JPH0783855A - Method and device for detecting deterioration of insulated-wire covering - Google Patents

Method and device for detecting deterioration of insulated-wire covering

Info

Publication number
JPH0783855A
JPH0783855A JP22735593A JP22735593A JPH0783855A JP H0783855 A JPH0783855 A JP H0783855A JP 22735593 A JP22735593 A JP 22735593A JP 22735593 A JP22735593 A JP 22735593A JP H0783855 A JPH0783855 A JP H0783855A
Authority
JP
Japan
Prior art keywords
value
deterioration
appearance frequency
insulated wire
cracks
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP22735593A
Other languages
Japanese (ja)
Inventor
Hirotaka Yoshida
吉田  浩隆
Eiichi Sakida
栄一 崎田
Tomohiko Nakamura
友彦 中村
Hiroaki Shindo
博昭 進藤
Junichi Masuda
順一 増田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP22735593A priority Critical patent/JPH0783855A/en
Publication of JPH0783855A publication Critical patent/JPH0783855A/en
Pending legal-status Critical Current

Links

Landscapes

  • Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)

Abstract

PURPOSE:To provide a method and a device for detecting the deterioration of an insulated-wire covering in which non-destructive measurements of an insulated wire are made to quantitatively determine the degree of deterioration of the insulating covering with ease. CONSTITUTION:A device for detecting the deterioration of an insulated-wire covering comprises an input device 4 for measuring the surface condition of an insulating covering while scanning a pair of a light-emitting element 5 and a photocell 6 in the longitudinal direction of the insulated wire, an A/D coverter 7 for converting received analog signals into signals in series, a waveform memory device 8 for string the signals as lines of waveform data, an arithmetic unit 9 for creating a distribution of frequencies of occurrence from the lines of waveform data, for calculating from the distribution of frequencies of occurrence the level of a threshold for detecting cracks, and for determining the degree of deterioration of the insulating covering from the number of cracks, and an output device 11 for outputting and displaying.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、絶縁電線の絶縁被覆の
劣化を非破壊で検出する方法および装置に関するもので
ある。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method and an apparatus for nondestructively detecting deterioration of an insulating coating of an insulated wire.

【0002】[0002]

【従来の技術】従来、絶縁電線の絶縁被覆の劣化を検出
する方法あるいは装置として、絶縁電線の表面に複数本
の線状電極を接触させた状態で、芯線と絶縁被覆の間に
電圧を印加し、芯線が露出している箇所に電極が入り込
むと通電することを利用する装置がある(実開昭61−
131674号公報)。図9に通電法による検査例を示
す。図において21は絶縁電線の芯線、22は絶縁被
覆、23は線状電極、24は検出器、25は電源、26
は絶縁被覆の亀裂部分を示す。
2. Description of the Related Art Conventionally, as a method or apparatus for detecting the deterioration of the insulation coating of an insulated wire, a voltage is applied between the core wire and the insulation coating while a plurality of linear electrodes are in contact with the surface of the insulated wire. However, there is a device that utilizes electricity when the electrode enters an area where the core wire is exposed (Shokai Sho 61-
131674). FIG. 9 shows an example of inspection by the energization method. In the figure, 21 is a core wire of an insulated wire, 22 is an insulating coating, 23 is a linear electrode, 24 is a detector, 25 is a power supply, 26
Indicates a cracked portion of the insulating coating.

【0003】また、絶縁被覆から発生するガスを採取
し、そのガス中の成分と量を分析することにより、劣化
の程度を検出する方法がある(特開平3−107778
号公報)。図10にガス分析法による検査例を示す。図
において31は絶縁電線、32はガス溜め用覆い、33
はガス溜まり、34はチューブ、35は密栓を示す。
There is also a method of detecting the degree of deterioration by collecting the gas generated from the insulating coating and analyzing the components and amount in the gas (Japanese Patent Laid-Open No. 3-107778).
Issue). FIG. 10 shows an example of inspection by the gas analysis method. In the figure, 31 is an insulated wire, 32 is a gas reservoir cover, 33
Indicates a gas reservoir, 34 indicates a tube, and 35 indicates a stopper.

【0004】通電法は、芯線と電極との機械的な接触を
利用するため、亀裂が閉じている状態の割れや微細なク
ラックを検出できないこと、通電時、芯線に検出電流が
流れるため、現用線への適用が困難であること等の問題
があった。ガス分析法は、測定箇所が限定されること、
劣化検出のコストが嵩むこと等の欠点があった。
Since the energization method utilizes mechanical contact between the core wire and the electrode, it cannot detect cracks in a closed state or minute cracks, and a detection current flows through the core wire when energized. There was a problem that it was difficult to apply to the wire. The gas analysis method has limited measurement points,
There are drawbacks such as increased cost of deterioration detection.

【0005】[0005]

【発明が解決しようとする課題】本発明は上記の欠点を
改善するために提案されたものであって、その目的は絶
縁電線を非破壊で測定し、その絶縁被覆の劣化程度を、
簡易かつ定量的に把握できる絶縁電線被覆の劣化検出方
法および装置を提供することにある。
SUMMARY OF THE INVENTION The present invention has been proposed in order to improve the above-mentioned drawbacks, and its purpose is to measure an insulated wire in a nondestructive manner and measure the degree of deterioration of the insulating coating.
An object of the present invention is to provide a method and an apparatus for detecting deterioration of an insulated wire coating that can be grasped easily and quantitatively.

【0006】[0006]

【課題を解決するための手段】前記課題の解決は、本発
明が次に列挙する新規な特徴的構成手法および手段を採
用することにより達成される。
The solution to the above-mentioned problems can be achieved by adopting the novel characteristic construction method and means listed in the following by the present invention.

【0007】すなわち、本発明方法の第1の特徴は、発
光素子、受光素子対からなる光センサを絶縁電線の長手
方向に所定の距離だけ走査することにより得られる、絶
縁被覆表面の反射強度列を用い、(1)反射強度列の各
振幅値、すなわち輝度値を読み取り、輝度値ごとの出現
回数を数え、出現頻度の分布を求め、(2)出現頻度分
布から出現頻度が最大になる輝度値Imax を見つけ、さ
らにImax から輝度値が小さくなる方向に出現頻度分布
を追跡して、最初に出現頻度が零になる輝度値Iraise
を検出し、Iraise と輝度値零の中間値ITH(=Irais
e /2)、すなわちしきい値を求め、(3)反射強度列
の中で輝度値がしきい値よりも低下している箇所の数、
すなわち亀裂数を測定し、(4)亀裂数から絶縁被覆の
劣化程度を定量化し、これによって絶縁被覆の劣化検出
を行ってなる絶縁電線の絶縁被覆の劣化検出方法であ
る。
That is, the first feature of the method of the present invention is that the reflection intensity sequence of the surface of the insulating coating obtained by scanning the optical sensor consisting of the light emitting element and the light receiving element pair in the longitudinal direction of the insulated wire by a predetermined distance. (1) Each amplitude value of the reflection intensity sequence, that is, the brightness value is read, the number of appearances for each brightness value is counted, and the distribution of the appearance frequency is obtained. (2) The brightness with the maximum appearance frequency from the appearance frequency distribution The value I max is found, the appearance frequency distribution is traced in the direction in which the brightness value decreases from I max , and the brightness value I raise at which the appearance frequency first becomes zero.
Is detected and an intermediate value I TH (= I rais) between I raise and zero brightness value is detected.
e / 2), that is, the threshold value is obtained, and (3) the number of locations where the brightness value is lower than the threshold value in the reflection intensity sequence,
That is, the method is (4) a method of detecting deterioration of an insulating coating of an insulated wire, which comprises: (4) quantifying the degree of deterioration of the insulating coating from the number of cracks, and detecting the deterioration of the insulating coating thereby.

【0008】本発明方法の第2の特徴は、絶縁電線の長
手方向に沿って直線状に配置した複数の発光素子、受光
素子対からなる光センサ列により測光した、絶縁被覆表
面の反射強度列を用い、(1)反射強度列の各振幅値、
すなわち輝度値を読み取り、輝度値ごとの出現回数を数
え、出現頻度の分布を求め、(2)出現頻度分布から出
現頻度が最大になる輝度値Imax を見つけ、さらにI
max から輝度値が小さくなる方向に出現頻度分布を追跡
して、最初に出現頻度が零になる輝度値Iraise を検出
し、Iraise と輝度値零の中間値ITH(=Irais e
2)、すなわちしきい値を求め、(3)反射強度列の中
で輝度値がしきい値よりも低下している箇所の数、すな
わち亀裂数と、低下している間の幅、すなわち亀裂幅を
測定し、(4)亀裂数と最大亀裂幅から絶縁被覆の劣化
程度を定量化し、これによって絶縁被覆の劣化検出を行
ってなる絶縁電線の絶縁被覆の劣化検出方法である。
A second feature of the method of the present invention is that the reflection intensity array on the surface of the insulation coating is measured by a photosensor array consisting of a plurality of light emitting elements and light receiving elements arranged linearly along the longitudinal direction of the insulated wire. Using (1) each amplitude value of the reflection intensity sequence,
That is, the brightness value is read, the number of appearances for each brightness value is counted, the distribution of the appearance frequency is obtained, and (2) the brightness value I max that maximizes the appearance frequency is found from the appearance frequency distribution.
tracking frequency distribution in a direction in which the brightness value decreases from max, first frequency detects the luminance value I The raise becomes zero, an intermediate value I TH of I The raise luminance value zero (= I rais e /
2), that is, the threshold value is obtained, and (3) the number of locations where the brightness value is lower than the threshold value in the reflection intensity sequence, that is, the number of cracks, and the width during the decrease, that is, cracks. This is a method for detecting deterioration of the insulation coating of an insulated wire, which comprises measuring the width and (4) quantifying the degree of deterioration of the insulation coating from the number of cracks and the maximum crack width, and detecting the deterioration of the insulation coating by this.

【0009】本発明装置の特徴は、発光素子、受光素子
対からなる光センサを用い、絶縁電線の長手方向に対す
る反射強度列を測定する手段と、反射強度列を波形デー
タとして取り込み記憶する回路、および以下のような演
算手段からなる回路を備えてなる絶縁電線被覆の劣化検
出装置である。
The device of the present invention is characterized in that it uses an optical sensor consisting of a pair of a light emitting element and a light receiving element, a means for measuring a reflection intensity sequence in the longitudinal direction of an insulated wire, a circuit for fetching and storing the reflection intensity sequence as waveform data, And a device for detecting deterioration of an insulated wire coating, which is provided with a circuit including the following computing means.

【0010】(1)反射強度列の各振幅値、すなわち輝
度値を読み取り、輝度値ごとの出現回数を数え、出現頻
度の分布を求める手段、(2)出現頻度分布から出現頻
度が最大になる輝度値Imax を見つけ、さらにImax
ら輝度値が小さくなる方向に出現頻度分布を追跡して、
最初に出現頻度が零になる輝度値Iraise を検出し、I
raise と輝度値零の中間値ITH(=Irais e /2)、す
なわちしきい値を求める手段、(3)反射強度列の中で
輝度値がしきい値よりも低下している箇所の数、すなわ
ち亀裂数を測定する手段、(4)亀裂数から絶縁被覆の
劣化程度を同定する手段。
(1) A means for reading each amplitude value of the reflection intensity sequence, that is, a luminance value, counting the number of appearances for each luminance value, and obtaining a distribution of appearance frequencies, (2) a maximum appearance frequency from the appearance frequency distribution The luminance value I max is found, and the appearance frequency distribution is traced in the direction in which the luminance value decreases from I max ,
First, the brightness value I raise at which the appearance frequency becomes zero is detected, and I raise
raise the luminance value zero intermediate value I TH (= I rais e / 2), i.e. means for obtaining the threshold point being lower than the threshold luminance value among the (3) reflection intensity column Number, that is, a means for measuring the number of cracks, (4) means for identifying the degree of deterioration of the insulating coating from the number of cracks.

【0011】[0011]

【作用】上記手段により本発明は、光学センサを絶縁電
線の表面に接触させるだけで測定できるので、迅速かつ
容易に非破壊検査が実施できる。
With the above means, the present invention can perform the nondestructive inspection quickly and easily because the measurement can be performed only by bringing the optical sensor into contact with the surface of the insulated wire.

【0012】また、亀裂の輝度レベルを、ケーブルの被
覆色の輝度レベルから相対的に割り出しているので、ケ
ーブル色に依存しない亀裂検出が可能である。
Further, since the brightness level of the crack is relatively determined from the brightness level of the coating color of the cable, it is possible to detect the crack independent of the cable color.

【0013】さらに、絶縁被覆の劣化を表面亀裂の発生
頻度から定量化しているので、点検者の主観やスキルに
依存しない劣化診断が可能となる。
Furthermore, since the deterioration of the insulating coating is quantified from the frequency of occurrence of surface cracks, it is possible to perform deterioration diagnosis independent of the inspector's subjectivity and skill.

【0014】[0014]

【実施例】次に本発明の実施例について説明する。EXAMPLES Next, examples of the present invention will be described.

【0015】本発明の一実施例を電気通信用のCCP
(カラー・コーデッド・ポリエチレン)ケーブルの劣化
検出方法を例にとって説明する。
One embodiment of the present invention is a CCP for telecommunications.
(Color Coded Polyethylene) A cable deterioration detection method will be described as an example.

【0016】図1は本発明による請求項1および請求項
2の絶縁電線被覆の劣化検出方法を実現する劣化検出装
置の構成図である。劣化検出装置は、本体部1、絶縁電
線保持具2から構成される。3は絶縁電線である。
FIG. 1 is a block diagram of a deterioration detecting device for realizing the method for detecting deterioration of an insulated wire coating according to claims 1 and 2 according to the present invention. The deterioration detecting device includes a main body 1 and an insulated wire holder 2. 3 is an insulated wire.

【0017】本体部1はさらに、図2に示すように、絶
縁被覆の表面を測光する入力装置4、入力信号をアナロ
グからデジタルに変換するA/Dコンバータ7、デジタ
ル信号をデータ(波形データ)として記憶しておく波形
記憶装置8、波形データに所定の演算を施し、亀裂の検
出、劣化程度の推定を行う演算装置9、劣化程度を推定
する際のデータが蓄積された劣化程度基準データベース
10、推定結果の出力を行う出力装置11から構成され
る。入力装置4は発光素子5、受光素子6の対で構成さ
れる。請求項2の方法は複数の素子(本例では各204
8個の素子を直線状に配置した場合について説明する)
を具備し、請求項1の方法は一対の受、発光素子を備え
ている。
As shown in FIG. 2, the main body 1 further includes an input device 4 for measuring the surface of the insulating coating, an A / D converter 7 for converting an input signal from analog to digital, and a digital signal for data (waveform data). As a waveform storage device 8, a calculation device 9 for performing a predetermined calculation on the waveform data to detect cracks and estimating the degree of deterioration, and a deterioration degree reference database 10 in which data for estimating the deterioration degree is accumulated. The output device 11 outputs the estimation result. The input device 4 is composed of a pair of a light emitting element 5 and a light receiving element 6. The method of claim 2 is a method in which a plurality of elements (each 204
The case where eight elements are arranged in a straight line will be described.)
The method of claim 1 comprises a pair of receiving and emitting elements.

【0018】図3は請求項2の劣化検出方法の処理の流
れを示すフローチャートである。図1に示すように被測
定電線3を保持具2に挟み込み、入力装置4の発光素子
5からの発射光を被覆表面に当て、その反射光を受光素
子6で受けることにより、絶縁被覆の表面状態を直線状
に測定する(測定工程)。
FIG. 3 is a flow chart showing a processing flow of the deterioration detecting method according to the second aspect. As shown in FIG. 1, the electric wire 3 to be measured is sandwiched between the holders 2, the light emitted from the light emitting element 5 of the input device 4 is applied to the coating surface, and the reflected light is received by the light receiving element 6, whereby the surface of the insulating coating is obtained. The state is measured linearly (measurement step).

【0019】受光したアナログ信号は、A/Dコンバー
タ7により所定の階調(本例では256階調)に量子化
され、デジタル信号に変換され(A/D変換工程)、さ
らに、波形記憶装置8に波形データ列Sn(n=0〜2
047)として記憶される(波形記憶工程)。図4に劣
化した絶縁電線の波形データの一例を示す。(a)は被
測定電線3の外観を示し、図中の点線が発光および受光
素子5,6で測定される走査ラインX−X′である。
(b)は測定された波形データを示し、横軸は走査画素
数、縦軸は輝度値iである。劣化に伴い絶縁被覆上に生
じた亀裂a1,a2,a3は、陰影によってその位置の
輝度値を低下させる。なお、健全な被覆上でも輝度値が
一定になるとは限らず、汚れや色ムラ等の影響により値
は変動する。
The received analog signal is quantized by the A / D converter 7 to a predetermined gradation (256 gradations in this example), converted into a digital signal (A / D conversion step), and further, the waveform storage device. 8 is a waveform data sequence Sn (n = 0 to 2
047) (waveform storing step). FIG. 4 shows an example of waveform data of a deteriorated insulated wire. (A) shows the appearance of the electric wire 3 to be measured, and the dotted line in the figure is a scanning line XX 'measured by the light emitting and light receiving elements 5 and 6.
(B) shows the measured waveform data, the horizontal axis is the number of scanning pixels, and the vertical axis is the brightness value i. The cracks a1, a2, a3 generated on the insulating coating due to the deterioration lower the brightness value at that position due to the shadow. Note that the brightness value does not always become constant even on a healthy coating, and the value fluctuates due to the effects of stains, color unevenness, and the like.

【0020】演算装置9は、波形データから輝度値別の
出現回数を数え、出現頻度分布を作成する(波形解析工
程その1)。図5は、図4(b)に示した波形データか
ら得られる出現頻度分布である。横軸が輝度値i、縦軸
は輝度値の出現回数の累積数ni を表す。図の中で、分
布塊b1が絶縁被覆の地の色を反映しており、分布塊b
2が亀裂による陰影の色を反映している。
The arithmetic unit 9 counts the number of appearances for each luminance value from the waveform data and creates an appearance frequency distribution (waveform analysis step 1). FIG. 5 is an appearance frequency distribution obtained from the waveform data shown in FIG. The horizontal axis is the luminance value i, the vertical axis represents the cumulative number n i of the number of occurrences of luminance values. In the figure, the distribution lump b1 reflects the color of the ground of the insulating coating, and the distribution lump b
2 reflects the color of the shadow caused by the crack.

【0021】さらに演算装置9は、絶縁被覆の地と亀裂
の陰影を区別するためのしきい値レベルIthを、以下の
手法により自動算出する(波形解析工程その2)。ま
ず、出現頻度分布から最大累積数を与える輝度値Imax
を求め、つぎにImax から輝度値が小さくなる方向に出
現頻度分布を追跡したとき、最初に累積数が零になる点
を検出し、その点の輝度値Iraise と輝度値0の中間値
をIth(=Iraise /2、以後しきい値と呼ぶ)とす
る。
Further, the arithmetic unit 9 automatically calculates the threshold level I th for distinguishing the ground of the insulation coating from the shadow of the crack by the following method (waveform analysis step 2). First, the brightness value I max giving the maximum cumulative number from the appearance frequency distribution.
When the appearance frequency distribution is traced in the direction in which the luminance value decreases from I max, the point at which the cumulative number becomes zero is detected first, and the intermediate value between the luminance value I raise and the luminance value 0 at that point is detected. Be I th (= I raise / 2, hereinafter referred to as a threshold).

【0022】つぎに演算装置9は、波形データの中で輝
度値が、しきい値のレベルよりも低下している箇所の数
をカウントし、さらにその幅(画素数)の最大値を測定
する(波形解析工程その3)。これらの値は、それぞれ
亀裂の数、最大亀裂の幅とみなされる。図6は波形デー
タとしきい値Ithから亀裂a1,a2,a3を検出する
様子を示す説明図である。(a)が波形データで、図中
の点線で示された輝度値がしきい値Ithレベルである。
(b)は、亀裂の位置、および亀裂幅(画素数)の検出
結果を示しており、亀裂が3箇所、最大亀裂の幅が3画
素(ドット)である。
Next, the arithmetic unit 9 counts the number of locations in the waveform data where the luminance value is lower than the threshold level, and further measures the maximum value of its width (pixel number). (Waveform analysis step 3). These values are regarded as the number of cracks and the maximum crack width, respectively. FIG. 6 is an explanatory diagram showing how the cracks a1, a2, and a3 are detected from the waveform data and the threshold value I th . (A) is the waveform data, and the luminance value indicated by the dotted line in the figure is the threshold I th level.
(B) shows the position of the crack and the detection result of the crack width (the number of pixels), where there are 3 cracks and the maximum crack width is 3 pixels (dots).

【0023】最後に演算装置9は、劣化程度基準データ
ベース10で予めデータ化している劣化判定テーブルを
参照し、検出した亀裂数と最大亀裂幅から劣化程度を決
定する(劣化推定工点)。図7にCCPケーブルの絶縁
被覆劣化の判定に使用する劣化判定テーブルを示す。絶
縁被覆劣化に対する亀裂数と最大亀裂幅(画素数)の分
布範囲から、一義的に劣化度が決まる。表1は、劣化度
とその状態の関係を示したものである。
Finally, the arithmetic unit 9 refers to the deterioration determination table which has been converted into data in advance in the deterioration degree reference database 10 to determine the degree of deterioration from the number of detected cracks and the maximum crack width (deterioration estimation work point). FIG. 7 shows a deterioration judgment table used for judging deterioration of the insulation coating of the CCP cable. The degree of deterioration is uniquely determined from the distribution range of the number of cracks and the maximum crack width (number of pixels) with respect to the deterioration of the insulating coating. Table 1 shows the relationship between the degree of deterioration and its state.

【0024】[0024]

【表1】 出力装置11は劣化度を出力、表示する(結果出力)。[Table 1] The output device 11 outputs and displays the degree of deterioration (result output).

【0025】図8は請求項1の劣化検出方法の処理の流
れを示すフローチャートである。請求項1の方法は、一
対の受、発光素子を用いたポイント測定であるため、請
求項2の方法と比較して以下の点が異なる。
FIG. 8 is a flow chart showing a processing flow of the deterioration detecting method according to the first aspect. Since the method of claim 1 is a point measurement using a pair of light receiving and emitting elements, it differs from the method of claim 2 in the following points.

【0026】測定工程と走査工程が並行して行われるこ
と、波形解析工程その3で亀裂の数だけを測定するこ
と、および劣化推定工程において亀裂の数のみから劣化
程度を決定する点である。すなわち、入力装置4の発光
素子5、受光素子6の対を絶縁電線の長手方向に走査さ
せながら、絶縁被覆の表面状態を測定し(測定工程、走
査工程)、走査が完了したならば、A/Dコンバータ7
により受光したアナログ信号を順次、デジタル信号に変
換し(A/D変換工程)、波形記憶装置8により波形デ
ータ列として記憶する(波形記憶工程)。
The measuring step and the scanning step are performed in parallel, only the number of cracks is measured in the waveform analyzing step 3, and the degree of deterioration is determined only from the number of cracks in the deterioration estimating step. That is, while scanning the pair of the light emitting element 5 and the light receiving element 6 of the input device 4 in the longitudinal direction of the insulated wire, the surface state of the insulating coating is measured (measuring step, scanning step). / D converter 7
The analog signals received by are sequentially converted into digital signals (A / D conversion step) and stored as waveform data strings by the waveform storage device 8 (waveform storage step).

【0027】次に、演算装置9により波形データ列から
出現頻度分布を作成し(波形解析工程その1)、出現頻
度分布から亀裂を検出するためのしきい値レベルを算出
し(波形解析工程その2)、亀裂の数を測定する(波形
解析工程その3)。
Next, the arithmetic unit 9 creates an appearance frequency distribution from the waveform data string (waveform analysis step 1), and calculates a threshold level for detecting a crack from the appearance frequency distribution (waveform analysis step 1). 2) Measure the number of cracks (waveform analysis step 3).

【0028】最後に演算装置9により亀裂数から絶縁被
覆の劣化程度を決定し(劣化推定工程)、出力装置11
により出力、表示を行う(結果出力)ものである。
Finally, the arithmetic unit 9 determines the degree of deterioration of the insulating coating from the number of cracks (deterioration estimating step), and the output unit 11
Is output and displayed (result output).

【0029】[0029]

【発明の効果】以上説明したように、本発明によれば、
これまで点検者の経験やスキルに依存していた判断行為
を、機械により絶対的、定量的に実施できる。
As described above, according to the present invention,
Machines can perform absolute and quantitative judgment actions that have so far depended on the experience and skills of inspectors.

【0030】また、光学的な測定であるため、非破壊で
簡易かつ迅速な計測が可能である。
Further, since it is an optical measurement, nondestructive, simple and quick measurement is possible.

【0031】さらに、本発明では、測定ごとに亀裂の検
出レベルを適宜選択しているので、絶縁被覆の色に依存
することなく、劣化検出ができる。
Further, in the present invention, since the crack detection level is appropriately selected for each measurement, deterioration can be detected without depending on the color of the insulating coating.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の絶縁電線被覆の劣化検出装置を示す斜
視図である。
FIG. 1 is a perspective view showing a deterioration detecting device for an insulated wire coating according to the present invention.

【図2】本発明の絶縁電線被覆の劣化検出装置を示す構
成説明図である。
FIG. 2 is a structural explanatory view showing a deterioration detecting device for an insulated wire coating of the present invention.

【図3】本発明の請求項2の方法の処理の流れを示すフ
ローチャートである。
FIG. 3 is a flowchart showing a processing flow of a method according to claim 2 of the present invention.

【図4】本発明に係る劣化した絶縁電線を測定した場合
に得られる波形データの模式図で、(a)は被測定電線
の外観および測定ライン、(b)は測定した波形データ
を示す。
FIG. 4 is a schematic diagram of waveform data obtained when a deteriorated insulated wire according to the present invention is measured, in which (a) shows an appearance and a measurement line of an electric wire to be measured, and (b) shows measured waveform data.

【図5】本発明に係る波形データから得られる出現頻度
分布、及びしきい値を示す特性図である。
FIG. 5 is a characteristic diagram showing an appearance frequency distribution and threshold values obtained from the waveform data according to the present invention.

【図6】本発明に係る波形データとしきい値から亀裂を
検出する様子を示す模式図で、(a)は波形データ、
(b)は亀裂および亀裂幅の検出結果を示す特性図であ
る。
FIG. 6 is a schematic diagram showing how a crack is detected from waveform data and a threshold value according to the present invention, in which (a) is waveform data;
(B) is a characteristic view showing a detection result of a crack and a crack width.

【図7】本発明に係るCCPケーブルの絶縁被覆を診断
した場合に劣化程度を決定する劣化判定テーブルの一例
を示す説明図である。
FIG. 7 is an explanatory diagram showing an example of a deterioration determination table for determining the degree of deterioration when the insulation coating of the CCP cable according to the present invention is diagnosed.

【図8】本発明の請求項1の方法の処理の流れを示すフ
ローチャートである。
FIG. 8 is a flowchart showing a processing flow of a method according to claim 1 of the present invention.

【図9】従来の通電法による劣化検出方法を示す説明図
である。
FIG. 9 is an explanatory diagram showing a deterioration detection method by a conventional energization method.

【図10】従来のガス分析法による劣化検出方法を示す
説明図である。
FIG. 10 is an explanatory diagram showing a deterioration detection method by a conventional gas analysis method.

【符号の説明】[Explanation of symbols]

1…本体部、2…絶縁電線保持具、3…絶縁電線、4…
入力装置、5…発光素子、6…受光素子、7…A/Dコ
ンバータ、8…波形記憶装置、9…演算装置、10…劣
化程度基準データベース、11…出力装置。
1 ... Body part, 2 ... Insulated wire holder, 3 ... Insulated wire, 4 ...
Input device, 5 ... Light emitting device, 6 ... Light receiving device, 7 ... A / D converter, 8 ... Waveform storage device, 9 ... Arithmetic device, 10 ... Degradation standard database, 11 ... Output device.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 進藤 博昭 東京都千代田区内幸町一丁目1番6号 日 本電信電話株式会社内 (72)発明者 増田 順一 東京都千代田区内幸町一丁目1番6号 日 本電信電話株式会社内 ─────────────────────────────────────────────────── ─── Continuation of front page (72) Inventor Hiroaki Shindo 1-6, Uchiyuki-cho, Chiyoda-ku, Tokyo Nihon Telegraph and Telephone Corporation (72) Inventor Junichi Masuda 1-6, Uchisaiwai-cho, Chiyoda-ku, Tokyo Nippon Telegraph and Telephone Corporation

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 発光素子、受光素子対からなる光センサ
を絶縁電線の長手方向に所定の距離だけ走査することに
より得られる、絶縁被覆表面の反射強度列を用い、 反射強度列の各振幅値、すなわち輝度値を読み取り、輝
度値ごとの出現回数を数え、出現頻度の分布を求め、 出現頻度分布から出現頻度が最大になる輝度値Imax
見つけ、さらにImaxから輝度値が小さくなる方向に出
現頻度分布を追跡して、最初に出現頻度が零になる輝度
値Iraise を検出し、Iraise と輝度値零の中間値
TH、すなわちしきい値を求め、 反射強度列の中で輝度値がしきい値よりも低下している
箇所の数、すなわち亀裂数を測定し、 亀列数から絶縁被覆の劣化程度を定量化し、これによっ
て絶縁被覆の劣化検出を行うことを特徴とする絶縁電線
被覆の劣化検出方法。
1. An amplitude value of each reflection intensity sequence is obtained by using a reflection intensity sequence of an insulating coating surface obtained by scanning an optical sensor including a pair of a light emitting element and a light receiving element in the longitudinal direction of an insulated wire for a predetermined distance. That is, the luminance value is read, the number of appearances for each luminance value is counted, the distribution of the appearance frequency is obtained, the luminance value I max having the maximum appearance frequency is found from the appearance frequency distribution, and the luminance value decreases from I max. First, the luminance value I raise at which the appearance frequency becomes zero is detected by tracing the appearance frequency distribution, and the intermediate value I TH between I raise and the luminance value zero, that is, the threshold value is obtained, and in the reflection intensity sequence, It is characterized in that the number of places where the brightness value is lower than the threshold value, that is, the number of cracks is measured, the degree of deterioration of the insulation coating is quantified from the number of rows and the deterioration of the insulation coating is detected. How to detect deterioration of insulated wire coating .
【請求項2】 絶縁電線の長手方向に沿って直線状に配
置した複数の発光素子、受光素子対からなる光センサ列
により測光した、絶縁被覆表面の反射強度列を用い、 反射強度列の各振幅値、すなわち輝度値を読み取り、輝
度値ごとの出現回数を数え、出現頻度の分布を求め、 出現頻度分布から出現頻度が最大になる輝度値Imax
見つけ、さらにImaxから輝度値が小さくなる方向に出
現頻度分布を追跡して、最初に出現頻度が零になる輝度
値Iraise を検出し、Iraise と輝度値零の中間値
TH、すなわちしきい値を求め、 反射強度列の中で輝度値がしきい値よりも低下している
箇所の数、すなわち亀裂数と、低下している間の幅、す
なわち亀裂幅を測定し、 亀裂数と最大亀裂幅から絶縁被覆の劣化程度を定量化
し、これによって絶縁被覆の劣化検出を行うことを特徴
とする絶縁電線被覆の劣化検出方法。
2. A reflection intensity array on the surface of the insulating coating, which is measured by an optical sensor array consisting of a plurality of light emitting elements and light receiving element pairs linearly arranged along the longitudinal direction of the insulated wire. The amplitude value, that is, the brightness value is read, the number of appearances for each brightness value is counted, the appearance frequency distribution is obtained, the brightness value I max at which the appearance frequency is maximum is found from the appearance frequency distribution, and the brightness value is reduced from I max. The luminance frequency value I raise at which the frequency of appearance is zero is detected by tracing the appearance frequency distribution in the following direction, the intermediate value I TH between I raise and the luminance value zero, that is, the threshold value is obtained, and The number of places where the brightness value is lower than the threshold value, that is, the number of cracks, and the width during the decrease, that is, the crack width are measured, and the degree of deterioration of the insulation coating is calculated from the number of cracks and the maximum crack width. Quantification of Deterioration detecting method for an insulated wire coating, characterized in that the detection.
【請求項3】 発光素子、受光素子対からなる光センサ
を用い、絶縁電線の長手方向に対する反射強度列を測定
する手段と、 反射強度列を波形データとして取り込み記憶する回路
と、 反射強度列の各振幅値、すなわち輝度値を読み取り、輝
度値ごとの出現回数を数え、出現頻度の分布を求める手
段と、出現頻度分布から出現頻度が最大になる輝度値I
max を見つけ、さらにImax から輝度値が小さくなる方
向に出現頻度分布を追跡して、最初に出現頻度が零にな
る輝度値Iraise を検出し、Iraise と輝度値零の中間
値ITH、すなわちしきい値を求める手段と、反射強度列
の中で輝度値がしきい値よりも低下している箇所の数、
すなわち亀裂数を測定する手段と、亀裂数から絶縁被覆
の劣化程度を同定する手段とからなる演算回路とを具備
することを特徴とする絶縁電線被覆の劣化検出装置。
3. A means for measuring a reflection intensity sequence in the longitudinal direction of an insulated wire using an optical sensor consisting of a light emitting element and a light receiving element pair, a circuit for fetching and storing the reflection intensity sequence as waveform data, and A unit that reads each amplitude value, that is, a brightness value, counts the number of appearances for each brightness value, and obtains a distribution of appearance frequencies, and a brightness value I that maximizes the appearance frequency from the appearance frequency distribution.
Max is found, and then the appearance frequency distribution is traced in the direction in which the luminance value decreases from I max, the luminance value I raise at which the appearance frequency becomes zero is detected first, and the intermediate value I TH between I raise and the luminance value I TH is detected. , That is, the means for obtaining the threshold value, and the number of locations in the reflection intensity sequence where the luminance value is lower than the threshold value,
That is, a deterioration detecting device for an insulated wire coating, comprising: an arithmetic circuit including a unit for measuring the number of cracks and a unit for identifying the degree of deterioration of the insulating coating from the number of cracks.
JP22735593A 1993-09-13 1993-09-13 Method and device for detecting deterioration of insulated-wire covering Pending JPH0783855A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22735593A JPH0783855A (en) 1993-09-13 1993-09-13 Method and device for detecting deterioration of insulated-wire covering

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22735593A JPH0783855A (en) 1993-09-13 1993-09-13 Method and device for detecting deterioration of insulated-wire covering

Publications (1)

Publication Number Publication Date
JPH0783855A true JPH0783855A (en) 1995-03-31

Family

ID=16859505

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22735593A Pending JPH0783855A (en) 1993-09-13 1993-09-13 Method and device for detecting deterioration of insulated-wire covering

Country Status (1)

Country Link
JP (1) JPH0783855A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012154870A (en) * 2011-01-28 2012-08-16 Mitsubishi Electric Corp Deterioration diagnostic device and deterioration diagnostic method
CN116907418A (en) * 2023-09-13 2023-10-20 北京中成康富科技股份有限公司 Millimeter wave therapeutic instrument production detection device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012154870A (en) * 2011-01-28 2012-08-16 Mitsubishi Electric Corp Deterioration diagnostic device and deterioration diagnostic method
CN116907418A (en) * 2023-09-13 2023-10-20 北京中成康富科技股份有限公司 Millimeter wave therapeutic instrument production detection device
CN116907418B (en) * 2023-09-13 2023-12-01 北京中成康富科技股份有限公司 Millimeter wave therapeutic instrument production detection device

Similar Documents

Publication Publication Date Title
US7215807B2 (en) Nondestructive inspection method and apparatus
US5016099A (en) Process for determining the optical quality of flat glass or flat glass products
US7462827B2 (en) Non-destructive inspection method and apparatus therefor
US7006212B2 (en) Electrical circuit conductor inspection
EP0845672A1 (en) Wire rope damage index monitoring device
JPH07190940A (en) Evaluation of video test-piece reader and test piece
US5247154A (en) Method and apparatus for monitoring the laser marking of a bar code label
CN105319248B (en) A kind of electrochemistry the cannot-harm-detection device and method for detecting cracks of metal surface
CN114994412A (en) Nondestructive square resistance and suede measuring device
JPH0783855A (en) Method and device for detecting deterioration of insulated-wire covering
JPH08220184A (en) Method and device for detecting insulation-coating crack of insulated electric wire
JPH07225199A (en) Method and apparatus for detection of degradation of insulation-covered wire
JPH0380258B2 (en)
CN114062381A (en) Device and method for detecting pollution degree of protective glass of laser sensor
JPH0744707A (en) Bacterium inspection device and inspection method
JPH0580630B2 (en)
JP2002168807A (en) Fruit vegetable inspecting instrument
JPH0545142B2 (en)
JPH05130512A (en) Picture element defect measuring instrument for solid-state image pickup element
JP2003149081A (en) Method of inspecting display device and inspecting apparatus using the same
JPS62298705A (en) Linear sensor light source controlling system
JP3092813B2 (en) Image display tube ringing inspection method and apparatus
JPS60177382A (en) Uneven brightness inspection for character display
JPH0792127A (en) Method and equipment for measuring crack in insulation coating
JPH0540107A (en) Ultrasonic microscope