JPH0781171B2 - Vacuum arc solving method - Google Patents
Vacuum arc solving methodInfo
- Publication number
- JPH0781171B2 JPH0781171B2 JP60101416A JP10141685A JPH0781171B2 JP H0781171 B2 JPH0781171 B2 JP H0781171B2 JP 60101416 A JP60101416 A JP 60101416A JP 10141685 A JP10141685 A JP 10141685A JP H0781171 B2 JPH0781171 B2 JP H0781171B2
- Authority
- JP
- Japan
- Prior art keywords
- vacuum
- torr
- arc
- present
- var
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Landscapes
- Manufacture And Refinement Of Metals (AREA)
Description
【発明の詳細な説明】 [産業上の利用分野] 本発明は真空アーク溶解法、別称コンセルアーク溶解法
に関し、特に、適当な真空度を選択することにより、M
n、Cu等の蒸発元素の蒸発を少なくし、成分を安定化さ
せるとともに、蒸発物による鋼塊表面への偏析、肌の悪
化を防止し、表面皮削りを不要とすることのできる金属
素材の真空アーク溶解法の改良技術に関する。Description: TECHNICAL FIELD The present invention relates to a vacuum arc melting method, also called concel arc melting method, and in particular, by selecting an appropriate vacuum degree, M
n, Cu, etc., to reduce the evaporation of evaporating elements, stabilize the composition, prevent segregation on the steel ingot surface due to evaporation, deterioration of the skin, and of metal material that can eliminate surface scraping The present invention relates to an improved technique of the vacuum arc melting method.
[従来の技術] 真空アーク溶解(Vacuum Arc Remelting)法[以下、
VARという]は、高度の品質を要求される鋼および合金
の溶解・精錬に利用される。[Prior Art] Vacuum Arc Remelting Method [Hereinafter,
VAR] is used for melting and refining steel and alloys that require high quality.
VARの原理は、一般に第1図に示すように、水冷されて
いるルツボ1の中で、被溶解材(消耗電極)2を溶解
し、溶けた鋼をルツボ1の中で固める、すなわち、溶解
と凝固とを続けて行う方法で、これらが高真空下で順次
少量ずつ行われるため真空精錬、介在物の浮上分離、積
層凝固により品質の改善が進行する。尚第1図にて、3
に鋼塊が生成され、4のジャケットに、矢標5から冷却
水が入水、出水するようになっている。また、第1図に
て、6は炉体、7は消耗電極昇降機構、8は電源、9は
制御板、10はスティンガーロッド、11はスタブホルダ、
12はスタブを示す。As shown in FIG. 1, generally, the principle of VAR is to melt a material to be melted (consumable electrode) 2 in a water-cooled crucible 1 and solidify the melted steel in the crucible 1, that is, to melt. And solidification are performed successively in small amounts under high vacuum, so that the quality is improved by vacuum refining, floating separation of inclusions, and layer solidification. In Fig. 1, 3
A steel ingot is generated in the cooling water, and cooling water enters and flows out from the arrow mark 5 into the jacket of 4. Further, in FIG. 1, 6 is a furnace body, 7 is a consumable electrode lifting mechanism, 8 is a power supply, 9 is a control plate, 10 is a stinger rod, 11 is a stub holder,
12 indicates a stub.
第2図に、真空アーク溶解炉の構造の一例を示す。FIG. 2 shows an example of the structure of the vacuum arc melting furnace.
第2図にて、第1図と同じ符号を付した部分は同一の機
能を示すのでその説明を省略するが、同図にて、13は真
空ポンプ系を示す。In FIG. 2, the parts denoted by the same reference numerals as those in FIG. 1 have the same functions and therefore the description thereof will be omitted. However, in FIG. 2, 13 denotes a vacuum pump system.
当該炉は、炉体、ルツボ、給水設備、真空排気系、電極
駆動系、及び電源などにより構成される。The furnace is composed of a furnace body, a crucible, a water supply facility, a vacuum exhaust system, an electrode drive system, a power source, and the like.
かかるVARにおいては、前述のごとく、真空下(減圧
下)で行うため、アーク炉などで一次溶解後の溶鋼から
水素や酸素や窒素などのガス成分を除去することができ
る。Since the VAR is performed under vacuum (under reduced pressure) as described above, gas components such as hydrogen, oxygen and nitrogen can be removed from the molten steel after primary melting in an arc furnace or the like.
しかし、一方で、蒸発しやすい元素例えば、MnやCuをも
蒸発してしまい、その結果、電極溶製に際し、蒸発元素
例えばMnなどはその蒸発量を見込んで成分調整をしたり
するが、それにもかかわらず、鋼塊中の成分にバラツキ
を生じさせることになる。However, on the other hand, elements that are likely to evaporate, such as Mn and Cu, also evaporate, and as a result, during electrode melting, the evaporating element, such as Mn, adjusts the components by anticipating the amount of evaporation, Nevertheless, it causes variations in the components in the steel ingot.
また、かかる蒸発物が鋼塊表面に偏析し、肌を悪化させ
ることになる。Moreover, such an evaporated substance segregates on the surface of the steel ingot, which deteriorates the skin.
そのため、VARにおいては、鋼塊肌を良くするために、
いわゆる皮削り操作を必要し、製品の歩留を著しく悪化
させることになる。Therefore, in VAR, in order to improve the steel ingot surface,
A so-called skinning operation is required, which significantly deteriorates the product yield.
ところで、従来、かかるVARにおける炉体の真空度は、
一般に、到達真空度10-4Torr台、溶解中は炉体で10-2〜
10-3Torrに保持されていた。By the way, conventionally, the vacuum degree of the furnace body in such VAR is
Generally, the ultimate vacuum is in the order of 10 -4 Torr, and the furnace body during melting is 10 -2 〜
It was held at 10 -3 Torr.
[発明が解決しようとする問題点] 本発明の目的は、VARにおけるMn、Cu等の蒸発元素の蒸
発を少なくし、成分を安定化させるとともに蒸発物によ
る鋼塊表面への偏析、肌の悪化を防止し、皮削り歩留の
向上を図ることにある。[Problems to be Solved by the Invention] An object of the present invention is to reduce the evaporation of evaporating elements such as Mn and Cu in VAR, to stabilize the components, and to segregate the steel ingot surface by evaporants and to deteriorate the skin. This is to prevent the above and improve the yield by removing the skin.
本発明の他の目的及び新規な特徴は本明細書全体の記述
及び添附図面からも明らかになるであろう。Other objects and novel features of the present invention will be apparent from the description of the entire specification and the accompanying drawings.
[問題点を解決するための手段] 本発明者らは上記の目的としてVARについて鋭意検討し
た結果、従来の真空度から次第に真空度を下げ溶解の可
能性などについて追究していったところ次のような事実
を知見した。[Means for Solving Problems] As a result of intensive studies on VAR for the above purpose, the present inventors have gradually reduced the vacuum degree from the conventional vacuum degree and investigated the possibility of melting and the like. I found such a fact.
すなわち、10-3Torrにおける一般の操業圧力域では安定
したプラズマアークとなっているのに対し、10-1Torr付
近からグローアークとなり、1.5×10-1Torr付近や2×1
0-1Torr付近では同様にグローアークとなっていて溶解
が進行せず、3×10-1Torrではグローアークとなり時々
強いアークが発生しスプラッシュ(豆粒大の湯玉)が
出、既に溶湯外周面(モールド側)で凝固を開始してお
り、8×10-1Torr付近ではグローアークで湯面がほとん
ど凝固し、溶解が進行しないが、1Torrを越す付近から
強いプラズマアークとなり溶解が可能となることを知っ
た。That is, the plasma arc is stable in the general operating pressure range at 10 -3 Torr, while it becomes a glow arc from around 10 -1 Torr, near 1.5 × 10 -1 Torr or 2 × 1 Torr.
In the vicinity of 0 -1 Torr, a similar glow arc occurs and the melting does not proceed. At 3 x 10 -1 Torr, a glow arc occurs and sometimes a strong arc occurs and a splash (a pea-sized hot-water ball) appears, and the molten metal outer peripheral surface Solidification has started on the (mold side), and at 8 × 10 -1 Torr, the molten metal hardly solidifies due to glow arc and melting does not proceed, but it becomes a strong plasma arc from around 1 Torr and melting is possible. I knew that.
つまり上記のごとく、特定の圧力域(10-2Torr以下)で
は溶解可能で、それを越えた中間圧力域では溶解困難
で、さらに、それを越えた1Torr以上の圧力域では再び
溶解可能となることを知った。In other words, as mentioned above, it is possible to dissolve in a specific pressure range (10 -2 Torr or less), it is difficult to dissolve in an intermediate pressure range beyond that, and it can be dissolved again in a pressure range of 1 Torr or more beyond that. I knew that.
本発明はかかる知見に基づき完成されたもので、本発明
は1Torrを超え50Torr以下の真空下で被溶解材の溶解と
凝固を行ない鋼または合金を得ることを特徴とする真空
アーク溶解法に存し、Mn、Cu等の蒸発元素の蒸発が少な
くなり、その結果、モールド中の成分が安定化するとと
もに、このような蒸発元素の蒸発が抑制されるので、蒸
発元素の鋼塊表面への偏析が防止され、表面肌が良好
で、偏析部分の皮削りも不要となるので、皮削りに要す
る工程数が減少され、作業能率も向上し、かつ、品質も
格段に向上させることに成功した。The present invention has been completed based on such knowledge, and the present invention resides in a vacuum arc melting method characterized by obtaining a steel or an alloy by melting and solidifying a material to be melted under a vacuum of more than 1 Torr and 50 Torr or less. However, the evaporation of evaporating elements such as Mn and Cu is reduced, and as a result, the components in the mold are stabilized and the evaporation of such evaporating elements is suppressed. Since it has been prevented, the surface texture is good, and the segregation part does not need to be scraped, the number of steps required for scraping is reduced, the work efficiency is improved, and the quality is significantly improved.
本発明においては、安定したプラズマアークを確保し、
再溶解を可能とし、ガス成分をMnやCu等の蒸発元素の蒸
発を押えつつ除去する等上記した目的を達成するために
は、その真空度は、1Torrを超え50Torr以下とする。In the present invention, to secure a stable plasma arc,
In order to achieve the above-mentioned objects such as re-dissolution and removal of gas components while suppressing vaporization of vaporized elements such as Mn and Cu, the degree of vacuum thereof is set to more than 1 Torr and 50 Torr or less.
本発明における真空度は従来公知の方法により測定する
ことができるが、例えば、第3図に示すように、真空排
気系14に備設した真空計15の指示値を測定することによ
り、炉体真空度を知ることができる。なお、ポール16下
部の実際の蒸発が行われているアーク直下17における圧
力と真空計15の圧力とでは大差があり、例えば真空計測
定圧3〜5Torrに対し、同圧力は数十Torr以上と推定さ
れる。VARにおける電極は一般に、アーク炉などで溶製
され、鋳造などを経て、所定の寸法例えばルツボ径より
も50〜100mm細めに仕上げられる。The degree of vacuum in the present invention can be measured by a conventionally known method. For example, as shown in FIG. 3, the furnace body can be measured by measuring the indicated value of a vacuum gauge 15 provided in the vacuum exhaust system 14. You can know the degree of vacuum. It should be noted that there is a large difference between the pressure under the arc 17 where the actual evaporation of the lower part of the pole 16 is being performed and the pressure of the vacuum gauge 15, and for example, the pressure is estimated to be several tens of Torr or more for the vacuum gauge measurement pressure of 3 to 5 Torr. To be done. The electrodes in the VAR are generally melted in an arc furnace or the like, and subjected to casting or the like to be finished to a predetermined size, for example, 50 to 100 mm thinner than the crucible diameter.
本発明VARにおいては、アークの直進性が強く、ポール
とモールド間のサイドギャップの影響が大であり、本発
明者らの検討したところのよれば、サイドギャップ≦35
mmとすることで著しく肌が改善でき、皮削りにおいて片
肉例えば5mmで表面疵除去可能であった。In the VAR of the present invention, the straightness of the arc is strong, and the influence of the side gap between the pole and the mold is large, and according to the study by the present inventors, the side gap ≦ 35.
When the thickness is set to mm, the skin can be remarkably improved, and the surface flaws can be removed by scraping one side of the skin, for example 5 mm.
サイドギャップが35mmを越えた場合、例えば、サイドギ
ャップ>40mmでは、アークの直進性が強いため、モール
ドに付着したスプラッシュの再溶融が困難で鋳肌は極端
に悪化することも判った。It was also found that when the side gap exceeds 35 mm, for example, when the side gap is> 40 mm, the straightness of the arc is so strong that it is difficult to remelt the splash adhered to the mold and the casting surface is extremely deteriorated.
[実施例] 次に、本発明を実施例に基づいて説明する。[Examples] Next, the present invention will be described based on Examples.
実施例1. プラスチック金型用鋼について、真空度を3〜5Torrと
し、減圧下VARを実施し、インゴットの成分の安定能を
みた。結果を第1表に示す。なお、第1表はインゴット
部位について、トップ(TOP)から600mm部位を8分しそ
れぞれの表層における元素の安定能をみたものである。Example 1. The plastic mold steel was subjected to VAR under reduced pressure at a vacuum degree of 3 to 5 Torr, and the stability of the components of the ingot was observed. The results are shown in Table 1. In addition, Table 1 shows the stability of the element in each surface layer of the ingot portion, which is obtained by dividing the 600 mm portion from the top into 8 minutes.
(単位Wt%) 比較例1. 真空度を通常の圧力である10-3Torrとした以外は実施例
1と同様にしてVARを実施した。 (Unit: Wt%) Comparative Example 1. VAR was carried out in the same manner as in Example 1 except that the degree of vacuum was 10 -3 Torr which is a normal pressure.
第4図に、この場合のMnの偏析(成分の安定能)の様子
を、前記実施例1の第1表の数値をプロットとしたもの
との比較において示した。FIG. 4 shows the state of segregation of Mn in this case (stability of components) in comparison with a plot of the numerical values in Table 1 of Example 1 above.
第4図から、本発明例では、Mnが各表層において、2.40
Wt%付近で安定化しているのに対し、比較例では22.80W
t%付近までの偏析が認められた。From FIG. 4, in the example of the present invention, Mn is 2.40 at each surface layer.
Stabilized around Wt%, whereas in Comparative Example 22.80W
Segregation up to around t% was observed.
また、第5図に上記におけるCuの偏析(成分の安定能)
の様子を、前記実施例1の第1表の数値をプロットした
ものとの比較において示した。Also, Fig. 5 shows the segregation of Cu in the above (stability of components).
This is shown in comparison with the plotted values in Table 1 of Example 1 above.
第5図から、本発明例では、Cuが各表層において、1.00
Wt%付近で安定しているのに対し、比較例では同図に示
すように偏析が認められた。From FIG. 5, in the example of the present invention, Cu is 1.00 in each surface layer.
While stable at around Wt%, segregation was observed in the comparative example as shown in the same figure.
[発明の効果] (1) 本発明によればVARにおけるMn、Cu等の蒸発元
素の蒸発を少なくし、成分を安定させることができた。[Effects of the Invention] (1) According to the present invention, it was possible to reduce the evaporation of evaporation elements such as Mn and Cu in VAR and stabilize the components.
(2) 本発明によれば、蒸発物による鋼塊表面への偏
析がなく、表面肌が良好で、ブローホール(収縮孔)が
なく、特に、サイドギャップを35mm以下とすることによ
り、より一層肌が良くなった。(2) According to the present invention, there is no segregation on the surface of the steel ingot by evaporation, the surface texture is good, and there are no blow holes (contraction holes). Particularly, by setting the side gap to 35 mm or less, The skin has improved.
(3) 本発明によれば、皮削りの厚味を薄くしても、
表面疵がなく、皮削りの歩留を向上することができた。(3) According to the present invention, even if the thickness of skin scraping is reduced,
There were no surface flaws, and the yield of peeling could be improved.
第1図はVARの一例原理図、第2図はVAR炉の一例構造
図、第3図は本発明実施例の説明図、第4図及び第5図
はそれぞれ本発明の作用効果を示す説明図である。 1……ルツボ 2……被溶解材(電極) 6……炉体FIG. 1 is an example principle diagram of a VAR, FIG. 2 is an example structure diagram of a VAR furnace, FIG. 3 is an explanatory diagram of an embodiment of the present invention, and FIGS. 4 and 5 are explanatory views showing the action and effect of the present invention. It is a figure. 1 ... crucible 2 ... material to be melted (electrode) 6 ... furnace body
Claims (3)
材の溶解と凝固を行い鋼または合金を得ることを特徴と
する真空アーク溶解法。1. A vacuum arc melting method, characterized in that a material to be melted is melted and solidified under a vacuum of more than 1 Torr and less than 50 Torr to obtain a steel or an alloy.
請求の範囲第1項記載の真空アーク溶解法。2. The vacuum arc melting method according to claim 1, wherein the steel is a plastic mold steel.
求の範囲第1項記載の真空アーク溶解法。3. The vacuum arc melting method according to claim 1, wherein the side gap is 35 mm or less.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP60101416A JPH0781171B2 (en) | 1985-05-15 | 1985-05-15 | Vacuum arc solving method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP60101416A JPH0781171B2 (en) | 1985-05-15 | 1985-05-15 | Vacuum arc solving method |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS61261444A JPS61261444A (en) | 1986-11-19 |
JPH0781171B2 true JPH0781171B2 (en) | 1995-08-30 |
Family
ID=14300099
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP60101416A Expired - Fee Related JPH0781171B2 (en) | 1985-05-15 | 1985-05-15 | Vacuum arc solving method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0781171B2 (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS63303016A (en) * | 1987-06-02 | 1988-12-09 | Daido Steel Co Ltd | Vacuum arc melting method |
JP2012167324A (en) * | 2011-02-14 | 2012-09-06 | Sumitomo Metal Ind Ltd | Method for preventing glow discharge at vacuum arc melting time |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5747841A (en) * | 1980-09-03 | 1982-03-18 | Waseda Daigaku | Method and apparatus for remelting and refining metal with arc of consumption type hollow electrode |
JPS58221243A (en) * | 1982-06-18 | 1983-12-22 | Daido Steel Co Ltd | Method for refining copper alloy |
-
1985
- 1985-05-15 JP JP60101416A patent/JPH0781171B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JPS61261444A (en) | 1986-11-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
RU2490350C2 (en) | METHOD FOR OBTAINING BASIC β-γ-TiAl-ALLOY | |
Arh et al. | Electroslag remelting: A process overview | |
JP4775911B2 (en) | Method for producing aluminum-lithium alloy target and aluminum-lithium alloy target | |
EP0073585A1 (en) | Alloy remelting process | |
CN103526038A (en) | Electroslag remelting production method of high-strength high-plasticity TWIP (Twinning Induced Plasticity) steel | |
JPH0781171B2 (en) | Vacuum arc solving method | |
JP2989060B2 (en) | Low oxygen Ti-Al alloy and method for producing the same | |
JPH06287661A (en) | Production of smelted material of refractory metal | |
JP4540516B2 (en) | Work roll manufacturing method | |
JP3606404B2 (en) | Consumable electrode type remelting method of super heat-resistant alloy | |
JP5006161B2 (en) | Ingot manufacturing method for TiAl-based alloy | |
JPH0332447A (en) | Method and apparatus for melting and casting metal | |
JP4209964B2 (en) | Method for melting and casting metal vanadium and / or metal vanadium alloy | |
JP4769128B2 (en) | Vacuum arc melting method for metals | |
JP3541956B2 (en) | Vacuum arc remelting method | |
CN114603118B (en) | Equipment and process for manufacturing metal roller by electroslag casting and surfacing compound (re) method | |
JP2003290906A (en) | METHOD FOR REMELTING Ni-BASE ALLOY | |
JPH066762B2 (en) | Method for melting and casting Mn-added TiA1 intermetallic compound | |
JP3141181B2 (en) | Method and apparatus for producing plates of refractory processed metal material | |
RU2191836C2 (en) | Method of ingots production | |
JP4595958B2 (en) | Ingot manufacturing method by vacuum arc melting method | |
JPH0971827A (en) | Production of industrial pure titanium ingot | |
JP2022076856A (en) | Ingot of pure titanium or titanium alloy | |
JPH03197624A (en) | Vacuum esr method for component control | |
JP2003340560A (en) | Method and apparatus for manufacturing active metal ingot |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
LAPS | Cancellation because of no payment of annual fees |