JPH0782052A - Production of porous silicon carbide material - Google Patents

Production of porous silicon carbide material

Info

Publication number
JPH0782052A
JPH0782052A JP5249769A JP24976993A JPH0782052A JP H0782052 A JPH0782052 A JP H0782052A JP 5249769 A JP5249769 A JP 5249769A JP 24976993 A JP24976993 A JP 24976993A JP H0782052 A JPH0782052 A JP H0782052A
Authority
JP
Japan
Prior art keywords
silicon carbide
porosity
polycarbosilane
porous silicon
diameter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP5249769A
Other languages
Japanese (ja)
Other versions
JP3468426B2 (en
Inventor
Akira Yamakawa
昭 山川
Naotaka Yokunaga
直孝 浴永
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokai Carbon Co Ltd
Original Assignee
Tokai Carbon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokai Carbon Co Ltd filed Critical Tokai Carbon Co Ltd
Priority to JP24976993A priority Critical patent/JP3468426B2/en
Publication of JPH0782052A publication Critical patent/JPH0782052A/en
Application granted granted Critical
Publication of JP3468426B2 publication Critical patent/JP3468426B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B38/00Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof
    • C04B38/0022Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof obtained by a chemical conversion or reaction other than those relating to the setting or hardening of cement-like material or to the formation of a sol or a gel, e.g. by carbonising or pyrolysing preformed cellular materials based on polymers, organo-metallic or organo-silicon precursors
    • C04B38/0025Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof obtained by a chemical conversion or reaction other than those relating to the setting or hardening of cement-like material or to the formation of a sol or a gel, e.g. by carbonising or pyrolysing preformed cellular materials based on polymers, organo-metallic or organo-silicon precursors starting from inorganic materials only, e.g. metal foam; Lanxide type products

Abstract

PURPOSE:To produce a porous silicon carbide material having a high porosity and excellent in strength. CONSTITUTION:SiC whisker composed mainly of beta crystal form and having 0.3 to 1.5mum diameter and 10 to 100mum length is kneaded with a binder solution in which polycarbosilane is dissolved. The resultant kneaded material is shaped, dried and subsequently calcined in an inert atmosphere at a temperature at which the polycarbosilane is converted to silicon carbide. The calcined material is further heat-treated in a range of 1700 to 2000 deg.C in an inert atmosphere.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、実質的に炭化珪素単体
からなる高気孔率で材質強度に優れる多孔質炭化珪素体
の製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a porous silicon carbide body which is substantially composed of silicon carbide and has a high porosity and excellent material strength.

【0002】[0002]

【従来の技術】多孔質炭化珪素体の製造技術としては、
粒状の炭化珪素を結合材により所定形状に成形したのち
焼成処理する方法が古くから知られているが、この方法
では材質に所望の高気孔率を付与することができない。
このため、粒径の異なるα型およびβ型の炭化珪素粒子
を混合焼結することにより気孔率を制御する方法(特公
平4−187578号公報) が提案されているが、この場合に
も高い気孔率を得ることは困難である。
2. Description of the Related Art As a technique for manufacturing a porous silicon carbide body,
Although a method of forming granular silicon carbide into a predetermined shape with a binder and then performing a firing treatment has been known for a long time, this method cannot provide a material with a desired high porosity.
For this reason, a method of controlling the porosity by mixing and sintering α-type and β-type silicon carbide particles having different particle sizes (Japanese Patent Publication No. 4-187578) has been proposed. Obtaining porosity is difficult.

【0003】高気孔率の多孔質炭化珪素体を製造する方
法としては、三次元網目構造を備える有機質多孔発泡体
の骨格面に炭化珪素スラリーを付着したのち、乾燥、焼
成する方法が知られている。この方法で製造される炭化
珪素体は、気孔率が75〜95%にも及ぶ高度の多孔質
構造を呈するが、材質強度が極端に低下する欠点があ
る。この方法の改良手段として、1回の操作により付着
させるセラミックススラリー量を少なくして、付着から
乾燥までの工程を反復する方法(特開昭59−3059号公
報) や、特定された比率で圧縮された有機質発泡体にセ
ラミックススラリーを充填したのち圧縮体を当初の体積
に復元させて乾燥、焼成する方法(特開昭63−156084号
公報) 等が提案されている。ところが、これらの方法で
は焼成後に骨格を形成している有機質成分が熱分解消失
した後の空孔がそのまま組織中に残留するため、組織強
度の不足は解消されない。
As a method for producing a porous silicon carbide body having a high porosity, a method is known in which a silicon carbide slurry is adhered to the skeleton surface of an organic porous foam having a three-dimensional network structure, followed by drying and firing. There is. The silicon carbide body produced by this method exhibits a highly porous structure having a porosity of as high as 75 to 95%, but has a drawback that the material strength is extremely lowered. As a means for improving this method, the amount of ceramics slurry deposited by one operation is reduced and the steps from deposition to drying are repeated (Japanese Patent Laid-Open No. 59-3059), or compression at a specified ratio. A method has been proposed in which a ceramic slurry is filled in the formed organic foam, and then the compressed body is restored to its original volume and dried and fired (Japanese Patent Laid-Open No. 63-156084). However, in these methods, since the organic component forming the skeleton after firing is thermally decomposed and lost, the pores remain in the tissue as they are, so that the lack of the tissue strength cannot be solved.

【0004】このような問題点の解消を図り、目詰まり
のない均質通気孔と優れた骨格強度を備える多孔質セラ
ミックス構造体を得る方法として、有機質多孔発泡体に
セラミックススラリーを含浸し、余剰スラリーを除去し
たのち、乾燥、仮焼成する第1工程と、仮焼成体にセラ
ミックススラリーを再含浸し、余剰スラリーを除去した
のち、乾燥、焼成する第2工程からなるプロセスが本出
願人によって提案されている(特開平3−83875 号公
報) 。この方法によれば、有機成分の消失空孔に再含浸
による炭化珪素が充填されるため材質強度を効果的に向
上させることができるが、この含浸操作では組織内部の
全空孔にセラミックススラリーを円滑かつ均一に浸透さ
せることに困難性があり、往々にして局部的な目詰まり
や強度の偏りが生じる難点がある。
As a method of solving the above problems and obtaining a porous ceramic structure having a uniform vent hole without clogging and an excellent skeletal strength, an organic porous foam is impregnated with a ceramic slurry to form a surplus slurry. The present applicant has proposed a process comprising a first step of removing and removing, followed by drying and calcination, and a second step of re-impregnating the calcinated body with ceramics slurry and removing excess slurry, followed by drying and calcination. (JP-A-3-83875). According to this method, the voids of the organic component are filled with silicon carbide by re-impregnation, so that the material strength can be effectively improved. In this impregnation operation, however, the ceramic slurry is filled in all the pores inside the tissue. There is a difficulty in smooth and uniform penetration, and there are often problems that local clogging and uneven strength occur.

【0005】[0005]

【発明が解決しようとする課題】近時、半導体分野に用
いる高温炉材(断熱材を含む)、構造材、濾過材等にお
いて、高純度で高度かつ制御された気孔率と材質強度に
優れる多孔性セラミックス構造体の開発が強く要望され
ているが、これらの要求を全て満足する製造技術はこれ
まで開発されていない。
Recently, in high temperature furnace materials (including heat insulating materials), structural materials, filter materials, etc. used in the field of semiconductors, porous materials having high purity and high porosity and excellent material strength Although there is a strong demand for the development of a porous ceramic structure, a manufacturing technique satisfying all of these requirements has not been developed so far.

【0006】本発明の目的は、高純度、高気孔率、高強
度で、気孔率75%以上の範囲で所望の多孔組織に調整
することができる多孔質炭化珪素体の製造方法を提供す
ることにある。
An object of the present invention is to provide a method for producing a porous silicon carbide body which has a high purity, a high porosity, a high strength and can be adjusted to a desired porous structure within a range of a porosity of 75% or more. It is in.

【0007】[0007]

【課題を解決するための手段】上記の目的を達成するた
めの本発明による多孔質炭化珪素体の製造方法は、直径
0.3〜1.5μm 、長さ10〜100μm の性状を有
するβ型主体のSiCウイスカーを、ポリカルボシラン
を溶解したバインダー溶液と混練し、ついで混練物を成
形・乾燥したのち不活性雰囲気下で前記ポリカルボシラ
ンが炭化珪素化する温度で焼成処理し、更に不活性雰囲
気中で1700〜2000℃の温度域で加熱処理するこ
とを構成上の特徴とする。
A method for producing a porous silicon carbide body according to the present invention for achieving the above object is a β type having a property of a diameter of 0.3 to 1.5 μm and a length of 10 to 100 μm. The main body of SiC whiskers is kneaded with a binder solution in which polycarbosilane is dissolved, and then the kneaded product is molded and dried, and then calcined under an inert atmosphere at a temperature at which the polycarbosilane is converted to silicon carbide, and further inert. The structural feature is that the heat treatment is performed in the temperature range of 1700 to 2000 ° C. in the atmosphere.

【0008】本発明においてSiCウイスカーは骨材原
料となるものであるが、その製造履歴は特に問われな
い。したがって、分解性珪素化合物を炭化水素を気相反
応させる方法、シリカを含む固体状の珪素源原料とカー
ボン粉末の混合物、あるいは籾殻炭のような珪素源およ
び炭材成分を複合的に含有する物質を加熱処理して固相
反応させる方法等によって生成されたSiCウイスカー
を適宜に使用することができる。なお、金属触媒を用い
て生成したSiCウイスカーについては、不純物を除去
するために必要に応じ酸処理による純度精製したのち使
用に供することが望ましい。しかし、SiCウイスカー
の性状としては、直径0.3〜1.5μm、長さ10〜
100μm の形状を有し、かつβ結晶型主体の構造を呈
するものを選択使用する必要がある。この選定理由は、
前記の性状と結晶系をもつSiCウイスカーが最終加熱
処理の工程において最も効果的な昇華再結晶による径太
化が発現し、組織に高度で調整可能な気孔率を付与し得
るためである。
In the present invention, the SiC whiskers are used as an aggregate raw material, but the manufacturing history thereof is not particularly limited. Therefore, a method of reacting a decomposable silicon compound with hydrocarbon in a gas phase, a mixture of a solid silicon source material containing silica and carbon powder, or a substance containing a silicon source and a carbonaceous material component such as rice husk charcoal in a complex manner A SiC whisker produced by a method such as heat-treating and solid-phase reaction can be appropriately used. It is desirable that the SiC whiskers produced using a metal catalyst be purified before being subjected to acid treatment, if necessary, in order to remove impurities, and then used. However, the SiC whiskers have a diameter of 0.3 to 1.5 μm and a length of 10 to 10.
It is necessary to select and use a material having a shape of 100 μm and exhibiting a structure mainly of β crystal type. The reason for this selection is
This is because the SiC whiskers having the above-described properties and crystal system exhibit the most effective diameter increase by sublimation recrystallization in the final heat treatment step, and can impart a highly adjustable porosity to the structure.

【0009】β結晶型主体の構造とは、SiCウイスカ
ーを構成する結晶系が全てβ型であるか、α/β混在型
であってもβ型が支配的な形態を指す。本発明の目的に
最適なβ型主体のSiCウイスカーの結晶特性は、下式
によるα度が20以下で、(111) 回折線の半価幅が0.
14deg 以下のものであり、この特性範囲において気孔
率70%以上での制御が容易となる。 α度=(H1 ×2/H2 )×100 但し、上式でH1 はX線回折でCuKαを線源としたと
きの2θ約33.6deg のピーク強度、H2 は2θ3
5.5deg のピーク強度である。
The structure mainly composed of β crystal type means that the crystal system constituting the SiC whiskers is all β type, or even if α / β mixed type, β type is dominant. The crystal characteristics of the β type SiC whiskers most suitable for the purpose of the present invention are α degree of 20 or less according to the following formula, and half-width of (111) diffraction line is 0.
It is 14 deg or less, and it becomes easy to control at a porosity of 70% or more in this characteristic range. α degree = (H 1 × 2 / H 2 ) × 100 where H 1 is a peak intensity of 2θ of about 33.6 deg when CuKα is used as a radiation source in X-ray diffraction, and H 2 is 2θ3.
It is a peak intensity of 5.5 deg.

【0010】上記性状のSiCウイスカーは、ポリカル
ボシランを例えばベンゼン、トルエン、キシレン、エー
テル、アルコール等の適宜な有機溶媒に溶解したバイン
ダー溶液と混合し、機械的撹拌操作によりスラリー状に
混練する。用いるポリカルボシランの量比は、SiCウ
イスカーに対して10〜30重量%の範囲に設定するこ
とが好ましい。この量比が10重量%未満の場合には得
られる多孔質炭化珪素体に高度の材質強度を付与するこ
とができず、また30重量%を越えると高気孔率組織を
得ることが困難となる。
The SiC whiskers having the above-mentioned properties are prepared by mixing polycarbosilane with a binder solution prepared by dissolving a suitable organic solvent such as benzene, toluene, xylene, ether, alcohol or the like, and kneading the mixture into a slurry by a mechanical stirring operation. The amount ratio of the polycarbosilane used is preferably set in the range of 10 to 30% by weight based on the SiC whiskers. When this amount ratio is less than 10% by weight, it is not possible to impart a high degree of material strength to the obtained porous silicon carbide body, and when it exceeds 30% by weight, it becomes difficult to obtain a high porosity structure. .

【0011】ついで、混練物を例えば注型成形法、濾過
成形法、あるいはスリップキャスト法などの成形手段を
適用して所望の形状に成形し、溶媒を揮散させて乾燥す
る。成形体は、アルゴン、窒素などの不活性雰囲気下で
バインダー成分のポリカルボシランが炭化珪素に転化す
る温度により焼成処理を施す。この加熱温度は、100
0〜1200℃の範囲に設定することが好ましい。
Then, the kneaded product is molded into a desired shape by applying a molding method such as a casting method, a filtration molding method, or a slip casting method, and the solvent is volatilized and dried. The molded body is subjected to a firing treatment in an inert atmosphere such as argon or nitrogen at a temperature at which polycarbosilane as a binder component is converted into silicon carbide. This heating temperature is 100
It is preferable to set in the range of 0 to 1200 ° C.

【0012】得られた炭化珪素質の焼成体は、引き続き
更に不活性雰囲気中で1700〜2000℃の温度域で
加熱処理する。この加熱工程は、SiCウイスカーを昇
華再結晶させることにより径太化し、この作用で組織に
高度の気孔率と高気孔率範囲で多孔構造特性を制御する
ために機能する重要な要件となる。この際、加熱温度が
1700℃未満ではSiCウイスカーが円滑に径太化せ
ず、また2000℃を越える温度になるとSiCの気化
が激しくなって材質強度が著しく減退する。
The silicon carbide-based fired body thus obtained is then further heat-treated in an inert atmosphere in the temperature range of 1700 to 2000 ° C. This heating step increases the diameter by subliming and recrystallizing the SiC whiskers, and this action is an important factor that functions to control the porosity of the structure to a high porosity and a high porosity range. At this time, if the heating temperature is less than 1700 ° C., the diameter of the SiC whiskers will not be smoothly increased, and if the heating temperature exceeds 2000 ° C., the vaporization of SiC will be severe and the material strength will be significantly reduced.

【0013】上記の工程で製造される多孔質炭化珪素体
は、気孔径0.5〜10μm の連続気孔が均質に分布し
た気孔率75〜85%範囲の調整された多孔組織を有
し、材質強度は曲げ強度として100kg/cm2以上の物理
的特性を有する実質的に炭化珪素単体からなる高純度品
である。
The porous silicon carbide body produced in the above process has a controlled porosity with a porosity of 75 to 85% in which continuous pores having a pore diameter of 0.5 to 10 μm are uniformly distributed. The strength is a high-purity product consisting essentially of silicon carbide having a physical property of 100 kg / cm 2 or more as bending strength.

【0014】[0014]

【作用】本発明のプロセスによれば、骨材原料として微
小繊維質のSiCウイスカーを使用し、これを加熱処理
により炭化珪素に転化するポリカルボシランをバインダ
ーとして用いているから、成形・乾燥および焼成処理の
過程でSiCウイスカー相互の絡み合いによる強固で均
質疎密な保形作用とポリカルボシランから転化した炭化
珪素による結合作用を介して多孔質組織の前駆体が形成
される。ついで、最終的に加熱処理を施すと組織中のS
iCウイスカーが昇華再結晶の機構に基づいて径太化す
る。この径太化の作用で組織内に無数の微小空隙が形成
され、実用的な材質強度を維持した状態で高気孔率が付
与される。
According to the process of the present invention, fine fiber SiC whiskers are used as an aggregate raw material, and polycarbosilane which is converted into silicon carbide by heat treatment is used as a binder. During the firing process, a precursor of a porous structure is formed through a strong, homogeneous and dense shape-retaining effect due to the entanglement of SiC whiskers and a binding effect due to silicon carbide converted from polycarbosilane. Then, when heat treatment is finally applied, S in the tissue is
The diameter of iC whiskers is increased based on the mechanism of sublimation recrystallization. Due to the effect of increasing the diameter, innumerable minute voids are formed in the tissue, and high porosity is imparted while maintaining practical material strength.

【0015】この径太化作用による高気孔率の向上は、
直径0.3〜1.5μm 、長さ10〜100μm の性状
を有するβ結晶型主体のSiCウイスカーを選択使用す
ることによって効果的に達成され、また加熱温度を17
00〜2000℃の範囲内で適宜に制御することにより
気孔率75%以上の領域で多孔質構造を調整することが
可能となる。
The improvement of the high porosity due to the diameter increasing effect is
This can be effectively achieved by selectively using a SiC whisker having a diameter of 0.3 to 1.5 μm and a length of 10 to 100 μm and mainly composed of β crystal type.
It is possible to adjust the porous structure in a region having a porosity of 75% or more by appropriately controlling in the range of 00 to 2000 ° C.

【0016】[0016]

【実施例】以下、本発明の実施例を比較例と対比しなが
ら詳細に説明する。
EXAMPLES Examples of the present invention will be described in detail below in comparison with comparative examples.

【0017】実施例1〜3、比較例1〜2 骨材原料として、直径0.5μm 、長さ50μm の性状
を有し、α度0.5で(111) 回折線の半価幅が0.13
75のβ型主体結晶系を呈するSiCウイスカー〔東海
カーボン(株)製、TWS-100 〕を選択使用した。このS
iCウイスカーにポリカルボシラン〔信越化学工業
(株)製、数平均分子量:1475 、重量平均分子量:3365
〕のキシレン溶液を、SiCウイスカーに対するポリ
カルボシランの量比が20重量%になるように混合し、
均一なスラリー状になるまで撹拌処理した。ついで、ス
ラリー状混練物をプラスチック製の容器(縦横100mm 、
高さ50mm)に流し込み、2日間室温で風乾したのち真空
乾燥を施した。乾燥した成形体を窒素ガスで保持された
加熱炉に入れ、1000℃で5時間焼成処理をおこなっ
た。得られた焼成体の性状は、気孔率73%で曲げ強度
300kg/cm2を備える炭化珪素質単体の多孔質体であっ
た。
Examples 1 to 3 and Comparative Examples 1 to 2 As raw materials for aggregate, they have a property of 0.5 μm in diameter and 50 μm in length, and the half value width of the (111) diffraction line is 0 at α degree 0.5. .13
SiC whiskers [TWS-100 manufactured by Tokai Carbon Co., Ltd.] exhibiting a β-type main crystal system of 75 were selectively used. This S
Polycarbosilane for iC whiskers [Shin-Etsu Chemical Co., Ltd., number average molecular weight: 1475, weight average molecular weight: 3365
] The xylene solution is mixed so that the amount ratio of polycarbosilane to SiC whiskers is 20% by weight,
The mixture was stirred until it became a uniform slurry. Then, add the slurry-like kneaded product to a plastic container (100 mm in length and width,
It was poured into a height of 50 mm), air-dried at room temperature for 2 days, and then vacuum-dried. The dried compact was placed in a heating furnace held by nitrogen gas, and fired at 1000 ° C. for 5 hours. The properties of the obtained fired body were a porous body of silicon carbide simple substance having a porosity of 73% and a bending strength of 300 kg / cm 2 .

【0018】次に、焼成体をアルゴン雰囲気に保持され
た高周波誘導加熱炉に移し、1500〜2200℃の範
囲の温度段階で20分間加熱処理を施した。このように
して製造した各多孔質炭化珪素体につき、組織の気孔
率、材質の曲げ強度などを測定し、その結果を加熱処理
温度と対比させて表1に示した。
Next, the fired body was transferred to a high-frequency induction heating furnace maintained in an argon atmosphere and subjected to a heat treatment for 20 minutes in a temperature range of 1500 to 2200 ° C. With respect to each of the porous silicon carbide bodies thus produced, the porosity of the structure, the bending strength of the material, etc. were measured, and the results are shown in Table 1 in comparison with the heat treatment temperature.

【0019】[0019]

【表1】 [Table 1]

【0020】表1の結果から、実施例1〜3では気孔率
75〜81%の範囲で加熱処理温度に応じて多孔度合の
異なる曲げ強度100kg/cm2以上の多孔質炭化珪素体が
製造できることが認められる。これに対し、加熱処理温
度が1500℃の比較例1ではSiCウイスカーの径太
化が進行しない関係で気孔率が増大せず、また加熱処理
温度が2200℃の比較例2では材質強度が極端に低下
する結果を示した。
From the results shown in Table 1, in Examples 1 to 3, it is possible to produce a porous silicon carbide body having a bending strength of 100 kg / cm 2 or more, which has a porosity in the range of 75 to 81% and the porosity varies depending on the heat treatment temperature. Is recognized. On the other hand, in Comparative Example 1 in which the heat treatment temperature is 1500 ° C., the porosity does not increase because the diameter of the SiC whiskers does not increase, and in Comparative Example 2 in which the heat treatment temperature is 2200 ° C., the material strength is extremely high. It showed a declining result.

【0021】比較例3〜5 直径0.7μm 、長さ50μm のα度100のα結晶型
SiCウイスカーを骨材原料に用い、その他は実施例1
と同一条件により炭化珪素質の焼結体を得た。この焼結
体は、気孔率70%で、曲げ強度は300kg/cm2であっ
た。この焼結体を実施例1と同様にして1800℃、1
900℃および2000℃の各温度で加熱処理を施し
た。得られた多孔質炭化珪素体の特性は表2に示すとお
り気孔率の効果的な増大は認められなかった。
Comparative Examples 3 to 5 α crystalline SiC whiskers having a diameter of 0.7 μm and a length of 50 μm and an α degree of 100 were used as the raw material of the aggregate, and the other examples were used.
A silicon carbide based sintered body was obtained under the same conditions as above. This sintered body had a porosity of 70% and a bending strength of 300 kg / cm 2 . This sintered body was processed in the same manner as in Example 1 at 1800 ° C., 1
Heat treatment was performed at each temperature of 900 ° C and 2000 ° C. As shown in Table 2, the properties of the obtained porous silicon carbide body did not show an effective increase in porosity.

【0022】[0022]

【表2】 [Table 2]

【0023】[0023]

【発明の効果】以上のとおり、本発明によれば特性性状
のSiCウイスカー骨材とポリカルボシラン系バインダ
ーとの成形物を焼成および加熱処理することにより高度
の気孔率ならびに材質強度を備える高純度の多孔質炭化
珪素体を効率よく製造することが可能となる。そのう
え、加熱処理温度を制御することにより気孔率75%以
上の範囲で多孔質の度合を調整することも出来る。した
がって、半導体向けの部材や苛酷な条件下で使用される
断熱材、濾過材、パーティキュレート捕集材などとして
極めて有用である。
As described above, according to the present invention, a high purity product having a high porosity and material strength can be obtained by firing and heat treating a molded product of SiC whisker aggregate having a characteristic property and a polycarbosilane binder. It becomes possible to efficiently manufacture the above porous silicon carbide body. Moreover, by controlling the heat treatment temperature, the degree of porosity can be adjusted within the range of the porosity of 75% or more. Therefore, it is extremely useful as a member for semiconductors, a heat insulating material used under severe conditions, a filtering material, a particulate collecting material, and the like.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 直径0.3〜1.5μm 、長さ10〜1
00μm の性状を有するβ結晶型主体のSiCウイスカ
ーを、ポリカルボシランを溶解したバインダー溶液と混
練し、ついで混練物を成形・乾燥したのち不活性雰囲気
下で前記ポリカルボシランが炭化珪素化する温度で焼成
処理し、更に不活性雰囲気中で1700〜2000℃の
温度域で加熱処理することを特徴とする多孔質炭化珪素
体の製造方法。
1. A diameter of 0.3 to 1.5 μm and a length of 10 to 1
A β-crystal type SiC whisker having a property of 00 μm is kneaded with a binder solution in which polycarbosilane is dissolved, and then the kneaded product is molded and dried, and then the temperature at which the polycarbosilane is siliconized in an inert atmosphere. And a heat treatment in a temperature range of 1700 to 2000 ° C. in an inert atmosphere, a method for producing a porous silicon carbide body.
【請求項2】 SiCウイスカーが、α度20以下で、
(111) 回折線の半価幅が0.14deg 以下である請求項
1記載の多孔質炭化珪素体の製造方法。
2. The SiC whisker has an α degree of 20 or less,
The method for producing a porous silicon carbide body according to claim 1, wherein the full width at half maximum of the (111) diffraction line is 0.14 deg or less.
JP24976993A 1993-09-10 1993-09-10 Method for producing porous silicon carbide body Expired - Fee Related JP3468426B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24976993A JP3468426B2 (en) 1993-09-10 1993-09-10 Method for producing porous silicon carbide body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24976993A JP3468426B2 (en) 1993-09-10 1993-09-10 Method for producing porous silicon carbide body

Publications (2)

Publication Number Publication Date
JPH0782052A true JPH0782052A (en) 1995-03-28
JP3468426B2 JP3468426B2 (en) 2003-11-17

Family

ID=17197959

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24976993A Expired - Fee Related JP3468426B2 (en) 1993-09-10 1993-09-10 Method for producing porous silicon carbide body

Country Status (1)

Country Link
JP (1) JP3468426B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112806613A (en) * 2021-01-20 2021-05-18 珠海亿特立新材料有限公司 Preparation method of porous ceramic with nano-silver, porous ceramic, electronic cigarette atomization core and electronic cigarette

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112806613A (en) * 2021-01-20 2021-05-18 珠海亿特立新材料有限公司 Preparation method of porous ceramic with nano-silver, porous ceramic, electronic cigarette atomization core and electronic cigarette

Also Published As

Publication number Publication date
JP3468426B2 (en) 2003-11-17

Similar Documents

Publication Publication Date Title
CN102010222B (en) Silicon carbide porous ceramic and preparation method thereof
CN111675541A (en) Preparation method of carbon-containing MAX phase material
JPS5848505B2 (en) Method for manufacturing a silicon carbide molded body mainly composed of SIC
JPS5844630B2 (en) silicone carbide material
CN111807843A (en) Light high-strength silicon carbide foam ceramic and preparation method thereof
JPH0251863B2 (en)
JP2001507624A (en) High specific surface area silicon carbide based catalyst media in the form of granules with improved mechanical properties
JP3468426B2 (en) Method for producing porous silicon carbide body
JP4104096B2 (en) Porous SiC molded body and method for producing the same
JPH11130558A (en) Porous silicon carbide sintered product and its production
JPH0826848A (en) Production of porous sic molding
JPS6067601A (en) Preparation of sintered body
JP3099195B2 (en) Silicon nitride-bonded silicon carbide support and method for producing the same
JP2000185979A (en) Production of porous molded article of silicon carbide
JP2851100B2 (en) Method for producing low-density silicon carbide porous body
JPS6212663A (en) Method of sintering b4c base fine body
JPS5848503B2 (en) silicon carbide material
JPH08175871A (en) Silicon carbide-based sintered body and its production
JP5120793B2 (en) Method for producing porous silicon carbide
JPH0692736A (en) Method for controlling electric resistance of silicon carbide sintered compact
JP3278681B2 (en) Method for producing porous silicon carbide sintered body
JP2855471B2 (en) Silicate-bonded silicon carbide carrier and method for producing the same
JP3118557B2 (en) Method for growing graphite particles in carbon-based moldings
JPH11335172A (en) Production of porous silicon carbide sintered compact
CN117945775A (en) C (C)fPreparation method of ZrC ceramic composite material

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees