JP4595958B2 - Ingot manufacturing method by vacuum arc melting method - Google Patents
Ingot manufacturing method by vacuum arc melting method Download PDFInfo
- Publication number
- JP4595958B2 JP4595958B2 JP2007118823A JP2007118823A JP4595958B2 JP 4595958 B2 JP4595958 B2 JP 4595958B2 JP 2007118823 A JP2007118823 A JP 2007118823A JP 2007118823 A JP2007118823 A JP 2007118823A JP 4595958 B2 JP4595958 B2 JP 4595958B2
- Authority
- JP
- Japan
- Prior art keywords
- ingot
- diameter
- casting
- small
- solidification
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000000034 method Methods 0.000 title claims description 44
- 238000002844 melting Methods 0.000 title claims description 29
- 230000008018 melting Effects 0.000 title claims description 29
- 238000004519 manufacturing process Methods 0.000 title description 19
- 238000005266 casting Methods 0.000 claims description 29
- 239000013078 crystal Substances 0.000 claims description 15
- 238000004090 dissolution Methods 0.000 description 33
- 238000007711 solidification Methods 0.000 description 33
- 230000008023 solidification Effects 0.000 description 33
- 238000005204 segregation Methods 0.000 description 28
- 230000007547 defect Effects 0.000 description 23
- 230000000052 comparative effect Effects 0.000 description 11
- 239000002184 metal Substances 0.000 description 10
- 229910052751 metal Inorganic materials 0.000 description 10
- 230000014509 gene expression Effects 0.000 description 9
- 239000000463 material Substances 0.000 description 9
- 238000001816 cooling Methods 0.000 description 7
- 239000000498 cooling water Substances 0.000 description 6
- 229910000851 Alloy steel Inorganic materials 0.000 description 4
- 239000002436 steel type Substances 0.000 description 4
- 230000015572 biosynthetic process Effects 0.000 description 3
- 239000000155 melt Substances 0.000 description 3
- 230000000630 rising effect Effects 0.000 description 3
- 229910000975 Carbon steel Inorganic materials 0.000 description 2
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 2
- 208000003351 Melanosis Diseases 0.000 description 2
- 239000010962 carbon steel Substances 0.000 description 2
- 229910052802 copper Inorganic materials 0.000 description 2
- 239000010949 copper Substances 0.000 description 2
- 210000001787 dendrite Anatomy 0.000 description 2
- 239000007789 gas Substances 0.000 description 2
- 239000001307 helium Substances 0.000 description 2
- 229910052734 helium Inorganic materials 0.000 description 2
- SWQJXJOGLNCZEY-UHFFFAOYSA-N helium atom Chemical compound [He] SWQJXJOGLNCZEY-UHFFFAOYSA-N 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- 230000005526 G1 to G0 transition Effects 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 230000003749 cleanliness Effects 0.000 description 1
- 238000009749 continuous casting Methods 0.000 description 1
- 238000007599 discharging Methods 0.000 description 1
- 238000010891 electric arc Methods 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 238000010030 laminating Methods 0.000 description 1
- 239000007791 liquid phase Substances 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 239000012071 phase Substances 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Images
Landscapes
- Continuous Casting (AREA)
Description
本発明は、真空アーク溶解法による鋳塊の製造方法に関し、特に、大径の鋳塊を鋳造する際に好適な真空アーク溶解法による鋳塊の製造方法に関する。 The present invention relates to a method for producing an ingot by a vacuum arc melting method, and particularly relates to a method for producing an ingot by a vacuum arc melting method suitable for casting a large-diameter ingot.
真空アーク溶解法(以下、「VAR法」と記すことがある)は、再溶解凝固法の一つであり、このVAR法によれば、一般に、普通造塊法による鋳塊に比べて、窒素等のガス成分が低減され、清浄性に優れ、且つ成分偏析の少ない健全な鋳塊を得ることができる。つまり、VAR法では、特にその大きな特徴である積層凝固によって指向性凝固組織を形成でき、マクロ偏析やセミマクロ偏析の低減された高品質の鋳塊を得ることができる。そのため、VAR法は、通常造塊法や連続鋳造法に比べてプロセスコストが高いにもかかわらず、宇宙、航空機用部品やタービン材等をはじめとして、高度の品質の信頼性が要求される素材を製造するにあたって多く用いられている。 The vacuum arc melting method (hereinafter sometimes referred to as “VAR method”) is one of the remelting and solidification methods. According to this VAR method, in general, compared with the ingot by the normal ingot-making method, Therefore, a sound ingot having excellent cleanliness and less component segregation can be obtained. In other words, in the VAR method, a directional solidification structure can be formed by laminating solidification, which is a major feature of the VAR method, and a high-quality ingot with reduced macrosegregation and semi-macrosegregation can be obtained. Therefore, the VAR method is a material that requires a high level of reliability, including space, aircraft parts, and turbine materials, although the process cost is higher than that of the normal ingot casting method and continuous casting method. Is often used in the manufacture of
図1は、VAR法による鋳塊の製造に用いられるVAR炉の概略を示す縦断面図である。同図に示すように、VAR法では、高真空下において、鋳塊1の母材となる消耗電極3と鋳型(水冷銅モールド)4内の溶湯(溶湯プール2)との間にアーク放電を発生させて、消耗電極3をその下端から順次アークによって溶解させる。溶解した消耗電極3は、鋳型4内に順次滴下して貯溜され、鋳型4内で積層凝固していく。こうして指向性凝固組織を有する鋳塊1が得られる。
FIG. 1 is a longitudinal sectional view showing an outline of a VAR furnace used for manufacturing an ingot by the VAR method. As shown in the figure, in the VAR method, an arc discharge is generated between the
前記図1に示すVAR炉において、鋳型4はジャケット5によって包み込まれている。ジャケット5には、鋳型4に冷却水を送り込む冷却水給水口6と、鋳型4から冷却水を排出する冷却水排水口7が設けられている。ジャケット5の上には炉体8が取り付けられている。炉体8には、炉体8内を高真空下にするために空気を排出する真空排気口9が設けられている。消耗電極3は、炉体8内でスティンガーロッド10に連結されて吊下げ支持され、昇降機構(不図示)によるスティンガーロッド10の昇降に従って昇降する。
In the VAR furnace shown in FIG. 1, the mold 4 is wrapped by a
図2は、VAR法による鋳造時の溶解凝固状況を模式的に示す縦断面図である。同図に示すように、指向性凝固組織の鋳塊では、全面が柱状晶の組織からなり、柱状晶が鋳塊のボトム部から鋳塊の縦方向の中心軸を対称に上方に向けてほぼ同じ方向に延びている。指向性凝固組織を得るためには、直径Dの小さい小径の鋳塊を鋳造する場合、従来から低速の溶解で溶湯プールを浅く保持することが効果的とされている。 FIG. 2 is a longitudinal sectional view schematically showing the state of dissolution and solidification during casting by the VAR method. As shown in the figure, in the ingot of the directional solidification structure, the entire surface is composed of a columnar crystal structure, and the columnar crystal is almost symmetrically upward from the bottom of the ingot to the central axis in the longitudinal direction of the ingot. It extends in the same direction. In order to obtain a directional solidified structure, when casting a small ingot having a small diameter D, it has been conventionally effective to keep the molten pool shallow by melting at a low speed.
ところで、近年の多様化する材料事情においては、VAR法といえどもその溶解条件の選定を誤ると、凝固組織の中に方向性の無い分岐柱状晶や等軸晶が混在して、マクロ偏析やセミマクロ偏析、更にポロシティの発生を招くことになる。例えば、生産効率の向上を目的に鋳塊を大径化した場合に、高速で溶解すると、鋳塊の中心部では、溶湯プールが深くなって溶湯プール内の温度勾配が小さくなり、初期凝固殻が溶湯中から形成されて、等軸晶発生の原因となる。 By the way, in the diversified material situation in recent years, even if it is VAR method, if the selection of dissolution conditions is wrong, there is a mixture of non-directional branched columnar crystals and equiaxed crystals in the solidified structure, macro segregation and This will cause semi-macro segregation and further porosity. For example, when the diameter of an ingot is increased for the purpose of improving production efficiency, if the melt is melted at high speed, the molten pool becomes deeper at the center of the ingot and the temperature gradient in the molten pool becomes smaller, so that the initial solidified shell Is formed from the molten metal and causes the formation of equiaxed crystals.
そこで、消耗電極の溶解速度を調整して溶湯プールを浅くすれば、その凝固界面での温度勾配が大きくなるため、新たな凝固殻は凝固界面で発生し、凝固殻は順次凝固界面を更新するように成長していくようになる。このような積層凝固を維持することにより、指向性凝固組織を有する鋳塊を得ることができる。 Therefore, if the melt pool is made shallower by adjusting the dissolution rate of the consumable electrode, the temperature gradient at the solidification interface increases, so that a new solidification shell is generated at the solidification interface, and the solidification shell sequentially updates the solidification interface. Will grow like so. By maintaining such laminated solidification, an ingot having a directional solidified structure can be obtained.
ここで、溶湯プール内で凝固殻が形成して成長すると、互いの凝固殻が充填されていた隙間は閉空間になる。その間に挟まれた残溶湯が凝固するときに、凝固収縮によって周辺の凝固殻のミクロ偏析溶湯が吸い出され、鋳塊の中心部にマクロ偏析やセミマクロ偏析といった偏析欠陥が現れる。更に凝固収縮により溶湯が供給不足になると、ポロシティの発生の原因となる。偏析欠陥には、特定の成分(C、Si、Mn、O、S等)が局部的に富化した一般にはフレッケルと呼ばれる粒状偏析欠陥も含まれる。 Here, when the solidified shell is formed and grows in the molten metal pool, the gap filled with the solidified shell becomes a closed space. When the residual molten metal sandwiched therebetween solidifies, the microsegregated molten metal in the surrounding solidified shell is sucked out by solidification shrinkage, and segregation defects such as macrosegregation and semi-macrosegregation appear in the center of the ingot. Furthermore, if the molten metal is insufficiently supplied due to solidification shrinkage, it causes porosity. The segregation defect includes a granular segregation defect generally called Freckle, in which specific components (C, Si, Mn, O, S, etc.) are locally enriched.
一方、指向性凝固組織では、このような要因はないので、マクロ偏析やセミマクロ偏析等の偏析欠陥は生じず、デンドライト樹間に形成される微細なミクロ偏析のみが現れる。 On the other hand, in the directional solidified structure, since there is no such factor, segregation defects such as macrosegregation and semi-macrosegregation do not occur, and only minute microsegregation formed between dendrite trees appears.
大径の鋳塊で偏析欠陥を抑制する手法としては、特許文献1に、鋳型と鋳塊との隙間に溶融金属を注入したり、その隙間にヘリウムガスを流したりする手法が提案されている。この手法によれば、溶融金属やヘリウムガスの存在によって鋳型と鋳塊間の熱伝達が向上し、鋳塊の冷却速度を大きくすることができる。これにより、溶湯プールが浅くなり、偏析欠陥の少ない指向性凝固組織を有する大径の鋳塊が得られる。
As a technique for suppressing segregation defects in a large-diameter ingot,
しかし、前記のような手法は、偏析欠陥の少ない指向性凝固組織を有する大径鋳塊が得られるとはいえ、高い真空度の下での溶解が要求されるVAR法においては、導入が技術的に困難であり、導入したとしても大がかりな設備改造を伴うことから、現実的でない。 However, although the above-described method can obtain a large-diameter ingot having a directional solidification structure with few segregation defects, it is technically introduced in the VAR method that requires melting under a high degree of vacuum. It is difficult to implement, and even if it is introduced, it is not realistic because it involves major equipment modifications.
また、偏析欠陥は溶解速度の上昇、鋳塊の大径化に伴って発生し易く、指向性凝固組織となる溶解速度の臨界条件は鋳塊の直径により変動する。そうすると、大径の鋳塊を鋳造する際の溶解速度として、小径の鋳塊を鋳造する際の溶解速度をそのまま適用しても、品質上では支障はないが、この場合、操業時間が長くなり、生産効率を最大限に向上できるとはいえない。 Further, segregation defects are likely to occur as the dissolution rate increases and the diameter of the ingot increases, and the critical condition of the dissolution rate that becomes a directional solidified structure varies depending on the diameter of the ingot. As a result, there is no problem in quality even if the dissolution rate for casting a small-diameter ingot is applied as it is as the dissolution rate for casting a large-diameter ingot, but in this case, the operation time becomes long. However, it cannot be said that the production efficiency can be maximized.
そのため、従来は、本格的に大径の鋳塊を鋳造するにあたり、事前に、当該大径鋳塊の鋳造にて溶解速度を種々変更した試験を行い、個々に得られた鋳塊の内部品質を検証することにより、偏析欠陥のない指向性凝固組織が得られる本格操業に適した溶解速度を見極めていた。このような大径鋳塊の鋳造に対しての適正な溶解速度の見極めには、本格操業の前段階で多大な時間を要することから、効率良く本格操業に移行することができないという問題がある。 Therefore, in the past, when casting a large-diameter ingot in earnest, the internal quality of the ingot obtained individually was tested in advance by variously changing the dissolution rate in the casting of the large-diameter ingot. By verifying the above, it was found that the dissolution rate was suitable for full-scale operation in which a directional solidified structure free from segregation defects was obtained. The determination of an appropriate melting rate for casting such a large-diameter ingot requires a large amount of time before the full-scale operation, and therefore there is a problem that the full-scale operation cannot be efficiently performed. .
そこで本発明は、上記の問題に鑑みてなされたものであり、効率良く本格操業に移行できて、偏析欠陥のない指向性凝固組織を有する大径の鋳塊を高い生産効率で製造できるVAR法による鋳塊の製造方法を提供することを目的とするものである。 Therefore, the present invention has been made in view of the above problems, and can be efficiently transferred to full-scale operation, and can produce a large-diameter ingot having a directional solidification structure free from segregation defects with high production efficiency. It aims at providing the manufacturing method of the ingot by.
上記目的を達成するため、本発明者らは、小径の鋳塊を鋳造する際の溶解条件を活用することを前提に、VAR法による鋳塊の製造方法について鋭意検討を重ねた結果、以下の知見を得て、本発明を完成させた。 In order to achieve the above object, the present inventors have conducted extensive studies on a method for producing an ingot by the VAR method on the premise that the melting conditions for casting a small-diameter ingot are cast. Knowledge was obtained and the present invention was completed.
すなわち、VAR法によって直径D0の小径の鋳塊を鋳造する際に、鋳造後の鋳塊の縦断面全面においてボトム部から縦方向の中心軸を対称に上方に向けて延びる柱状晶組織からなる指向性凝固組織が得られ、フレッケルの発生も抑制できる上限の溶解速度がM0maxであるとき、その小径の鋳塊よりも大きい直径D1の大径の鋳塊をVAR法によって鋳造する際、下記の式(a)の関係を満足するように溶解速度M1を調整し、その大径の鋳塊において前記指向性凝固組織を得る。
That is, when casting a small-diameter ingot having a diameter D 0 by the VAR method, the entire longitudinal section of the ingot after casting is composed of a columnar crystal structure extending symmetrically upward from the bottom in the longitudinal central axis. When the upper limit dissolution rate at which a directional solidified structure can be obtained and the occurrence of freckle is M 0max , when casting a large-diameter ingot having a diameter D 1 larger than the small-diameter ingot by the VAR method, adjust the dissolution rate M 1 so as to satisfy the relationship of formula (a) below, to obtain the directional solidification structure in the ingot of the large diameter.
M1≦(M0max/D0)×D1 ・・・式(a)
これにより、VAR法によって大径の鋳塊を鋳造するにあたり、優れた内部品質が確定している小径の鋳塊を鋳造する際の溶解速度、及びその小径の鋳塊の直径、並びに当該大径鋳塊の直径より、偏析欠陥のない指向性凝固組織の大径鋳塊が得られる適正な溶解速度を算出して設定できる。
M 1 ≦ (M 0max / D 0 ) × D 1 Formula (a)
Thus, when casting a large-diameter ingot by the VAR method, the dissolution rate when casting a small-diameter ingot with excellent internal quality, the diameter of the small-diameter ingot, and the large-diameter From the diameter of the ingot, it is possible to calculate and set an appropriate dissolution rate for obtaining a large-diameter ingot having a directional solidified structure without segregation defects.
本発明のVAR法による鋳塊の製造方法によれば、小径鋳塊の溶解条件を活用して算出した溶解速度を適用することにより、効率良く大径鋳塊の本格操業に移行することができ、しかも、高い生産効率で偏析欠陥のない指向性凝固組織を有する健全な大径鋳塊を得ることが可能になる。 According to the method for producing an ingot by the VAR method of the present invention, it is possible to efficiently shift to a full-scale operation of a large-diameter ingot by applying a melting rate calculated by utilizing the melting condition of the small-diameter ingot. Moreover, it is possible to obtain a sound large-diameter ingot having a directional solidification structure with high production efficiency and no segregation defects.
以下に、本発明の実施形態について詳述する。 Hereinafter, embodiments of the present invention will be described in detail.
一般的に、柱状晶の形成と等軸晶の形成との臨界条件は、局所的な凝固速度Vと固液相の温度勾配Gをパラメータとして、V/Gの値の大小により決定されると考えられる。そこで、臨界定数αを次式(1)により定義する。 In general, the critical condition between the formation of columnar crystals and the formation of equiaxed crystals is determined by the magnitude of the value of V / G using the local solidification rate V and the temperature gradient G of the solid-liquid phase as parameters. Conceivable. Therefore, the critical constant α is defined by the following equation (1).
α=V/G ・・・式(1)
なお、凝固速度Vの単位は、例えば[mm/min]であり、温度勾配Gの単位は、例えば[℃/mm]である。
α = V / G Formula (1)
The unit of the solidification rate V is, for example, [mm / min], and the unit of the temperature gradient G is, for example, [° C./mm].
次に、VAR法による鋳塊の凝固組織遷移を考察するにあたり、最も温度勾配が小さくなり、偏析欠陥の生じやすい鋳塊の中心部の値により代表させる。つまり、以下の各凝固パラメータは鋳塊の中心部での値である。 Next, in considering the solidification structure transition of the ingot by the VAR method, the temperature gradient is the smallest and the value is represented by the value of the center portion of the ingot where segregation defects are likely to occur. That is, the following solidification parameters are values at the center of the ingot.
VAR法による鋳塊の湯上り速度をUとし、溶湯プールの形状が定常状態に達すると、湯上り速度Uは凝固速度Vと等しくなる(V=U)。また、凝固過程において、鋳塊の冷却速度Rと凝固速度Vと温度勾配Gとの間には、G=R/Vの関係がある。これらの関係式を上記式(1)に代入して、次式(2)が導かれる。 When the ingot rising speed by the VAR method is U, and the shape of the molten pool reaches a steady state, the rising speed U becomes equal to the solidification speed V (V = U). In the solidification process, there is a relationship of G = R / V among the ingot cooling rate R, the solidification rate V, and the temperature gradient G. By substituting these relational expressions into the above expression (1), the following expression (2) is derived.
α=U2/R ・・・式(2)
なお、湯上り速度Uの単位は、凝固速度Vの単位と同じく、例えば[mm/min]であり、冷却速度Rの単位は、例えば[℃/min]である。
α = U 2 / R (2)
The unit of the hot water rising speed U is, for example, [mm / min], similarly to the unit of the solidification speed V, and the unit of the cooling speed R is, for example, [° C./min].
次に、VAR法による消耗電極の溶解速度をM、鋳塊の直径をD、材料密度をρとすると、M=πρD2U/4の関係が成り立つ。この関係式を上記式(2)に代入して、次式(3)が導かれる。 Next, assuming that the melting rate of the consumable electrode by the VAR method is M, the diameter of the ingot is D, and the material density is ρ, the relationship M = πρD 2 U / 4 holds. By substituting this relational expression into the above expression (2), the following expression (3) is derived.
α=(4M/πρD2)2/R ・・・式(3)
なお、溶解速度Mの単位は、例えば[kg/min]であり、鋳塊直径Dの単位は、例えば[mm]であり、材料密度ρの単位は、例えば[kg/mm3]である。
α = (4M / πρD 2 ) 2 / R (3)
The unit of the dissolution rate M is, for example, [kg / min], the unit of the ingot diameter D is, for example, [mm], and the unit of the material density ρ is, for example, [kg / mm 3 ].
ここで、小径の鋳塊について、その直径をD0、溶解速度をM0、冷却速度をR0とし、大径の鋳塊について、その直径をD1、溶解速度をM1、冷却速度をR1とする。小径の鋳塊、大径の鋳塊についての臨界定数αが互いに同一であると、上記式(3)より、次式(4)が導かれる。 Here, for a small-diameter ingot, the diameter is D 0 , the melting rate is M 0 , and the cooling rate is R 0. For the large-diameter ingot, the diameter is D 1 , the melting rate is M 1 , and the cooling rate is Let R 1 . When the critical constant α for the small diameter ingot and the large diameter ingot is the same, the following formula (4) is derived from the above formula (3).
(4M1/πρD1 2)2/R1=(4M0/πρD0 2)2/R0 ・・・式(4)
なお、溶解速度M1、M0の単位は、例えば[kg/min]であり、鋳塊直径D1、D0の単位は、例えば[mm]であり、冷却速度R1、R0の単位は、例えば[℃/min]である。
(4M 1 / πρD 1 2 ) 2 / R 1 = (4M 0 / πρD 0 2 ) 2 / R 0 Formula (4)
The units of the dissolution rates M 1 and M 0 are, for example, [kg / min], the units of the ingot diameters D 1 and D 0 are, for example, [mm], and the units of the cooling rates R 1 and R 0 . Is, for example, [° C./min].
上記式(4)より、VAR法による大径の鋳塊の溶解速度M1は次式(5)となる。 From the above equation (4), the dissolution rate M 1 of the large-diameter ingot by the VAR method is expressed by the following equation (5).
M1=M0(D1/D0)2×(R1/R0)1/2 ・・・式(5)
冷却速度Rは鋳塊の直径Dの二乗に反比例するため、R1/R0=(D0/D1)2の関係が成り立つ。この関係式を上記式(5)に代入して、次式(6)が導かれる。
M 1 = M 0 (D 1 / D 0 ) 2 × (R 1 / R 0 ) 1/2 Formula (5)
Since the cooling rate R is inversely proportional to the square of the diameter D of the ingot, the relationship R 1 / R 0 = (D 0 / D 1 ) 2 is established. By substituting this relational expression into the above expression (5), the following expression (6) is derived.
M1=(M0/D0)×D1 ・・・式(6)
そして、小径の鋳塊について、その本格操業で適用している溶解速度M0をもってして、偏析欠陥のない柱状晶の指向性凝固組織が得られることが確認されていれば、その小径鋳塊の直径D0よりも大きい直径D1の大径の鋳塊を鋳造する際は、上記式(6)に基づいて算出した溶解速度M1を設定する。これにより、得られた大径鋳塊の内部品質は、小径鋳塊と同等になり、偏析欠陥のない指向性凝固組織となる。
M 1 = (M 0 / D 0 ) × D 1 Formula (6)
If it is confirmed that a directional solidified structure of columnar crystals without segregation defects can be obtained with a melting rate M 0 applied in the full-scale operation of a small-diameter ingot, the small-diameter ingot When casting a large ingot having a diameter D 1 larger than the diameter D 0, the dissolution rate M 1 calculated based on the above equation (6) is set. Thereby, the internal quality of the obtained large-diameter ingot is equal to that of the small-diameter ingot, and a directional solidified structure free from segregation defects is obtained.
更に、小径鋳塊の鋳造において、偏析欠陥のない柱状晶の指向性凝固組織が得られる上限の溶解速度M0maxが判明していれば、その小径鋳塊の直径D0よりも大きい直径D1の大径鋳塊を鋳造する際は、上記式(6)より導かれた次式(7)(上記の式(a)に相当)に基づいて算出した溶解速度M1を設定する。 Furthermore, in the casting of a small-diameter ingot, if the upper limit dissolution rate M 0max is obtained to obtain a directional solidified structure of columnar crystals without segregation defects, the diameter D 1 is larger than the diameter D 0 of the small-diameter ingot. When casting the large-diameter ingot, the dissolution rate M 1 calculated based on the following equation (7) derived from the above equation (6) (corresponding to the above equation (a)) is set.
M1≦(M0max/D0)×D1 ・・・式(7)
上記式(7)を満たす溶解速度M1とすることにより、得られた大径鋳塊の内部品質は、少なくとも小径鋳塊と同等になり、偏析欠陥のない指向性凝固組織となる。特に、大径鋳塊を鋳造する際の溶解速度M1を、上限である(M0max/D0)×D1とすれば、結果的に操業時間が大幅に短縮されるため、生産効率を最大限に向上させて大径の鋳塊を製造できる。
M 1 ≦ (M 0max / D 0 ) × D 1 (7)
By setting the dissolution rate M 1 to satisfy the above formula (7), the internal quality of the obtained large-diameter ingot is at least equivalent to that of the small-diameter ingot, and a directional solidified structure free from segregation defects is obtained. In particular, if the dissolution rate M 1 when casting a large-diameter ingot is the upper limit (M 0max / D 0 ) × D 1 , as a result, the operation time is greatly shortened. Large diameter ingots can be manufactured with maximum improvement.
このように、VAR法によって大径の鋳塊を鋳造するにあたり、既に優れた内部品質が確定している小径の鋳塊を鋳造する際の溶解速度、及びその小径の鋳塊の直径、並びに当該大径鋳塊の直径より、適正な溶解速度を算出して設定できる。従って、事前試験によって溶解速度ごとの鋳塊の内部品質を検証するまでもなく、算出した溶解速度を適用することにより効率良く大径鋳塊の本格操業に移行することができ、しかも、高い生産効率で偏析欠陥のない指向性凝固組織を有する健全な大径鋳塊を得ることが可能になる。 Thus, when casting a large-diameter ingot by the VAR method, the dissolution rate when casting a small-diameter ingot that has already been determined to have excellent internal quality, the diameter of the small-diameter ingot, and the An appropriate dissolution rate can be calculated and set from the diameter of the large ingot. Therefore, it is not necessary to verify the internal quality of the ingot at each melting rate by a preliminary test, and it is possible to efficiently shift to full-scale operation of a large-diameter ingot by applying the calculated melting rate, and high production It is possible to obtain a sound large-diameter ingot having a directional solidification structure that is efficient and free from segregation defects.
以上のVAR法による鋳塊の製造方法に関し、以下の実施例からその有効性を明らかにした。 About the manufacturing method of the ingot by the above VAR method, the effectiveness was clarified from the following examples.
直径D0がφ500mmの小径の鋳塊と、直径D1がφ775mmの大径の鋳塊について、VAR炉を用いて試験を行った。鋳塊の直径D0、D1は鋳型(水冷銅モールド)の内径に相当する。 A small diameter ingot having a diameter D 0 of φ500 mm and a large ingot having a diameter D 1 of φ775 mm were tested using a VAR furnace. The diameters D 0 and D 1 of the ingot correspond to the inner diameter of the mold (water-cooled copper mold).
消耗電極となる供試母材として、C:0.5wt%−Si:0.3wt%−Mn:0.9wt%−Ni:1.8wt%−Cr:0.8wt%の低合金鋼を準備した。小径鋳塊(φ500mm)用の消耗電極の直径はφ400mmとし、大径鋳塊(φ775mm)用の消耗電極の直径はφ690mmとした。 A low alloy steel of C: 0.5 wt% -Si: 0.3 wt% -Mn: 0.9 wt% -Ni: 1.8 wt% -Cr: 0.8 wt% is prepared as a test base material to be a consumable electrode. did. The diameter of the consumable electrode for the small diameter ingot (φ500 mm) was φ400 mm, and the diameter of the consumable electrode for the large diameter ingot (φ775 mm) was φ690 mm.
溶解電圧値について、小径鋳塊(φ500mm)、大径鋳塊(φ775mm)でのどちらも25〜27Vの範囲内で変更し、溶解電流値について、小径鋳塊(φ500mm)では7〜16kAの範囲内で、大径鋳塊(φ775mm)では13〜20kAの範囲内で変更することにより投入電力値を変えて、溶解速度M0、M1が段階的に異なる鋳塊を製作した。鋳塊の鋳造長は、小径鋳塊(φ500mm)では3m、大径鋳塊(φ775mm)では3.5mであった。 Regarding the melting voltage value, both the small diameter ingot (φ500 mm) and the large diameter ingot (φ775 mm) are changed within the range of 25 to 27 V, and the melting current value is within the range of 7 to 16 kA for the small diameter ingot (φ500 mm). In the case of a large-diameter ingot (φ775 mm), the input power value was changed by changing it within a range of 13 to 20 kA, and ingots with different melting rates M 0 and M 1 were manufactured in stages. The casting length of the ingot was 3 m for the small-diameter ingot (φ500 mm) and 3.5 m for the large-diameter ingot (φ775 mm).
そして、各鋳塊において、鋳塊高さ中央の定常溶解期の位置から、中心縦断面のマクロサンプルを採取して、鋳塊中心の凝固組織及び偏析欠陥の有無より内部品質の確認を行った。 And in each ingot, the macro sample of the center longitudinal section was taken from the position of the steady melting period at the center of the ingot height, and the internal quality was confirmed from the presence of solidification structure and segregation defects at the center of the ingot. .
表1に、本発明の範囲に含まれる本発明例と、本発明の範囲から外れる比較例を示す。 Table 1 shows examples of the present invention included in the scope of the present invention and comparative examples outside the scope of the present invention.
先ず、本発明例1〜4、比較例1、2の順で、小径鋳塊(φ500mm)用の鋳型を使用して、VAR法による予備試験を行った。スタート初期及び溶解末期のホットトップ期を除く定常期の溶解速度M0を段階的に上げたところ、溶解速度M0が6kg/minまで(本発明例1〜4)は、鋳塊中央においても柱状晶が形成され、その結果として、マクロ偏析やセミマクロ偏析といった偏析欠陥の発生は無かった。 First, a preliminary test by the VAR method was performed in the order of Invention Examples 1 to 4 and Comparative Examples 1 and 2, using a mold for a small diameter ingot (φ500 mm). When the melting rate M 0 in the stationary phase excluding the hot start phase at the initial stage of the start and at the end of melting was increased stepwise, the melting rate M 0 up to 6 kg / min (Invention Examples 1 to 4) was also in the center of the ingot. Columnar crystals were formed. As a result, no segregation defects such as macrosegregation and semi-macrosegregation occurred.
しかし、溶解速度M0が6kg/minを超えた6.5kg/min(比較例1)及び7kg/min(比較例2)では、鋳塊中央部の組織は等軸晶が形成され、それに応じて粒状偏析(比較例1では最大径3mm、比較例2では最大径5mm)が現れた。
However, at 6.5 kg / min (Comparative Example 1) and 7 kg / min (Comparative Example 2) in which the dissolution rate M 0 exceeds 6 kg / min, an equiaxed crystal is formed in the structure of the center of the ingot. Thus, granular segregation (
この小径鋳塊(φ500mm)の予備試験に基づき、偏析欠陥のない柱状晶の指向性凝固組織が得られる臨界のM0max/D0値は、0.012kg/min・mm(=6/500)となった。 Based on the preliminary test of this small diameter ingot (φ500 mm), the critical M 0max / D 0 value for obtaining a directional solidification structure of columnar crystals without segregation defects is 0.012 kg / min · mm (= 6/500). It became.
次に、本発明例5〜8、比較例3、4の順で、大径鋳塊(φ775mm)用の鋳型を使用して、VAR法による試験を行った。その際、先の小径鋳塊(φ500mm)での試験結果から得られた臨界のM0max/D0値(0.012)が含まれる条件で、上記式(7)に基づいて溶解速度M1を段階的に設定した。本発明例8での溶解速度M1がそのM0max/D0値(0.012)に対応して9kg/minであり、本発明例5〜7での溶解速度M1がM0max/D0値(0.012)を超えないものに対応する。比較例3、4での溶解速度M1はM0max/D0値(0.012)を超えたものに対応する。 Next, tests by the VAR method were performed in the order of Invention Examples 5 to 8 and Comparative Examples 3 and 4 using a mold for a large diameter ingot (φ775 mm). At that time, the dissolution rate M 1 based on the above formula (7) under the condition that the critical M 0max / D 0 value (0.012) obtained from the test result in the previous small-diameter ingot (φ500 mm) is included. Was set in stages. The dissolution rate M 1 in Invention Example 8 is 9 kg / min corresponding to the M 0max / D 0 value (0.012), and the dissolution rate M 1 in Invention Examples 5 to 7 is M 0max / D. Corresponds to a value not exceeding 0 (0.012). The dissolution rates M 1 in Comparative Examples 3 and 4 correspond to those exceeding the M 0max / D 0 value (0.012).
本発明例5〜8では、鋳塊中心の組織は柱状晶が形成され、偏析欠陥の発生は認められず良好であった。一方、比較例3、4では、鋳塊中心部の組織は等軸晶となり、比較的大きな粒状偏析(比較例3では最大径4mm、比較例4では最大径7mm)が発生した。
In Examples 5 to 8 of the present invention, columnar crystals were formed in the structure at the center of the ingot, and the occurrence of segregation defects was not recognized. On the other hand, in Comparative Examples 3 and 4, the structure at the center of the ingot was equiaxed, and relatively large grain segregation (maximum diameter 4 mm in Comparative Example 3 and
このように、大径の鋳塊(φ775mm)を鋳造する際、その溶解速度M1を、上記式(7)に基づいて、小径の鋳塊(φ500mm)を鋳造する際の臨界のM0max/D0値(0.012)以下となるように調整すれば、偏析欠陥のない指向性凝固組織を有する健全な鋳塊が得られることが明らかになった。 Thus, when casting an ingot (Fai775mm) of large diameter, the rate of dissolution M 1, based on the equation (7), the criticality of the time of casting the diameter of the ingot (φ500mm) M 0max / It has been clarified that a healthy ingot having a directional solidification structure free from segregation defects can be obtained by adjusting the D 0 value (0.012) or less.
ここで、小径の鋳塊を鋳造する際の臨界のM0max/D0値は、鋳造の対象材の固相線温度と液相線温度の幅や、その対象材特有のデンドライト組織の粗さ等といった溶解凝固に関する特性が影響すると考えられる。従って、大径鋳塊の鋼種が、基準となる小径鋳塊の鋼種と互いに同一であれば、その鋼種(炭素鋼や低合金鋼や高合金鋼等)にかかわりなく、上記式(7)に基づいて設定した溶解速度M1をもってして、健全な大径の鋳塊を製造することができる。 Here, the critical M 0max / D 0 value when casting a small-diameter ingot is the range of the solidus temperature and liquidus temperature of the material to be cast, and the roughness of the dendrite structure unique to the material. It is thought that the properties related to dissolution and solidification such as Therefore, if the steel type of the large-diameter ingot is the same as the steel type of the standard small-diameter ingot, the above formula (7) can be used regardless of the steel type (carbon steel, low alloy steel, high alloy steel, etc.). A sound large-diameter ingot can be produced with the melting rate M 1 set on the basis.
もっとも、大径鋳塊と小径鋳塊の鋼種が厳密には互いに異なっていても、例えば、C濃度が0.1〜1wt%程度の炭素鋼の範囲内、更には低合金鋼の範囲内では、溶解凝固に関する特性が概ね一致するため、上記式(7)に基づいて大径鋳塊の溶解速度M1を設定してもよい。その際の臨界のM0max/D0値としては、上記の本発明例にて検証できた0.012kg/min・mmを採用することができる。 However, even if the steel types of the large-diameter ingot and the small-diameter ingot are strictly different from each other, for example, within the range of carbon steel having a C concentration of about 0.1 to 1 wt%, and further within the range of low alloy steel Since the characteristics relating to dissolution and solidification generally coincide with each other, the dissolution rate M 1 of the large-diameter ingot may be set based on the above formula (7). The criticality of M 0max / D 0 value at that time, it is possible to adopt a 0.012 kg / min · mm which can be verified in the above invention example.
なお、基準となる小径鋳塊の製造が未だなされていない場合には、先ずは小径の鋳塊にてVAR法による予備試験を行って臨界のM0max/D0値を見極め、そのM0max/D0値より上記式(7)に基づいて大径の鋳塊の溶解速度M1を設定すればよい。ここでの臨界のM0max/D0値を見極めは、小径の鋳塊で行うことから、従来のような大径の鋳塊で行うのと比較して、はるかに簡単に行うことができる。 In the case where the production of small diameter ingot as a reference has not been made yet, first the assess the M 0max / D 0 value of the critical performing preliminary test by VAR method at a small-diameter ingot, its M 0max / The melting rate M 1 of the large-diameter ingot may be set based on the above formula (7) from the D 0 value. The determination of the critical M 0max / D 0 value here is performed with a small-diameter ingot, so that it can be performed much more easily than with a conventional large-diameter ingot.
本発明のVAR法による鋳塊の製造方法によれば、効率良く大径鋳塊の本格操業に移行することができ、しかも、高い生産効率で優れた内部品質の大径鋳塊を得ることが可能になる。よって、本発明は、VAR法により、指向性凝固組織を有する健全な大径鋳塊を製造する方法として極めて有用である。 According to the method for producing an ingot by the VAR method of the present invention, it is possible to efficiently shift to full-scale operation of a large-diameter ingot, and to obtain a large-diameter ingot excellent in internal quality with high production efficiency. It becomes possible. Therefore, the present invention is extremely useful as a method for producing a sound large-diameter ingot having a directional solidified structure by the VAR method.
1 鋳塊
2 溶湯プール
3 消耗電極
4 鋳型
5 ジャケット
6 冷却水給水口
7 冷却水排水口
8 炉体
9 真空排気口
10 スティンガーロッド
DESCRIPTION OF
Claims (1)
M1≦(M0max/D0)×D1 ・・・式(a) When casting a small-diameter ingot having a diameter D 0 by the vacuum arc melting method, it is composed of a columnar crystal structure extending symmetrically upward from the bottom in the longitudinal direction on the entire longitudinal section of the ingot after casting. When the upper limit melting rate at which a directional solidified structure is obtained is M 0max , when casting a large-diameter ingot having a diameter D 1 larger than the small-diameter ingot by the vacuum arc melting method, the following formula (a ), The melting rate M 1 is adjusted so as to satisfy the relationship, and the directional solidified structure is obtained in the large-diameter ingot .
M 1 ≦ (M 0max / D 0 ) × D 1 Formula (a)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2007118823A JP4595958B2 (en) | 2007-04-27 | 2007-04-27 | Ingot manufacturing method by vacuum arc melting method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2007118823A JP4595958B2 (en) | 2007-04-27 | 2007-04-27 | Ingot manufacturing method by vacuum arc melting method |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2008272790A JP2008272790A (en) | 2008-11-13 |
JP4595958B2 true JP4595958B2 (en) | 2010-12-08 |
Family
ID=40051432
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2007118823A Active JP4595958B2 (en) | 2007-04-27 | 2007-04-27 | Ingot manufacturing method by vacuum arc melting method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4595958B2 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR3021977B1 (en) | 2014-06-10 | 2017-10-06 | Snecma | METHOD FOR MANUFACTURING A LOW-ALLOY STEEL INGOT |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH01133661A (en) * | 1987-11-18 | 1989-05-25 | Nkk Corp | Manufacture of hard-to-hot working seamless metal pipe |
JPH07136740A (en) * | 1993-11-19 | 1995-05-30 | Sumitomo Metal Ind Ltd | Casting method of ti alloy |
JPH1112677A (en) * | 1997-06-24 | 1999-01-19 | Sumitomo Metal Ind Ltd | Manufacture of extremely low manganese alloy |
JP2003290906A (en) * | 2002-04-04 | 2003-10-14 | Daido Steel Co Ltd | METHOD FOR REMELTING Ni-BASE ALLOY |
-
2007
- 2007-04-27 JP JP2007118823A patent/JP4595958B2/en active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH01133661A (en) * | 1987-11-18 | 1989-05-25 | Nkk Corp | Manufacture of hard-to-hot working seamless metal pipe |
JPH07136740A (en) * | 1993-11-19 | 1995-05-30 | Sumitomo Metal Ind Ltd | Casting method of ti alloy |
JPH1112677A (en) * | 1997-06-24 | 1999-01-19 | Sumitomo Metal Ind Ltd | Manufacture of extremely low manganese alloy |
JP2003290906A (en) * | 2002-04-04 | 2003-10-14 | Daido Steel Co Ltd | METHOD FOR REMELTING Ni-BASE ALLOY |
Also Published As
Publication number | Publication date |
---|---|
JP2008272790A (en) | 2008-11-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6416564B1 (en) | Method for producing large diameter ingots of nickel base alloys | |
RU2490350C2 (en) | METHOD FOR OBTAINING BASIC β-γ-TiAl-ALLOY | |
JP5048222B2 (en) | Method for producing long ingots of active refractory metal alloys | |
CN114318109B (en) | Method for smelting high-nitrogen die steel by using vacuum induction furnace and pressurized electroslag furnace | |
CN103526038B (en) | A kind of high-strength high-plasticity TWIP steel esr production method | |
JP5064974B2 (en) | Ingot manufacturing method for TiAl-based alloy | |
CN105803257B (en) | Method for improving liquid-state fluidity of TiAl-Nb alloy | |
CN104109760A (en) | Steel ingot medium-frequency induction furnace/electroslag furnace dual-smelting system and method and steel ingot | |
CN108660320A (en) | A kind of low-aluminium high titanium-type high temperature alloy electroslag remelting process | |
JP4595958B2 (en) | Ingot manufacturing method by vacuum arc melting method | |
JP4414861B2 (en) | Long ingot manufacturing method for active refractory metal-containing alloys | |
KR20160071949A (en) | Slag for electro slag remelting and the method for preparing ingot using the same | |
JP2011173172A (en) | Method for producing long cast block of active high melting point metal alloy | |
JP5006161B2 (en) | Ingot manufacturing method for TiAl-based alloy | |
CN113549733B (en) | Bottom argon blowing method for high-temperature alloy master alloy purification smelting | |
CN112974740B (en) | Vacuum induction melting casting process and ingot mold device for GH4151 alloy | |
JP2011012300A (en) | Copper alloy and method for producing copper alloy | |
JP6347405B2 (en) | Method for producing maraging steel | |
CN110484742B (en) | Method for preparing Fe-W intermediate alloy by electron beam melting and high purification | |
JP2006326639A (en) | Method for producing maraging steel | |
JP5261216B2 (en) | Method for melting long ingots | |
JP5022184B2 (en) | Ingot manufacturing method for TiAl-based alloy | |
CN112453337B (en) | Preparation method of high-aluminum-titanium-content powder high-temperature alloy electrode bar | |
JP2022076856A (en) | Ingot of pure titanium or titanium alloy | |
JP2012228722A (en) | Melting furnace for smelting metal |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20090421 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20100218 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20100511 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20100616 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20100824 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20100906 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 4595958 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20131001 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20131001 Year of fee payment: 3 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313111 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20131001 Year of fee payment: 3 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |