JPH0783948B2 - Protective film forming method - Google Patents

Protective film forming method

Info

Publication number
JPH0783948B2
JPH0783948B2 JP63317322A JP31732288A JPH0783948B2 JP H0783948 B2 JPH0783948 B2 JP H0783948B2 JP 63317322 A JP63317322 A JP 63317322A JP 31732288 A JP31732288 A JP 31732288A JP H0783948 B2 JPH0783948 B2 JP H0783948B2
Authority
JP
Japan
Prior art keywords
powder
resistant
aluminum
heat
protective film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP63317322A
Other languages
Japanese (ja)
Other versions
JPH02165884A (en
Inventor
俊秀 武田
馨 安達
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Komatsu Ltd
Original Assignee
Komatsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Komatsu Ltd filed Critical Komatsu Ltd
Priority to JP63317322A priority Critical patent/JPH0783948B2/en
Publication of JPH02165884A publication Critical patent/JPH02165884A/en
Publication of JPH0783948B2 publication Critical patent/JPH0783948B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/34Laser welding for purposes other than joining
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/20Bonding
    • B23K26/32Bonding taking account of the properties of the material involved
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2103/00Materials to be soldered, welded or cut
    • B23K2103/02Iron or ferrous alloys
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2103/00Materials to be soldered, welded or cut
    • B23K2103/08Non-ferrous metals or alloys
    • B23K2103/10Aluminium or alloys thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2103/00Materials to be soldered, welded or cut
    • B23K2103/08Non-ferrous metals or alloys
    • B23K2103/12Copper or alloys thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2103/00Materials to be soldered, welded or cut
    • B23K2103/18Dissimilar materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2103/00Materials to be soldered, welded or cut
    • B23K2103/18Dissimilar materials
    • B23K2103/26Alloys of Nickel and Cobalt and Chromium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2103/00Materials to be soldered, welded or cut
    • B23K2103/50Inorganic material, e.g. metals, not provided for in B23K2103/02 – B23K2103/26
    • B23K2103/52Ceramics

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Mechanical Engineering (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)
  • Welding Or Cutting Using Electron Beams (AREA)
  • Laser Beam Processing (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、保護皮膜形成法に関し、より詳しくはアルミ
ニウムまたはアルミニウムの母材上に耐熱耐摩耗性保護
皮膜を形成する技術に関するものである。
Description: TECHNICAL FIELD The present invention relates to a method for forming a protective film, and more particularly to a technique for forming a heat resistant and abrasion resistant protective film on aluminum or a base material of aluminum.

〔従来の技術〕[Conventional technology]

最近、自動車、航空機、産業用ロボット等の軽量化を図
るために、基本的には比重の小さいアルミニウムおよび
またはアルミニウム合金を用いながら、このアルミニウ
ムおよびまたはアルミニウム合金の非常に悪い耐熱性お
よび耐摩耗性を補うに必要な部分だけを、脆くて割れ易
いが非常に硬い耐熱耐摩耗性合金を用いる耐熱耐摩耗性
保護皮膜でもって被覆する技術の必要性が高まってい
る。
Recently, in order to reduce the weight of automobiles, aircrafts, industrial robots, etc., basically, aluminum and / or aluminum alloys having a small specific gravity are used, but the aluminum and / or aluminum alloys have extremely poor heat resistance and wear resistance. There is an increasing need for a technique for covering only a portion necessary for supplementing with a heat and abrasion resistant protective film using a heat and abrasion resistant alloy which is brittle and easily cracked but is very hard.

従来、このような耐熱耐摩耗性保護皮膜を形成する方法
としては、次のようなものがある。
Conventionally, there are the following methods for forming such a heat-resistant and abrasion-resistant protective film.

アルミニウムおよびまたはアルミニウム合金の母材
上に耐熱耐摩耗性合金粉の粉末だけを供給して、この供
給した粉末をレーザビームにより溶融する方法。
A method in which only the powder of heat-resistant and wear-resistant alloy powder is supplied onto a base material of aluminum and / or aluminum alloy, and the supplied powder is melted by a laser beam.

アルミニウムおよびまたはアルミニウム合金の母材
上に耐熱耐摩耗性合金粉の粉末をスプレー塗布して、こ
のスプレー塗布した粉末をレーザビームにより溶融する
方法。
A method of spray-coating a powder of heat-resistant and wear-resistant alloy powder on a base material of aluminum and / or an aluminum alloy, and melting the spray-coated powder with a laser beam.

〔発明が解決しようとする課題〕[Problems to be Solved by the Invention]

しかしながら、前述されたものにおいて、の場合に
は、アルミニウムまたはアルミニウム合金と較べて耐熱
耐摩耗性合金粉が融点が高く、比重が大きいために、皮
膜形成のために耐熱耐摩耗性合金粉を溶融させるに際し
て耐熱耐摩耗性合金(粉)が沈んでしまうことになり、
その結果硬度分布が不均一になるとともに第3図(A)
の金属組織の顕微鏡写真ならびに第3図(B)の要部拡
大図に見られるように割れも多数発生するという問題点
がある。また、の場合には、皮膜の硬度が耐熱耐磨耗
性合金に対するアルミニウムまたはアルミニウム合金の
母材による希釈度に大きく左右されるために、スプレー
塗布時に非常に厳密な皮膜厚管理が必要で製造工程管理
が困難であるとともに、工程も溶融工程の他にスプレー
塗布工程が別途必要となって工程が増えるという問題点
がある。
However, in the case of the above, in the case of, since the heat-resistant and wear-resistant alloy powder has a higher melting point and a larger specific gravity than aluminum or aluminum alloy, the heat- and wear-resistant alloy powder is melted to form a film. When doing so, the heat and wear resistant alloy (powder) will sink,
As a result, the hardness distribution becomes non-uniform and Fig. 3 (A)
As shown in the micrograph of the metal structure of Fig. 3 and the enlarged view of the main part of Fig. 3B, there is a problem that many cracks occur. In addition, in the case of, since the hardness of the coating largely depends on the degree of dilution of the heat resistant and abrasion resistant alloy with aluminum or the base material of the aluminum alloy, very strict coating thickness control is required during spray application. There is a problem that the process control is difficult, and a spray coating process is additionally required in addition to the melting process, which increases the number of processes.

本発明は、これら問題点を解消することを目的とし、製
造工程管理が容易であり、また工程も増えることがない
とともに、硬度分布が均一で割れも発生しない保護皮膜
形成法を提供することにある。
The present invention aims to solve these problems, and to provide a protective film forming method in which the manufacturing process is easy to manage, the number of processes is not increased, and the hardness distribution is uniform and cracks do not occur. is there.

〔課題を解決するための手段〕[Means for Solving the Problems]

前述された課題を解決するために、本発明による保護皮
膜形成法は、 アルミニウムまたはアルミニウム合金の母材上に、アル
ミニウム粉およびまたはアルミニウム合金粉と、耐熱耐
摩耗性合金粉または高硬度セラミック粉を含む耐熱耐摩
耗性合金粉とを混合した粉末を供給するとともに、この
供給した粉末を高密度エネルギー熱源により溶融して前
記母材上に耐熱耐摩耗性保護皮膜を形成する ことを特徴とするものである。
In order to solve the above-mentioned problems, the protective film forming method according to the present invention comprises: a base material of aluminum or an aluminum alloy, aluminum powder and / or aluminum alloy powder, and heat resistant and abrasion resistant alloy powder or high hardness ceramic powder. A powder mixed with a heat-resistant and wear-resistant alloy powder containing is supplied, and the supplied powder is melted by a high-density energy heat source to form a heat-resistant and wear-resistant protective film on the base material. Is.

〔作 用〕[Work]

アルミニウム粉およびまたはアルミニウム合金粉と、耐
熱耐摩耗性合金粉または高硬度セラミック粉を含む耐熱
耐摩耗性合金粉とを混合した粉末を溶融させて耐熱耐摩
耗性合金皮膜を形成することにより、軟らかいアルミニ
ウム・マトリックス中に少なくとも均一に析出もしくは
未溶融で残留した耐熱耐摩耗性合金が得られるようにな
る。
By mixing aluminum powder and / or aluminum alloy powder with heat and wear resistant alloy powder or heat resistant and wear resistant alloy powder containing high hardness ceramic powder to form a heat resistant and wear resistant alloy film, soft It is possible to obtain a heat and wear resistant alloy which is at least uniformly precipitated in the aluminum matrix or remains unmelted.

〔発明の効果〕〔The invention's effect〕

したがって、混合した粉末を溶融させることから皮膜厚
管理は厳しくなく製造工程管理が容易であるとともに、
混合粉末の供給と溶融とは同一工程でできるために工程
も増えることがない。また、軟らかいアルミニウム・マ
トリックス中に耐熱耐摩耗性合金が均一に析出もしくは
未溶融で残留するために硬度分布が均一で割れも発生し
ない保護皮膜が形成される。
Therefore, since the mixed powder is melted, the film thickness control is not strict and the manufacturing process control is easy.
Since the mixed powder can be supplied and melted in the same step, the number of steps does not increase. Further, since the heat-resistant and wear-resistant alloy is uniformly deposited or remains unmelted in the soft aluminum matrix, a protective film having a uniform hardness distribution and no cracking is formed.

〔実施例〕〔Example〕

次に、本発明による保護皮膜形成法の具体的実施例につ
いて説明する。
Next, specific examples of the protective film forming method according to the present invention will be described.

まず、本発明による保護皮膜形成法の実施例を説明しな
がら、この実施例の実施に際して用いられるクラッディ
ング装置の一例を第1図を参照しつつ説明する。
First, an example of a protective film forming method according to the present invention will be described, and an example of a cladding device used for carrying out this example will be described with reference to FIG.

図示されていないキャリヤー上に載置されて矢印方向に
移動させられるアルミニウムまたはアルミニウム合金か
ら成る母材1上に設けられて、この母材1上に保護皮膜
であるクラッド層(アロイング層)2を形成するクラッ
ディング装置Aは、母材1の表面に対して垂直に配され
る筒体3を有している。この筒体3内には、母材1の表
面にレーザビーム4を照射するようにそのレーザビーム
4をフォカッシングする集光レンズ5が設けられてい
る。また、筒体3の壁部には、同軸状に配された内筒6
と外管7との内外二重管構造でもって構成される給粉ノ
ズル8が傾斜状態で貫設されている。この内筒6の上部
には、少なくともアルミニウム粉およびまたはアルミニ
ウム合金粉と、コバルト系、鉄系またはニッケル系の耐
熱耐摩耗性合金粉と均一に混合された混合粉末が収納さ
れる図示されていないホッパーに連接されている。ま
た、外管7の上部入口9は不活性ガスの一種であるアル
ゴンガスの図示されていない供給源に接続されていると
ともに、10は上記内筒6によって供給される前記混合粉
末の酸化を防止するために同様に不活性ガスの一種であ
るアルゴンガスを圧送供給するガス供給口である。
It is provided on a base material 1 made of aluminum or an aluminum alloy, which is placed on a carrier (not shown) and is moved in the direction of the arrow, and a cladding layer (alloying layer) 2 as a protective film is provided on the base material 1. The cladding device A to be formed has a cylindrical body 3 arranged perpendicularly to the surface of the base material 1. A condenser lens 5 for focusing the laser beam 4 so that the surface of the base material 1 is irradiated with the laser beam 4 is provided in the cylindrical body 3. The inner cylinder 6 coaxially arranged on the wall of the cylinder 3.
A powder feeding nozzle 8 having an inner and outer double tube structure of an outer tube and an outer tube 7 is pierced in an inclined state. At least an aluminum powder and / or an aluminum alloy powder, and a mixed powder uniformly mixed with a cobalt-based, iron-based, or nickel-based heat-resistant and wear-resistant alloy powder are housed in the upper portion of the inner cylinder 6 (not shown). It is connected to the hopper. Further, the upper inlet 9 of the outer tube 7 is connected to a supply source (not shown) of argon gas which is a kind of inert gas, and 10 prevents oxidation of the mixed powder supplied by the inner cylinder 6. In order to do so, it is also a gas supply port for pressure-feeding an argon gas which is a kind of inert gas.

前述されたクラッディング装置Aでもって、矢印方向に
移動させられるアルミニウムまたはアルミニウム合金の
母材1上に、少なくともアルミニウム粉およびまたはア
ルミニウム合金粉と、コバルト系、鉄系またはニッケル
系の耐熱耐摩耗性合金粉との均一混合粉末を供給しなが
ら、この供給された混合粉末をレーザビーム4により少
なくともアルミニウム粉またはアルミニウム合金粉が溶
融する程度に溶融して母材1上にクラッド層2を形成す
る。このクラッド層2は、非常に軟らかいアルミニウム
粉およびまたはアルミニウム合金粉と、非常に硬くて脆
いコバルト系、鉄系またはニッケル系の耐熱耐摩耗合金
粉とを均一混合した混合粉末をレーザビーム4で溶融す
るために、これら合金粉は軟らかいアルミニウム・マト
リックス中に均一に析出もしくは未溶融で残留した耐熱
耐摩耗層となる。したがって、このようにして形成され
たクラッド層2においては、耐熱耐摩耗性合金による特
有の割れの防止を図ることができる。
With the cladding device A described above, at least aluminum powder and / or aluminum alloy powder, and cobalt-based, iron-based or nickel-based heat and wear resistance are provided on the base material 1 of aluminum or aluminum alloy that is moved in the direction of the arrow. While supplying the uniform mixed powder with the alloy powder, the supplied mixed powder is melted by the laser beam 4 to such an extent that at least the aluminum powder or the aluminum alloy powder is melted to form the clad layer 2 on the base material 1. The clad layer 2 melts with a laser beam 4 a mixed powder obtained by uniformly mixing very soft aluminum powder and / or aluminum alloy powder and very hard and brittle cobalt-based, iron-based or nickel-based heat-resistant and wear-resistant alloy powder. Therefore, these alloy powders form a heat-resistant and wear-resistant layer which is uniformly precipitated or remains unmelted in the soft aluminum matrix. Therefore, in the clad layer 2 thus formed, it is possible to prevent the peculiar cracking due to the heat and wear resistant alloy.

例えば、純度の高いアルミニウムから成る母材1に、コ
バルト系耐熱耐摩耗性合金粉であるステライト#6粉と
純度の高いアルミニウム粉との重量%で50:50になるよ
うな均一な混合粉末を用いて、レーザビーム4のレーザ
出力2.5kw、ビーム径6mmφ、母材1の移動(処理)速度
700mm/min、混合粉末の給粉量0.2g/sの条件で行なった
ところ、第2図(A)の金属組織の顕微鏡写真ならびに
第3図(B)の要部拡大図からわかるように割れの全く
ないクラッド層2が得られた。このクラッド層2の分析
結果は、アルミニウムが重量%で60〜70%と高く、ステ
ライト#6はアルミニウムによって希釈化されてはいる
がレーザクラッディングという冷却速度の速い処理によ
って析出されもしくは未溶融となり、いわゆるビッカー
ス硬さHv(300gr)で約300程度の硬さが得られた。な
お、純度の高いアルミニウムから成る母材1の硬さはビ
ッカース硬さHv80程度である。
For example, on a base material 1 made of high-purity aluminum, a uniform mixed powder of cobalt-based heat- and wear-resistant alloy powder Stellite # 6 powder and high-purity aluminum powder in a weight ratio of 50:50 is obtained. Using, laser output of laser beam 4 2.5kw, beam diameter 6mmφ, movement (processing) speed of base material 1
When it was carried out under the conditions of 700 mm / min and the powder feed rate of the mixed powder of 0.2 g / s, as shown in the micrograph of the metal structure of FIG. 2 (A) and the enlarged view of the main part of FIG. 3 (B), A clad layer 2 having no defects was obtained. The analysis result of the clad layer 2 shows that aluminum is as high as 60 to 70% by weight, and although the stellite # 6 is diluted with aluminum, it is deposited or unmelted by the laser cladding process having a high cooling rate. The so-called Vickers hardness Hv (300 gr) gave a hardness of about 300. The hardness of the base material 1 made of high-purity aluminum is about Vickers hardness Hv80.

なお、本実施例においては耐熱耐摩耗性合金粉としてコ
バルト系、鉄系またはニッケル系を用いているが、表1
に見られるように銅系の耐熱耐摩合金粉を用いることも
できるとともに、これらコバルト系、鉄系、ニッケル系
および銅系の耐熱耐摩耗性合金のうち2以上を用いるこ
ともできる。また、前述された混合粉末に混入されるア
ルミニウム合金としてはアルミニウム−シリコン−銅が
ある。さらに、前述された混合粉末に耐熱耐摩耗性合金
粉に加えてタングステン−カーボン系、チタン−カーボ
ン系、アルミナ系またはチタン−窒素系の高硬度セラミ
ック粉を混入してもよい。
In this Example, cobalt-based, iron-based or nickel-based alloy powder was used as the heat and wear resistant alloy powder.
As can be seen from the above, a copper-based heat-resistant and abrasion-resistant alloy powder can be used, and two or more of these cobalt-based, iron-based, nickel-based, and copper-based heat-resistant and abrasion-resistant alloys can also be used. Aluminum-silicon-copper is an aluminum alloy mixed in the above-mentioned mixed powder. Further, in addition to the heat resistant and abrasion resistant alloy powder, tungsten-carbon type, titanium-carbon type, alumina type or titanium-nitrogen type high hardness ceramic powder may be mixed in the above-mentioned mixed powder.

但し:この合金粉と高純度アルミニウム粉を97wt%:3wt
%の比率で混合してレーザクラッディングしたところ、
平均ビッカース硬さHv300が得られた。
However: 97 wt% of this alloy powder and high-purity aluminum powder: 3 wt
When mixed with the ratio of% and laser cladding,
An average Vickers hardness Hv300 was obtained.

また、本実施例には高密度エネルギー熱源としてレーザ
ビームを用いているが電子ビームを用いてもよい。さら
に、レーザクラッディング中に溶融池に強固なアルミナ
皮膜が生成されて供給する耐熱耐摩耗性合金粉の溶融池
内部への侵入を妨げるために、このような酸化被膜除去
の目的で、カリウム−フッ素系等のフラックスの使用が
好ましい。
Further, although a laser beam is used as the high-density energy heat source in this embodiment, an electron beam may be used. Furthermore, in order to prevent the heat-resistant and wear-resistant alloy powder supplied to the molten pool during the laser cladding from being produced by forming a strong alumina film in the molten pool, potassium- It is preferable to use a fluorine-based flux or the like.

特に、本発明による保護被膜形成法は、エンジンにおけ
るシリンダヘッド、バルブシートおよびピストンのリン
グ溝部に適用して好適なものである。
In particular, the protective film forming method according to the present invention is suitable for application to the cylinder head, valve seat and piston ring groove portion in an engine.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明による保護皮膜形成法の実施に際して用
いられるクラッディング装置の一例の断面図であり、第
2図(A)は本発明による保護皮膜形成法により得られ
た保護皮膜層(クラッド層)断面の金属組織の顕微鏡写
真、第2図(B)は該層の要部拡大断面説明図であると
ともに、第3図(A)は従来の方法により得られた保護
皮膜層断面の金属組織の顕微鏡写真、第3図(B)は該
層の要部拡大断面である。 1……母材、2……クラッド層、3……筒体、4……レ
ーザビーム、5……集光レンズ、6……内管、7……外
管、8……給粉ノズル、9……7の上部入口、10……ガ
ス供給口、A……クラッディング装置。
FIG. 1 is a cross-sectional view of an example of a cladding device used for carrying out the protective film forming method according to the present invention, and FIG. 2 (A) is a protective film layer (clad obtained by the protective film forming method according to the present invention. (Layer) cross-sectional micrograph of metal structure, FIG. 2 (B) is an enlarged cross-sectional explanatory view of the main part of the layer, and FIG. 3 (A) is a metal of the cross section of the protective film obtained by the conventional method. A micrograph of the structure, FIG. 3 (B), is an enlarged cross section of the main part of the layer. 1 ... Base material, 2 ... Clad layer, 3 ... Cylindrical body, 4 ... Laser beam, 5 ... Condensing lens, 6 ... Inner tube, 7 ... Outer tube, 8 ... Powder feeding nozzle, 9 ... 7 upper inlet, 10 ... gas inlet, A ... cladding device.

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】アルミニウムまたはアルミニウム合金の母
材上に、アルミニウム粉およびまたはアルミニウム合金
粉と、耐熱耐摩耗性合金粉または高硬度セラミック粉を
含む耐熱耐摩耗性合金粉とを混合した粉末を供給すると
ともに、この供給した粉末を高密度エネルギー熱源によ
り溶融して前記母材上に耐熱耐摩耗性保護皮膜を形成す
る ことを特徴とする保護皮膜形成法。
1. A powder obtained by mixing aluminum powder and / or aluminum alloy powder with heat resistant and wear resistant alloy powder or heat resistant and wear resistant alloy powder containing high hardness ceramic powder on a base material of aluminum or aluminum alloy. In addition, the supplied powder is melted by a high-density energy heat source to form a heat-resistant and abrasion-resistant protective film on the base material.
【請求項2】前記アルミニウム合金粉は、アルミニウム
−シリコン−銅の合金粉である ことを特徴とする請求項1に記載の保護皮膜形成法。
2. The method for forming a protective film according to claim 1, wherein the aluminum alloy powder is an aluminum-silicon-copper alloy powder.
【請求項3】前記耐熱耐摩耗性合金粉は、コバルト系、
鉄系、ニッケル系および銅系の耐熱耐摩耗性合金粉のう
ちの1または2以上から成る耐熱耐摩耗性合金粉である ことを特徴とする請求項1に記載の保護皮膜形成法。
3. The heat and wear resistant alloy powder is a cobalt-based alloy powder,
The method for forming a protective film according to claim 1, wherein the heat-resistant and abrasion-resistant alloy powder comprises one or more of iron-based, nickel-based, and copper-based heat- and wear-resistant alloy powders.
【請求項4】前記高硬度セラミック粉は、タングステン
−カーボン系、チタン−カーボン系、アルミナ系および
チタン−窒素系の高硬度セラミック粉のうちの1または
2以上から成る高硬度セラミック粉である ことを特徴とする請求項1に記載の保護皮膜形成法。
4. The high-hardness ceramic powder is a high-hardness ceramic powder composed of one or more of tungsten-carbon-based, titanium-carbon-based, alumina-based, and titanium-nitrogen-based high-hardness ceramic powders. The method for forming a protective film according to claim 1, wherein
【請求項5】前記高密度エネルギー熱源は、レーザビー
ムまたは電子ビームである ことを特徴とする請求項1に記載の保護皮膜形成法。
5. The method for forming a protective film according to claim 1, wherein the high-density energy heat source is a laser beam or an electron beam.
【請求項6】エンジンにおけるシリンダヘッド、バルブ
シートまたはピストンのリング溝部の製造に請求項1乃
至4のいずれかに記載の保護皮膜形成法を用いる ことを特徴とするエンジン製造方法。
6. A method of manufacturing an engine, wherein the protective film forming method according to claim 1 is used for manufacturing a cylinder head, a valve seat, or a ring groove portion of a piston in an engine.
JP63317322A 1988-12-15 1988-12-15 Protective film forming method Expired - Lifetime JPH0783948B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63317322A JPH0783948B2 (en) 1988-12-15 1988-12-15 Protective film forming method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63317322A JPH0783948B2 (en) 1988-12-15 1988-12-15 Protective film forming method

Publications (2)

Publication Number Publication Date
JPH02165884A JPH02165884A (en) 1990-06-26
JPH0783948B2 true JPH0783948B2 (en) 1995-09-13

Family

ID=18086918

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63317322A Expired - Lifetime JPH0783948B2 (en) 1988-12-15 1988-12-15 Protective film forming method

Country Status (1)

Country Link
JP (1) JPH0783948B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022243569A1 (en) * 2021-05-21 2022-11-24 Precitec Gmbh & Co. Kg Laser machining head and method for manufacturing a laser machining head

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10353474B4 (en) * 2003-11-15 2007-02-22 Daimlerchrysler Ag Component of an internal combustion engine and method for its production
CN103215588A (en) * 2013-04-28 2013-07-24 上海高斯雷洁激光技术有限公司 Laser-cladding processing method for increasing abrasive resistance of pipeline inner wall

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022243569A1 (en) * 2021-05-21 2022-11-24 Precitec Gmbh & Co. Kg Laser machining head and method for manufacturing a laser machining head

Also Published As

Publication number Publication date
JPH02165884A (en) 1990-06-26

Similar Documents

Publication Publication Date Title
JP3467744B2 (en) Light metal cylinder block, method of manufacturing the same, and apparatus for implementing the method of manufacturing the same
US20080226843A1 (en) Laser Cladding on Low Heat Resistant Substrates
US6727459B1 (en) Method for metal deposition on an edge
CN1190517C (en) Sintered mechanical part with abrasionproof surface and method for producing same
JP2002537121A (en) Method and apparatus for producing a wear-resistant and anti-friction cylinder sliding surface
JP2002537121A5 (en)
US4970091A (en) Method for gas-metal arc deposition
Dobrzański et al. Manufacturing technologies thick-layer coatings on various substrates and manufacturing gradient materials using powders of metals, their alloys and ceramics
JP2018123388A (en) Antifriction member and manufacturing method therefor
Martukanitz Directed-energy deposition processes
JPH0783948B2 (en) Protective film forming method
JPS62270277A (en) Production of titanium base alloy-made wear resistant member
JP2621448B2 (en) Cladding method
AU780097B2 (en) Surface-alloyed cylindrical, partially cylindrical or hollow cylindrical component
JPH11350107A (en) Method for forming high-temperature wear-resistant film
Shiva et al. Evolution in additive manufacturing techniques of metals as net-shaped products
JPH0557480A (en) Composite wire for build up welding to surface of al base material
JP2906012B2 (en) Surface hardening method for aluminum material or its alloy material
JP2023122005A (en) Method for manufacturing hard metal member, hard metal member, and raw material powder of the same
Kaierle et al. Laser Micro Cladding
JP2535652B2 (en) Laser cladding and alloying method
JPH04172193A (en) Method for alloying al series base material with cladding by welding
JPH11181563A (en) Surface hardened aluminum member and its production
FR2779074A1 (en) PROCESS FOR MANUFACTURING HOT FORGING TOOLS, AND TOOLS OBTAINED THEREBY
JPH03249185A (en) Surface hardening of aluminum and aluminum alloy