズ5はビームスプリッタ4で反射された通
信相手側からの標識光束受信部17上に集光している。
また凸レンズ5は標識光束送信部18からのビーコンビ
ームを集光しており、その集光位置を変え通信相手に対
して効率良く射出可能とするために光軸L′方向へ移動
可能に設けている。Reference numeral 5 is a convex lens, and 16 is a marker light beam transmitting / receiving means. The marker light flux transmission / reception means 16 is a marker light flux transmitter 18
It also has a marker beam receiver 17, a half mirror 19, and the like. The convex lens 5 focuses on the beacon light receiving unit 17 from the communication partner side reflected by the beam splitter 4.
The convex lens 5 collects the beacon beam from the beacon light beam transmitter 18, and is provided movably in the direction of the optical axis L'to change its collecting position so that the beacon beam can be efficiently emitted to the communication partner. There is.
【0030】凸レンズ5とコリメーターレンズ3はビー
コンビームを副鏡2の貫通穴2bの略中央の位置Sに集
光する標識光束用レンズ系の一要素を構成している。The convex lens 5 and the collimator lens 3 constitute one element of a marker light beam lens system for condensing the beacon beam at a position S substantially in the center of the through hole 2b of the secondary mirror 2.
【0031】本実施例に於て光通信を行う場合、まず自
分と通信相手の軌道位置及び姿勢方向を計算で算出し、
本装置10が略通信相手方向に向くよう姿勢制御を行
う。When optical communication is performed in this embodiment, first, the orbital position and attitude direction of the communication partner and the communication partner are calculated,
Attitude control is performed so that the device 10 faces substantially the communication partner direction.
【0032】次に受信側は送信側に自分の正確な位置を
伝えるために、標識光束送信部18からビーコンビーム
18aを射出する。そして該ビーコンビームを受光した
送信側は受信側の正確な位置を求め、受信者の位置と送
信しようとする通信光束の光軸とのズレを算出し、該光
軸のズレを補正するようにポインティング手段7を調整
して通信光束送信部14より通信光束14aを射出し、
光通信を行っている。Next, the receiving side emits a beacon beam 18a from the beacon light beam transmitting section 18 in order to inform the transmitting side of its own accurate position. Then, the transmitting side that receives the beacon beam obtains an accurate position of the receiving side, calculates the deviation between the position of the receiver and the optical axis of the communication light beam to be transmitted, and corrects the deviation of the optical axis. Adjust the pointing means 7 to emit the communication light flux 14a from the communication light flux transmitter 14;
Optical communication is performed.
【0033】このときの通信光束14aを図1中、実線
で示している。通信相手からの通信光束は主鏡1の反斜
面1aに入射し、入射してきた方向に収斂しながら反射
された後、副鏡2の反射面2aで反射され、光軸La上
の集光位置Pに一旦集光し、コリメーターレンズ3によ
り平行光束に変換される。The communication light beam 14a at this time is shown by a solid line in FIG. The communication light flux from the communication partner is incident on the anti-slope 1a of the primary mirror 1, is reflected while converging in the incident direction, is then reflected by the reflective surface 2a of the secondary mirror 2, and is a focus position on the optical axis La. It is once condensed on P and is converted into a parallel light beam by the collimator lens 3.
【0034】そしてポインティング手段7を介し、ビー
ムスプリッター4を透過して凸レンズ6で通信光束受信
手段13上に集光され光電変換される。Then, the light is transmitted through the beam splitter 4 via the pointing means 7, and is condensed on the communication light flux receiving means 13 by the convex lens 6 to be photoelectrically converted.
【0035】また通信相手へ送信される通信光束は通信
光束送信部14よりハーフミラー15で反射されて凸レ
ンズ6で平行光とされて受信時と略逆の光路をたどる。Further, the communication light beam transmitted to the communication partner is reflected by the communication light beam transmitter 14 by the half mirror 15 and made into parallel light by the convex lens 6 and follows an optical path substantially opposite to that at the time of reception.
【0036】一方、通信相手からのビーコンビームは主
鏡1と副鏡2の順で反射し集光されて、コリメーターレ
ンズ3、ポインティング手段7を介してビームスプリツ
タ4で反射され凸レンズ5で標識光束受信部17上に集
光されている。On the other hand, the beacon beam from the communication partner is reflected and condensed in the order of the primary mirror 1 and the secondary mirror 2, is reflected by the beam splitter 4 via the collimator lens 3 and the pointing means 7, and is projected by the convex lens 5. It is focused on the marker light beam receiving unit 17.
【0037】また通信相手側へ射出するビーコンビーム
18aは図1中、点線で示すように標識光束送信部18
より射出し、ハーフミラー19を透過し、凸レンズ5で
集光される。Further, the beacon beam 18a emitted to the other party of communication is indicated by a dotted line in FIG.
It is further emitted, passes through the half mirror 19, and is condensed by the convex lens 5.
【0038】凸レンズ5で集光された光束はビームスプ
リッタ4で反射されポインティング手段7を介してコリ
メータレンズ3で位置Sに集光されて副鏡2に設けた貫
通穴2bを通り通信相手側へ射出している。The light beam condensed by the convex lens 5 is reflected by the beam splitter 4, is condensed at the position S by the collimator lens 3 through the pointing means 7, passes through the through hole 2b provided in the secondary mirror 2, and is transmitted to the communication partner side. It is ejecting.
【0039】ここでビーコンビーム18aが効率よく射
出するためには副鏡2の反射面2aで遮られることなく
貫通穴2bを通過する必要がある。Here, in order to efficiently emit the beacon beam 18a, it is necessary to pass through the through hole 2b without being blocked by the reflecting surface 2a of the secondary mirror 2.
【0040】従って副鏡2の光軸中心に開けられた貫通
穴2bの径をD2、ビーコンビーム18aを位置Sに集
光する標識光束用レンズ系のうち最も位置S側のレンズ
面(以下単に最終レンズ面と称する。なお、本実施例で
最終レンズ面はコリメーターレンズ3のレンズ面3aで
ある。)でのビーコン光束径をD1、最終レンズ面3a
から副鏡2までの光軸上の距離をL、該最終レンズ面3
aからビーコンビームの集光位置Sまでの距離をXとし
たとき、次式を満足することが望ましい。Therefore, the diameter of the through hole 2b formed in the center of the optical axis of the secondary mirror 2 is D2, and the lens surface on the most position S side of the marker light beam lens system for condensing the beacon beam 18a at the position S (hereinafter simply referred to as "the lens surface"). The final lens surface is the lens surface 3a of the collimator lens 3 in this embodiment.) The beacon luminous flux diameter at the collimator lens 3 is D1, and the final lens surface 3a.
To the secondary mirror 2 on the optical axis is L, and the final lens surface 3
When X is the distance from a to the focus position S of the beacon beam, it is desirable to satisfy the following equation.
【0041】[0041]
【数3】 これらの構成により本実施例では中心に影の無い、一様
に広がったビーコンビームを効率良く射出している。[Equation 3] With this configuration, in the present embodiment, a beacon beam that has no shadow in the center and is uniformly spread is efficiently emitted.
【0042】本実施例に於て、全反射ミラー8をビーム
スプリッターとし、又ビームスプリッター4を全反射ミ
ラーとし、その後方に標識光束送受信手段16を配置し
ても良い。In this embodiment, the total reflection mirror 8 may be a beam splitter, the beam splitter 4 may be a total reflection mirror, and the marker light beam transmission / reception means 16 may be arranged behind it.
【0043】図2,図3は本発明の実施例2の光路図で
ある。図2は通信相手からの通信光束の光路を示し、図
3は通信相手へ射出するビーコンビームの光路を示して
いる。2 and 3 are optical path diagrams of the second embodiment of the present invention. 2 shows an optical path of a communication light beam from a communication partner, and FIG. 3 shows an optical path of a beacon beam emitted to the communication partner.
【0044】図中40は主鏡であり、通信相手側に凹面
を向けた放物面より成る反射面40aを有している。4
1は副鏡であり、主鏡40側に凹面を向けた反射面41
aを有し、該反射面41aの略中央部に貫通穴(光通過
領域)41bを設けている。In the figure, reference numeral 40 denotes a primary mirror, which has a reflecting surface 40a which is a parabolic surface having a concave surface facing the communication partner. Four
Reference numeral 1 denotes a secondary mirror, which is a reflecting surface 41 having a concave surface facing the primary mirror 40.
a, and a through hole (light passage region) 41b is provided substantially in the center of the reflecting surface 41a.
【0045】主鏡40と副鏡41は所謂グレゴリー式の
反射光学系55を構成しており、光軸上の一点で両反射
面40a,41aの球心が一致するように配置されてい
る。The primary mirror 40 and the secondary mirror 41 constitute a so-called Gregory type reflection optical system 55, and are arranged so that the spherical centers of the reflection surfaces 40a and 41a coincide with each other at one point on the optical axis.
【0046】42は入射光束を波長により透過光と、反
射光とに分割する中央部に貫通穴42bを有したビーム
スプリッターであり、ビーコンビームを透過させ、通信
光束を反射している。Reference numeral 42 is a beam splitter having a through hole 42b in the central portion for splitting an incident light beam into a transmitted light and a reflected light according to a wavelength, which transmits a beacon beam and reflects a communication light beam.
【0047】56はポインティング手段であり全反射鏡
43,44を有している。ポインティング手段56は全
反射鏡43と全反射鏡44とを相対的に傾けることによ
り全反射鏡44以降の光学要素が成す光軸Lbと反射光
学系55等の成す光軸Laとの傾きを調整し、射出する
通信光束を通信相手へ正確に向けている。Reference numeral 56 is a pointing means having total reflection mirrors 43 and 44. The pointing means 56 adjusts the inclination between the optical axis Lb formed by the optical elements after the total reflection mirror 44 and the optical axis La formed by the reflection optical system 55 by tilting the total reflection mirror 43 and the total reflection mirror 44 relatively. Then, the emitted communication light beam is accurately directed to the communication partner.
【0048】45は凸レンズ、46は通信光束送受信手
段である。通信光束送受信手段46は通信光束受信部4
7や通信光束送信部48、そしてハーフミラー49など
を有している。通信相手からの通信光束は凸レンズ45
で収斂されハーフミラー49を介し、通信光束受信部4
7上に集光されて光電変換される。また通信光束送信部
48からの通信光束はハーフミラー49で反射され凸レ
ンズ45で平行光束とされている。Reference numeral 45 is a convex lens, and 46 is a communication light flux transmitting / receiving means. The communication light flux transmitting / receiving means 46 is the communication light flux receiving unit 4.
7, a communication light flux transmitter 48, a half mirror 49, and the like. The communication light flux from the communication partner is a convex lens 45.
And the communication light flux receiving unit 4 through the half mirror 49.
It is condensed on 7 and photoelectrically converted. Further, the communication light flux from the communication light flux transmitter 48 is reflected by the half mirror 49 and made into a parallel light flux by the convex lens 45.
【0049】50は凸レンズ(標識光束用レンズ系)、
53は標識光束送受信手段である。標識光束送受信手段
53は標識光束受信部51や標識光束送信部52、ハー
フミラー54などを有している。凸レンズ50は通信相
手からのビーコン光束をビーコン光束受信部51上に集
光している。また凸レンズ50は標識光束送信部52か
らのビーコンビームを光軸La上の位置Sに集光してい
る。Reference numeral 50 denotes a convex lens (lens system for labeled light flux),
Reference numeral 53 is a marker light flux transmitting / receiving means. The marker light flux transmitting / receiving unit 53 includes a marker light flux receiver 51, a marker light flux transmitter 52, a half mirror 54, and the like. The convex lens 50 focuses the beacon luminous flux from the communication partner on the beacon luminous flux receiver 51. Further, the convex lens 50 focuses the beacon beam from the beacon light flux transmitter 52 at a position S on the optical axis La.
【0050】本実施例に於て、通信相手からの通信光束
は主鏡40の反斜面40aに入射し反射されて、入射し
てきた方向に収斂しながら、ビームスプリッター42の
貫通穴42bを通過し、副鏡2に入射する。そして副鏡
2の反射面2aで反射し略平行光とされて、ビームスプ
リッタ42で反射される。In the present embodiment, the communication light flux from the communication partner enters the anti-slope 40a of the main mirror 40, is reflected, and passes through the through hole 42b of the beam splitter 42 while converging in the incoming direction. , Is incident on the secondary mirror 2. Then, the light is reflected by the reflecting surface 2 a of the secondary mirror 2 to be substantially parallel light, and then reflected by the beam splitter 42.
【0051】ビームスプリッタ42で反射された通信光
束はポインティング手段56を介した後、凸レンズ45
により通信光束受信部47上に集光されて光電変換され
る。The communication light beam reflected by the beam splitter 42 passes through a pointing means 56 and then a convex lens 45.
The light is condensed on the communication light flux receiver 47 and photoelectrically converted.
【0052】また、通信相手へ射出するビーコンビーム
は標識光束送信部52から射出し、ハーフミラー54を
反射して凸レンズ50に入射し、凸レンズ50で焦点位
置Sに集光するよう収斂され、副鏡41の貫通穴41b
を通り通信相手側に射出している。Further, the beacon beam emitted to the communication partner is emitted from the beacon light beam transmitting section 52, reflected by the half mirror 54, enters the convex lens 50, and is converged by the convex lens 50 so as to be condensed at the focal position S. Through hole 41b of mirror 41
It passes through and is emitted to the other party.
【0053】光通信を行う場合、まず自分と通信相手の
軌道位置及び姿勢方向を計算で算出し、本装置20が略
通信相手方向に向くよう姿勢制御を行う。次に受信側は
送信側に自分の正確な位置を伝えるために、標識光束送
信部52からビーコンビームを射出し、該ビーコンビー
ムを受光した送信側は受信側の正確な位置及び方角を求
め、受信者と、自分が送信しようとする通信光束の光軸
とのズレを算出する。When optical communication is performed, first, the orbital position and posture direction of the communication partner and that of the communication partner are calculated, and the posture control is performed so that the device 20 faces substantially the direction of the communication partner. Next, the receiving side emits a beacon beam from the beacon light flux transmitting unit 52 in order to convey its own accurate position to the transmitting side, and the transmitting side which has received the beacon beam obtains the accurate position and direction of the receiving side, Calculate the deviation between the receiver and the optical axis of the communication light beam that he or she intends to transmit.
【0054】そして該光軸のズレを補正するようにポイ
ンティング手段56を調整して通信光束を射出し、光通
信を行っている。Then, the pointing means 56 is adjusted so as to correct the deviation of the optical axis, and the communication light beam is emitted to perform the optical communication.
【0055】ここでビーコンビームはポインティング手
段56を経由しないので、反射光学系55等の光軸La
の動き量や移動方向を検出して標識光束送受信手段53
の位置を制御し、光軸Laの移動と連動させるか、ビー
コンビームの広がり角を通信光学系の光軸移動量以上に
設定しておくと良い。Here, since the beacon beam does not pass through the pointing means 56, the optical axis La of the reflection optical system 55, etc.
Marker light flux transmitting / receiving means 53 by detecting the amount of movement and the moving direction of
It is advisable to control the position of (1) and link it with the movement of the optical axis La, or set the divergence angle of the beacon beam to be equal to or more than the optical axis movement amount of the communication optical system.
【0056】これらの構成により本実施例では、自分の
ビーコンビームが自分の通信光束受光手段47に与える
ゴーストの影響を大幅に小さくしている。With this configuration, in this embodiment, the influence of the ghost that the beacon beam of the user has on the communication light beam receiving means 47 of the user is greatly reduced.
【0057】また、本実施例ではビーコンビームが副鏡
41で遮られる事なく効率良く射出でき、主鏡40の面
積や標識光束送信部(レーザーダイオード等)52の出
力及び消費電力の増大化を防止し、衛星の軽量化、長寿
命化を可能としている。Further, in the present embodiment, the beacon beam can be efficiently emitted without being blocked by the secondary mirror 41, and the area of the primary mirror 40 and the output of the marker light beam transmitting section (laser diode etc.) 52 and the power consumption can be increased. It is possible to reduce the weight and extend the life of the satellite.
【0058】尚、本実施例に於て光通過領域は副鏡41
に設けた貫通穴41bとして説明したが、これに限ら
ず、例えば副鏡41を透明部材とし、主鏡側の面41a
に反射膜を形成し、一部(貫通穴41bに相当する領
域)に開口を設けて該開口若しくはハーフミラー面を介
してビーコンビームを射出するように構成しても良い
し、該主鏡側の面41aの一部にダイクロイック膜や半
透過膜等を形成することにより、ビーコンビームを透過
し、通信光束を反射する構成としても良い。In this embodiment, the light passing area is the secondary mirror 41.
However, the present invention is not limited to this, and for example, the sub-mirror 41 is a transparent member and the surface 41a on the main mirror side is formed.
Alternatively, a reflection film may be formed on a part of the surface (a region corresponding to the through-hole 41b) and a beacon beam may be emitted through the opening or the half mirror surface. It is also possible to form a dichroic film, a semi-transmissive film, or the like on a part of the surface 41a of FIG. 1 to transmit the beacon beam and reflect the communication light flux.
【0059】[0059]
【発明の効果】本発明によれば標識光束(ビーコンビー
ム)を副鏡の光通過領域を介して射出することにより、
ビーコンビームを効率良く高い強度で射出することがで
き、通信相手に与える光強度分布を均一として、常に良
好な状態での光通信を可能とした光通信光学装置を達成
することができる。According to the present invention, by emitting the marker light beam (beacon beam) through the light passage area of the secondary mirror,
It is possible to efficiently emit a beacon beam with a high intensity, to make the light intensity distribution given to the communication partner uniform, and to achieve an optical communication optical device capable of always performing optical communication in a good state.
【図1】 本発明の実施例1の要部概略図FIG. 1 is a schematic view of a main part of a first embodiment of the present invention.
【図2】 本発明の実施例2の要部光路図FIG. 2 is an optical path diagram of a main part of a second embodiment of the present invention.
【図3】 本発明の実施例2の要部光路図FIG. 3 is a main part optical path diagram of a second embodiment of the present invention.
【図4】 従来の光通信光学装置の要部該略図FIG. 4 is a schematic view of a main part of a conventional optical communication optical device.
【図5】 従来の光通信光学装置の光路説明図FIG. 5 is an optical path explanatory diagram of a conventional optical communication optical device.
1,40 主鏡 2,41 副鏡 12,55 反射光学系 13,47 通信光束受信部 14,48 通信光束送信部 17,51 標識光束受信部 18,52 標識光束送信部 7,56 ポインティング手段 1,40 Primary mirror 2,41 Secondary mirror 12,55 Reflective optical system 13,47 Communication luminous flux receiver 14,48 Communication luminous flux transmitter 17,51 Marked luminous flux receiver 18,52 Marked luminous flux transmitter 7,56 Pointing means
Claims (2)
副鏡を対向配置した反射光学系と、通信相手からの通信
光束を該反射光学系の主鏡と副鏡の順に反射させて受光
し光通信を行う通信光束受信部と、通信相手に自分の位
置を知らせる標識光束を該副鏡に設けた光通過領域を介
して該反射光学系の光軸と略同方向の通信相手側へ射出
する標識光束送信部と、を有したことを特徴とする光通
信光学装置。1. A reflection optical system in which a sub-mirror is arranged so as to face a main mirror having a concave surface facing the communication partner, and a communication light beam from the communication partner is reflected in the order of the main mirror and the sub mirror of the reflection optical system. A communication light beam receiving unit that receives light by receiving light to perform optical communication, and a communication light beam in a direction substantially the same as the optical axis of the reflective optical system through a light passing region provided in the sub-mirror for transmitting a marker light beam that notifies the communication partner of its own position. An optical communication optical device, comprising: a marker light beam transmitting unit that emits to the side.
副鏡を対向配置した反射光学系と、通信相手からの通信
光束を該反射光学系の主鏡と副鏡の順に反射させて受光
し光通信を行う通信光束受信部と、通信相手に自分の位
置を知らせる標識光束を該反射光学系の光軸と略同方向
の通信相手側へ標識光束用レンズ系と該副鏡に設けた光
通過領域とを介して射出する標識光束送信部とを有し、
該副鏡の光通過領域の径をD2、該標識光束用レンズ系
の副鏡側の最終レンズ面を通る該標識光束の光束径をD
1、該最終レンズ面と該副鏡までの光軸上の距離をL、
該最終レンズ面と該最終レンズ面を通過した標識光束の
集光位置との距離をXとしたとき、 【数1】 を満足することを特徴とする光通信光学装置。2. A reflection optical system in which a sub-mirror is disposed so as to face a main mirror having a concave surface facing the communication partner, and a communication light beam from the communication partner is reflected in the order of the main mirror and the sub mirror of the reflection optical system. And a communication light beam receiving unit for receiving light to perform optical communication, and a marker light beam for notifying the communication partner of his / her position to the communication partner side substantially in the same direction as the optical axis of the reflection optical system. And a marker light flux transmitter that emits through the provided light passage region,
The diameter of the light passage region of the secondary mirror is D2, and the diameter of the marker light flux passing through the final lens surface on the secondary mirror side of the marker light beam lens system is D.
1, the distance on the optical axis between the final lens surface and the secondary mirror is L,
When the distance between the final lens surface and the converging position of the marker light flux passing through the final lens surface is X, An optical communication optical device, characterized in that
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP5187478A JPH0784186A (en) | 1993-06-30 | 1993-06-30 | Optical communication device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP5187478A JPH0784186A (en) | 1993-06-30 | 1993-06-30 | Optical communication device |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH0784186A true JPH0784186A (en) | 1995-03-31 |
Family
ID=16206782
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP5187478A Pending JPH0784186A (en) | 1993-06-30 | 1993-06-30 | Optical communication device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0784186A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2011239385A (en) * | 2010-05-07 | 2011-11-24 | Itt Manufacturing Enterprises Inc | Amplification of interleaved optical signals |
KR20160030310A (en) * | 2013-07-15 | 2016-03-16 | 더 보잉 컴파니 | Method for extracting optical energy from an optical beam |
CN109298517A (en) * | 2018-11-05 | 2019-02-01 | 中国航空工业集团公司洛阳电光设备研究所 | A kind of multispectral coaxial refraction-reflection type non-focus optical system |
-
1993
- 1993-06-30 JP JP5187478A patent/JPH0784186A/en active Pending
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2011239385A (en) * | 2010-05-07 | 2011-11-24 | Itt Manufacturing Enterprises Inc | Amplification of interleaved optical signals |
KR20160030310A (en) * | 2013-07-15 | 2016-03-16 | 더 보잉 컴파니 | Method for extracting optical energy from an optical beam |
JP2016525233A (en) * | 2013-07-15 | 2016-08-22 | ザ・ボーイング・カンパニーThe Boeing Company | Method for extracting optical energy from an optical beam |
CN109298517A (en) * | 2018-11-05 | 2019-02-01 | 中国航空工业集团公司洛阳电光设备研究所 | A kind of multispectral coaxial refraction-reflection type non-focus optical system |
CN109298517B (en) * | 2018-11-05 | 2020-10-30 | 中国航空工业集团公司洛阳电光设备研究所 | Multispectral coaxial catadioptric afocal optical system |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5060304A (en) | Alignment acquiring, optical beam communication link | |
US7428041B2 (en) | Lidar | |
JPH0412039B2 (en) | ||
JP4976474B2 (en) | Optical transceiver for transmission direction control | |
US6922430B2 (en) | Method and apparatus for a multibeam beacon laser assembly for optical communications | |
US10859348B1 (en) | System for active telescope alignment, focus and beam control | |
JP2000068934A (en) | Optical communication device mounted on satellite | |
CN115754978A (en) | Optical axis parallel adjusting method based on laser transmitting system and telescope receiving system | |
JP4701454B2 (en) | Spatial optical communication method and spatial optical communication apparatus | |
US6618177B1 (en) | Light space-transmission device | |
US4690550A (en) | Laser range finder | |
JPH0784186A (en) | Optical communication device | |
NL2024411B1 (en) | Underwater Optical Communication Unit | |
JPH06337355A (en) | Optical communication optical device | |
JP2001203641A (en) | Spatial light transmission unit | |
JP2001349945A (en) | Optical catching method for laser communications for movable body, and optical tracking method | |
EP0881788A2 (en) | Optical receiver and related optical wireless transmission system | |
JP7092950B2 (en) | Injection of radiant beam into optical fiber | |
EP1199822A2 (en) | Telescope for a free-space wireless optical communication system | |
JPH06281740A (en) | Distance measuring instrument | |
JPH02143214A (en) | Optical system device for laser communication equipment | |
JP3206993B2 (en) | Bidirectional optical space transmission equipment | |
US7366420B2 (en) | Optical transmission device | |
Yang et al. | Optimum design for optical antenna of space laser communication system | |
KR102429969B1 (en) | Optical transmitter for lidar |