JPH0781884B2 - Optical displacement measuring device - Google Patents

Optical displacement measuring device

Info

Publication number
JPH0781884B2
JPH0781884B2 JP59205853A JP20585384A JPH0781884B2 JP H0781884 B2 JPH0781884 B2 JP H0781884B2 JP 59205853 A JP59205853 A JP 59205853A JP 20585384 A JP20585384 A JP 20585384A JP H0781884 B2 JPH0781884 B2 JP H0781884B2
Authority
JP
Japan
Prior art keywords
measuring device
diffraction grating
difference
optical path
optical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59205853A
Other languages
Japanese (ja)
Other versions
JPS6183911A (en
Inventor
佳代子 谷口
秀樹 土谷
正明 外山
Original Assignee
ソニーマグネスケール株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ソニーマグネスケール株式会社 filed Critical ソニーマグネスケール株式会社
Priority to JP59205853A priority Critical patent/JPH0781884B2/en
Priority to DE88117622T priority patent/DE3486178T2/en
Priority to EP84307484A priority patent/EP0146244B2/en
Priority to EP88117622A priority patent/EP0311144B1/en
Priority to DE8484307484T priority patent/DE3484649D1/en
Priority to US06/668,097 priority patent/US4676645A/en
Publication of JPS6183911A publication Critical patent/JPS6183911A/en
Publication of JPH0781884B2 publication Critical patent/JPH0781884B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/26Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light
    • G01D5/32Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light
    • G01D5/34Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells
    • G01D5/36Forming the light into pulses
    • G01D5/38Forming the light into pulses by diffraction gratings

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、光の干渉を利用してスケールの移動を検出す
るようにした光学式変位測定装置に関し時に光源として
マルチモード半導体レーザを用いた測定装置に関するも
のである。
Description: TECHNICAL FIELD The present invention relates to an optical displacement measuring device that detects movement of a scale by utilizing light interference, and sometimes uses a multimode semiconductor laser as a light source. The present invention relates to a measuring device.

〔従来の技術〕[Conventional technology]

移動する回折格子をスケールとして用い回折光を干渉さ
せて回折格子の位置変化(移動距離)を検出するように
した光学式変位測定装置において、本質的に光源の波長
変化を許容して使用し得るタイプのものとして実開昭57
−81510号又は特開昭58−191907号に示されるようにプ
ラスとマイナスの同次回折光どうしの干渉を利用して移
動検出を行なうようにしたものや、特開昭60−98302号
に示されるように1次回折光どうしの干渉を利用して移
動検出を行なうようにしたものが知られている。
In an optical displacement measuring device in which a moving diffraction grating is used as a scale and diffracted light is interfered to detect a position change (moving distance) of the diffraction grating, it can be used by essentially allowing a wavelength change of a light source. 57 as a type
-81510 or Japanese Patent Laid-Open No. 58-191907, in which movement detection is performed by utilizing interference between plus and minus homo-diffracted lights, and Japanese Patent Laid-Open No. 60-98302 discloses. As described above, there is known one in which movement is detected by utilizing interference between first-order diffracted lights.

これらの従来の光学式変位測定装置はいずれもが、その
光学系は光源の許容範囲内の波長変化に対して干渉計が
すぐれる等の影響を受けないように工夫されているため
に、光源としては半導体レーザ等のように波長安定性に
は欠けるがコンパクトで安価なものを使用することがで
きる利点を有している。
All of these conventional optical displacement measuring devices are designed so that the optical system is not affected by the change of the wavelength within the allowable range of the light source, such as the interferometer being excellent. As a result, there is an advantage that it is possible to use a compact and inexpensive one such as a semiconductor laser, which lacks wavelength stability.

しかしながらその反面この光学系においては所望の特性
を発揮させるためには、その干渉計のビームスプリツタ
もしくは回折格子によつて分岐され再び回折されて干渉
されるまでの2つのビームの光路長は、必ず等しく変化
するように調整される必要がある。この理由は、光路長
に差が生じたとすると波長変化によつて測定すべき回折
格子の移動による位相変化と同様に干渉信号にも位相変
化が生じ、これにより測定誤差を引き起こすためであ
る。
However, on the other hand, in order to exhibit the desired characteristics in this optical system, the optical path lengths of the two beams until they are split by the beam splitter or diffraction grating of the interferometer and are diffracted again to interfere are It needs to be adjusted to ensure that they change equally. The reason for this is that if there is a difference in the optical path length, a phase change will occur in the interference signal as well as a phase change due to the movement of the diffraction grating to be measured due to the wavelength change, which will cause a measurement error.

このような弊害を避けるための上記2つのビームの光路
長の調整の精度は、許容すべき波長変化と必要とされる
精度および一干渉信号の周期が対応する回折格子の移動
量によつて決定され、一概には言えないが、半導体レー
ザに温度補償を施こさずに使用する場合においては例え
ば数10μm〜数100μm以内に収めなければならない。
The accuracy of adjusting the optical path lengths of the two beams in order to avoid such an adverse effect is determined by the allowable wavelength change, the required accuracy, and the movement amount of the diffraction grating corresponding to the period of one interference signal. However, although it cannot be generally stated, when the semiconductor laser is used without being subjected to temperature compensation, it must be within several tens of μm to several hundreds of μm, for example.

〔発明が解決しようとする問題点〕[Problems to be solved by the invention]

そのためには非常に精確な光学系支持体あるいは位置決
め治具が必要とされていたが、前者は高価となりまた後
者においては調整作業に精密さが要求されネジ等のゆる
みによつて光学系に支障が生じて測定誤差の原因となる
問題が生じていた。さらに従来のように単一モードなど
の干渉性の良い光源を使用している場合には光学部品の
端面等からの不必要な反射光の重畳によつて干渉信号に
位相ずれが生じるおそれがあるため、光学部品に高価な
無反射コーテイングを施こす必要があつた。
For that purpose, a very accurate optical system support or positioning jig was required, but the former becomes expensive and the latter requires precision in the adjustment work, and loosening of screws etc. hinders the optical system. Occurs, which causes a measurement error. Furthermore, when a light source with good coherence such as a single mode is used as in the conventional case, there is a possibility that a phase shift occurs in the interference signal due to unnecessary superposition of reflected light from the end face of the optical component. Therefore, it is necessary to apply an expensive antireflection coating to the optical components.

またこれらの対策にも拘わらず調整精度を一定範囲に収
めるのは困難であつた。
In addition, it is difficult to keep the adjustment accuracy within a certain range in spite of these measures.

〔問題点を解決するための手段〕[Means for solving problems]

本発明は上記問題点に対処してなされたもので、2つの
ビームの光路長の差を検出することにより特別に精密な
部材や作業を要することなく光路長の調整を行なうよう
にして従来欠点を除去するようにし又必要な光ビームの
間の干渉を選択的に行わせしめた光学式変位測定装置を
提供することを目的とするものである。
The present invention has been made to address the above-mentioned problems, and the optical path length is adjusted by detecting the difference between the optical path lengths of the two beams so that the optical path length can be adjusted without requiring any special precision member or work. SUMMARY OF THE INVENTION It is an object of the present invention to provide an optical displacement measuring device which eliminates the above-mentioned problem and selectively causes interference between required light beams.

このような目的を達成するために本発明は、適当な干渉
性を有するマルチモード半導体レーザを光源として使用
する。
In order to achieve such an object, the present invention uses a multimode semiconductor laser having appropriate coherence as a light source.

〔実施例〕〔Example〕

以下図面を参照して本発明実施例を説明する。 Embodiments of the present invention will be described below with reference to the drawings.

第1図は本発明実施例による光学式変位測定装置を示す
構成図で、1はマルチモード半導体レーザから成る光
源、2は光ビームを2分するためのビームスプリツタ、
3はスケールとして使用される回折格子、4,7,13はλ/4
板、5,6は一対のミラー、8はハーフミラー、9,12は偏
向板、11,10はフオトデイテクタである。
FIG. 1 is a block diagram showing an optical displacement measuring apparatus according to an embodiment of the present invention, in which 1 is a light source composed of a multimode semiconductor laser, 2 is a beam splitter for dividing a light beam into two,
3 is a diffraction grating used as a scale, 4,7,13 are λ / 4
Plates, 5 and 6 are a pair of mirrors, 8 is a half mirror, 9 and 12 are deflecting plates, and 11 and 10 are photodetectors.

以上の構成において、上記マルチモード半導体レーザ1
から出射された光はビームスプリツタ2に入射されAで
回折格子3のB,Cに向かう光に2分される。回折格子3
に入射された各光ビームは回折され、λ/4板4,7を介し
てミラー5,6に入射され、各々はD,Eで反射されて再び回
折格子3に入射される。再び回折格子3で回折された各
ビームはビームスプリツタ2に戻り、ここで干渉された
後ハーフミラー8を介してフオトデイテクタ10,11に入
射されて、その干渉強度が検出されてスケールとして用
いられている回折格子3の変位測定が行われる。
In the above configuration, the multimode semiconductor laser 1
The light emitted from the beam splitter 2 is incident on the beam splitter 2 and is split by A into light beams directed to B and C of the diffraction grating 3. Diffraction grating 3
Each of the light beams incident on is incident on the mirrors 5 and 6 via the λ / 4 plates 4 and 7, respectively, reflected on D and E, and incident on the diffraction grating 3 again. The beams diffracted by the diffraction grating 3 again return to the beam splitter 2, and after being interfered there, they are made incident on the photodetectors 10 and 11 via the half mirror 8 and the interference intensity thereof is detected and used as a scale. Displacement measurement of the diffraction grating 3 is performed.

一般に干渉計における干渉縞のビジビリテイは光源の干
渉性と、干渉する2つのビームの光路長の差とによつて
決定され、シングルモード発振を行なつているレーザ等
の干渉性の良い光源においては光路長の差が大きくとも
ビジビリテイが失われることはない。これに対して干渉
性の悪い光源においては光路長の差の変化によつて干渉
縞のビジビリテイは変化することが知られている。
Generally, the visibility of interference fringes in an interferometer is determined by the coherence of the light source and the difference in the optical path lengths of the two beams that interfere with each other, and in the case of a light source with good coherence, such as a laser performing single-mode oscillation, Even if the difference in optical path length is large, the visibility is not lost. On the other hand, it is known that in a light source with poor coherence, the visibility of interference fringes changes due to changes in the difference in optical path length.

本発明においてはこの原理を光学式変位測定装置に適用
してなされたものである。
In the present invention, this principle is applied to an optical displacement measuring device.

第1図において、マルチモード半導体レーザ1の波長の
変動に因る誤差を生じさせないためには、ビームスプリ
ツタ2で2分された光ビームの経路A→B→Dと経路A
→C→Eとは等しく調整されねばならない。ここでその
調整の精度はこの光学系が用いられる環境の温度条件に
依存するが、市販の半導体レーザに例をとると温度変化
に対して0.3nm/℃程度の波長変動特性を有し、一応温度
幅を±10℃、波長を780nmとするとこの光学系の場合回
折格子の格子ピツチはおよそ0.55μmとなる。
In FIG. 1, in order to prevent an error due to the wavelength variation of the multimode semiconductor laser 1, a path A → B → D and a path A of the light beam divided by the beam splitter 2 are used.
→ C → E must be adjusted equally. Here, the accuracy of the adjustment depends on the temperature conditions of the environment in which this optical system is used, but when taking a commercially available semiconductor laser as an example, it has a wavelength fluctuation characteristic of about 0.3 nm / ° C with respect to temperature changes, When the temperature width is ± 10 ° C. and the wavelength is 780 nm, the grating pitch of the diffraction grating is about 0.55 μm in this optical system.

また必要な精度を0.1μmとすると、光路長の差Δl
は、 を満足するような値に収められる必要がある。なおここ
でλ:光源の波長 P:格子ピツチ である。
If the required accuracy is 0.1 μm, the difference in optical path length Δl
Is Must be set to a value that satisfies Note that λ is the wavelength of the light source P is the grating pitch.

この場合Δlの許容値は70μm程度となる。In this case, the allowable value of Δl is about 70 μm.

これをモニタするためには、この程度のΔlのずれを検
出できるしかもあまりにΔlの値に対し敏感でも扱いに
くいので、この値以下のΔlに対してはビジビリテイの
あまり変化しない適当な干渉性を有する光源を使用する
必要がある。
In order to monitor this, it is possible to detect this amount of deviation of Δl, and it is difficult to handle even if it is too sensitive to the value of Δl, so that for Δl below this value, it has an appropriate coherence that the visibility does not change much. You need to use a light source.

本発明のように適当なマルチモードの半導体レーザを用
いた場合はこの条件を満足し、適当なΔlの変化に対す
る変調率の変化を得ることができる。すなわち光路長の
差の変化を干渉信号の変調率の変化として検出すること
ができる。
When an appropriate multimode semiconductor laser is used as in the present invention, this condition is satisfied, and a change in the modulation rate with respect to an appropriate change in Δl can be obtained. That is, a change in the difference in optical path length can be detected as a change in the modulation rate of the interference signal.

第2図は第1図の構成において、実験的に求められた光
路長の差Δlと干渉信号の振幅の変化との関係を示すも
のである。
FIG. 2 shows the relationship between the experimentally determined difference Δl in optical path length and the change in the amplitude of the interference signal in the configuration of FIG.

第2図から有らかなようにかなり精度良く光路長の調整
を行なうことができることが理解される。
As is apparent from FIG. 2, it is understood that the optical path length can be adjusted quite accurately.

精度の低い光学系においては上記マルチモード半導体レ
ーザに比較して発振モード数の少ないマルチモードを使
用すれば良く、第2図の例に比べてゆるやかな特性が得
られる。またシングルモードのレーザを使用する場合に
おいても、光学系の調整を行なう際のみマルチモードレ
ーザを取り付け、調整後レーザを置き換えるようにして
も良い。
In an optical system with low accuracy, it is sufficient to use a multimode having a smaller number of oscillation modes than the above-mentioned multimode semiconductor laser, and a gentler characteristic than that of the example of FIG. 2 can be obtained. Further, even when a single mode laser is used, the multimode laser may be attached only when the optical system is adjusted and the adjusted laser may be replaced.

しかしながらマルチモード半導体レーザを使用している
場合には調整後何らかの理由で光路長の差が発生した場
合に、出力信号の低下として表れ検出することができる
ので、波長変動に因る誤差が発生しているのに気ずかず
に使用してしまう事を避けることができる。またΔlの
小さなビーム間の干渉のみが選択的に検出される事か
ら、各光学部品の端面から反射される不要光の干渉によ
つて干渉信号が変動する事が避けられるので精度を向上
させることができる。さらに光学部品に対する無反射コ
ーテイングを省略することが可能なので、安価な光学部
品の提供も可能となる。さらにまたシングルモード半導
体レーザ使用時に比べS/N比を改善することも可能とな
る。
However, when a multimode semiconductor laser is used, if a difference in optical path length occurs for some reason after adjustment, it can be detected and displayed as a drop in the output signal, so an error due to wavelength fluctuations will occur. You can avoid using it without worrying about it. Further, since only the interference between the beams having a small Δl is selectively detected, it is possible to avoid the fluctuation of the interference signal due to the interference of the unnecessary light reflected from the end surface of each optical component, so that the accuracy is improved. You can Further, since it is possible to omit the non-reflection coating on the optical component, it is possible to provide an inexpensive optical component. Furthermore, it is possible to improve the S / N ratio as compared with the case of using a single mode semiconductor laser.

〔発明の効果〕〔The invention's effect〕

以上説明してから明らかなように本発明によれば、移動
する回折格子をスケールとし回折光の干渉信号により回
折格子の移動量を求める光学式変位測定装置において、
光源としてマルチモードの半導体レーザを要いるように
構成したものであるから次のような効果が得られる。
As is apparent from the above description, according to the present invention, in the optical displacement measuring device for obtaining the moving amount of the diffraction grating by the interference signal of the diffracted light using the moving diffraction grating as a scale,
Since the multi-mode semiconductor laser is required as the light source, the following effects can be obtained.

1. 光路長の差が検出できるので光路長の調整が精度良
く容易に行なうことができる。
1. Since the difference in optical path length can be detected, the optical path length can be adjusted accurately and easily.

2. 調整状態のモニタができるので波長変動に基づく誤
差が出ている事を知らずに測定を行なうような事は避け
られる。
2. Since the adjustment status can be monitored, it is possible to avoid making measurements without knowing that errors due to wavelength fluctuations are occurring.

3. 不要光によつて干渉信号が変動するのを防止するこ
とができる。
3. It is possible to prevent the interference signal from changing due to unnecessary light.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明実施例を示す構成図、第2図は本発明を
説明するための特性図である。 1……マルチモード半導体レーザ、2……ビームスプリ
ツタ、3……回折格子、10,11……フオトデイテクタ。
FIG. 1 is a configuration diagram showing an embodiment of the present invention, and FIG. 2 is a characteristic diagram for explaining the present invention. 1 ... Multimode semiconductor laser, 2 ... Beam splitter, 3 ... Diffraction grating, 10,11 ... Photodetector.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 外山 正明 東京都品川区西五反田3丁目9番17号 東 洋ビル ソニーマグネスケール株式会社内 (56)参考文献 特開 昭60−98302(JP,A) 特開 昭58−191907(JP,A) 実開 昭57−81510(JP,U) ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Masaaki Toyama 3-9-17 Nishigotanda, Shinagawa-ku, Tokyo Toyo Building Sony Magnescale Co., Ltd. (56) Reference JP-A-60-98302 (JP, A) ) JP-A-58-191907 (JP, A) Actually developed Shou 57-81510 (JP, U)

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】スケールとして使用される移動可能な回折
格子、光源及び光検出器を有し、光源から発せられて回
折格子によって回折された2つの回折光を干渉させる手
段を持ち、干渉させられた回折光の強度に応じた干渉信
号の上記回折格子の変位による周期的変化を検知して回
折格子の変位量を検出する光学式変位測定装置におい
て、光路長の等しい2つの光ビームの干渉を選択的に行
わせるため前記光源として適当な干渉性を有するマルチ
モードの半導体レーザを用い、かつ干渉させる上記2つ
の光ビームの光路長の差に基づく上記干渉信号のピーク
対ピーク間振幅の差を認識する認識手段を備えたことを
特徴とする光学式変位測定装置。
1. A movable diffraction grating used as a scale, a light source and a photodetector, and means for interfering two diffracted light beams emitted from a light source and diffracted by the diffraction grating. In an optical displacement measuring device that detects the amount of displacement of the diffraction grating by detecting the periodic change of the interference signal according to the intensity of the diffracted light due to the displacement of the diffraction grating, the interference of two light beams having the same optical path length A multi-mode semiconductor laser having appropriate coherence is used as the light source for selectively performing the light source, and a peak-to-peak amplitude difference of the interference signal based on a difference between optical path lengths of the two light beams to be interfered with each other. An optical displacement measuring device comprising recognition means for recognizing.
【請求項2】前記認識手段により前記振幅の差をなくす
ように前記光路長の調整を行うことを特徴とする特許請
求の範囲第1項記載の光学式変位測定装置。
2. The optical displacement measuring device according to claim 1, wherein the recognizing means adjusts the optical path length so as to eliminate the difference in the amplitude.
【請求項3】前記認識手段により前記振幅の差から前記
光路長の差の変化を監視することを特徴とする特許請求
の範囲第1項記載の光学式変位測定装置。
3. The optical displacement measuring device according to claim 1, wherein the recognizing means monitors a change in the difference in the optical path length from the difference in the amplitude.
JP59205853A 1983-11-04 1984-10-01 Optical displacement measuring device Expired - Lifetime JPH0781884B2 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP59205853A JPH0781884B2 (en) 1984-10-01 1984-10-01 Optical displacement measuring device
DE88117622T DE3486178T2 (en) 1983-11-04 1984-10-31 Optical instrument for measuring a displacement.
EP84307484A EP0146244B2 (en) 1983-11-04 1984-10-31 Optical instrument for measuring displacement
EP88117622A EP0311144B1 (en) 1983-11-04 1984-10-31 Optical instrument for measuring displacement
DE8484307484T DE3484649D1 (en) 1983-11-04 1984-10-31 OPTICAL INSTRUMENT FOR MEASURING A SHIFT.
US06/668,097 US4676645A (en) 1983-11-04 1984-11-05 Optical instrument for measuring displacement

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59205853A JPH0781884B2 (en) 1984-10-01 1984-10-01 Optical displacement measuring device

Publications (2)

Publication Number Publication Date
JPS6183911A JPS6183911A (en) 1986-04-28
JPH0781884B2 true JPH0781884B2 (en) 1995-09-06

Family

ID=16513791

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59205853A Expired - Lifetime JPH0781884B2 (en) 1983-11-04 1984-10-01 Optical displacement measuring device

Country Status (1)

Country Link
JP (1) JPH0781884B2 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2547826B2 (en) * 1988-10-19 1996-10-23 キヤノン株式会社 Interferometer using multimode semiconductor laser
JP2617361B2 (en) * 1989-11-02 1997-06-04 ソニー・プレシジョン・テクノロジー株式会社 Pulse train conversion circuit
IL100655A (en) * 1991-02-08 1994-11-28 Hughes Aircraft Co Interferometric laser profilometer
KR100531458B1 (en) * 1998-08-20 2005-11-25 소니 매뉴펙츄어링 시스템즈 코포레이션 Optical displacement measurement system
US7187449B2 (en) 2002-04-26 2007-03-06 Sony Precision Technology Inc. Light-receiving/emitting composite unit, method for manufacturing the same, and displacement detection device
US20060145066A1 (en) * 2004-12-13 2006-07-06 Hideaki Tamiya Displacement detection apparatus, displacement gauging apparatus and fixed point detection apparatus
JP4969057B2 (en) * 2004-12-13 2012-07-04 株式会社森精機製作所 Displacement detection device, displacement measurement device, and fixed point detection device
JP5695478B2 (en) 2011-04-15 2015-04-08 Dmg森精機株式会社 Optical displacement measuring device
JP6751772B2 (en) * 2016-05-09 2020-09-09 エーエスエムエル ネザーランズ ビー.ブイ. Positioning system, calibration method, lithography equipment and device manufacturing method

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5957487A (en) * 1982-09-27 1984-04-03 Mitsubishi Electric Corp Semiconductor laser device

Also Published As

Publication number Publication date
JPS6183911A (en) 1986-04-28

Similar Documents

Publication Publication Date Title
US5517307A (en) Probe measurement apparatus using a curved grating displacement interferometer
US4676645A (en) Optical instrument for measuring displacement
EP0646767B1 (en) Interferometric distance measuring apparatus
JP4381671B2 (en) Displacement detector
JP2755757B2 (en) Measuring method of displacement and angle
JPH021501A (en) Laser interference length measuring machine and positioning method using the same machine
US7389595B2 (en) Position-measuring device and method for operating a position-measuring device
US7723671B2 (en) Positional information detecting device
EP0611438A1 (en) Measuring instruments.
JPH0781884B2 (en) Optical displacement measuring device
JP2547826B2 (en) Interferometer using multimode semiconductor laser
JP2725434B2 (en) Absolute length measuring method and absolute length measuring device using FM heterodyne method
JPH0235248B2 (en)
US4912320A (en) Optical type encoder including diffraction grating for producing interference fringes that are processed to measure displacement
JP4404184B2 (en) Displacement detector
US11353315B2 (en) Laser interference device
JPH05272913A (en) Highly-accurate gage interferometer
JPH0376843B2 (en)
JP2000310507A (en) Interferometer
JPS62163921A (en) Rotary encoder
JPH04372804A (en) Optical system for measuring linear motion
JP3028848B2 (en) Position measuring device
KR940011274B1 (en) Wave change measuring apparatus of laser diode
JPH0230723Y2 (en)
JPH0454407A (en) Optical displacement gauge

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term