JPH0779007A - Manufacture of semiconductor device - Google Patents

Manufacture of semiconductor device

Info

Publication number
JPH0779007A
JPH0779007A JP5217571A JP21757193A JPH0779007A JP H0779007 A JPH0779007 A JP H0779007A JP 5217571 A JP5217571 A JP 5217571A JP 21757193 A JP21757193 A JP 21757193A JP H0779007 A JPH0779007 A JP H0779007A
Authority
JP
Japan
Prior art keywords
laser beam
film
semiconductor film
transparent electrode
electrode film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5217571A
Other languages
Japanese (ja)
Inventor
Seiichi Kiyama
精一 木山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP5217571A priority Critical patent/JPH0779007A/en
Publication of JPH0779007A publication Critical patent/JPH0779007A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Landscapes

  • Solid State Image Pick-Up Elements (AREA)
  • Drying Of Semiconductors (AREA)
  • Photovoltaic Devices (AREA)

Abstract

PURPOSE:To provide a method for manufacturing a semiconductor device which can properly divide and eliminate semiconductor films deposited across a plurality of regions without generating a residue and the like in its adjacent gap. CONSTITUTION:A semicoductor device comprises in such a way that a laser beam LB is irradiated in pulses from another main surface side of a substrate 10, on which semiconductor films are formed, to parts of the semiconductor films 12a, 12b, 12c... deposited across a plurality of regions, which are to be divided.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明はレーザビームを利用した
半導体装置の製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method of manufacturing a semiconductor device using a laser beam.

【0002】[0002]

【従来の技術】半導体膜を光活性層とする半導体装置と
して太陽電池や一次元光センサ等が存在する。
2. Description of the Related Art Solar cells, one-dimensional photosensors, and the like exist as semiconductor devices having a semiconductor film as a photoactive layer.

【0003】図1は米国特許第4,281,208号に開示され
ていると共に、既に実用化されている太陽電池の基本構
造を示し、(1)はガラス、耐熱プラスチック等の絶縁性
且つ透光性を有する基板、(2a)(2b)(2c)…は基板
(1)上に一定間隔で被着された透明電極膜、(3a)(3b)
(3c)…は各透明電極膜上に重畳被着された非晶質シリ
コン等の非晶質半導体膜、(4a)(4b)(4c)…は各非晶
質半導体膜上に重畳被着され、かつ各右隣リの透明電極
膜(2b)(2c)…に部分的に重畳せる裏面電極膜で、斯る
透明電極膜(2a)(2b)(2c)…乃至裏面電極膜(4a)(4
b)(4c)…の各積層体により光電変換領域(5a)(5b)(5
c)…が構成されている。
FIG. 1 shows the basic structure of a solar cell, which is disclosed in US Pat. No. 4,281,208 and has already been put into practical use. (1) has an insulating property and a light-transmitting property such as glass and heat-resistant plastic. Substrate, (2a) (2b) (2c) ... is the substrate
(1) Transparent electrode film deposited on the upper surface at regular intervals, (3a) (3b)
(3c) ... Amorphous semiconductor film such as amorphous silicon superposed and deposited on each transparent electrode film, and (4a) (4b) (4c) ... superposed and deposited on each amorphous semiconductor film. The transparent electrode films (2a), (2b), (2c), ..., Or the back electrode film (4a) that are partially overlapped with the transparent electrode films (2b), (2c) ... ) (4
b) (4c) ... Each photoelectric conversion region (5a) (5b) (5
c) ... is configured.

【0004】各非晶質半導体膜(3a)(3b)(3c)…は、
その内部に例えば膜面に平行なPIN接合を含み、従っ
て透光性基板(1)及び透明電極膜(2a)(2b)(2c)…を
順次介して光入射があると、光起電力を発生する。各非
晶質半導体膜(3a)(3b)(3c)…内で発生した光起電力
は裏面電極膜(4a)(4b)(4c)…での接続により直列的
に相加される。
Each of the amorphous semiconductor films (3a) (3b) (3c) ...
When a light is incident through the transparent substrate (1) and the transparent electrode films (2a) (2b) (2c) ... in sequence, for example, a PIN junction parallel to the film surface is included therein. Occur. Photoelectromotive force generated in each of the amorphous semiconductor films (3a) (3b) (3c) ... Is added in series by the connection with the back electrode films (4a) (4b) (4c).

【0005】通常、斯る構成の太陽電池にあっては細密
加工性に優れている写真蝕刻技術が用いられている。こ
の技術による場合、基板(1)上全面への透明電極膜の被
着工程と、フォトレジスト及びエッチングによる各個別
の透明電極膜(2a)(2b)(2c)…の分離、即ち、各透明
電極膜(2a)(2b)(2c)…の隣接間隔部分の除去工程
と、これら各透明電極膜上を含む基板(1)上全面への非
晶質半導体膜の被着工程と、フォトレジスト及びエッチ
ングによる各個別の非晶質半導体膜(3a)(3b)(3c)…
の分離、即ち、各非晶質半導体膜(3a)(3b)(3c)…の
隣接間隔部分の除去工程とを順次経ることになる。
In the solar cell having such a structure, a photographic etching technique which is excellent in fine workability is usually used. In the case of this technique, the step of depositing the transparent electrode film on the entire surface of the substrate (1) and the separation of the individual transparent electrode films (2a) (2b) (2c) ... A step of removing adjacent space portions of the electrode films (2a) (2b) (2c) ..., a step of depositing an amorphous semiconductor film on the entire surface of the substrate (1) including the respective transparent electrode films, and a photoresist. And individual amorphous semiconductor films (3a) (3b) (3c) by etching.
Of the amorphous semiconductor films (3a) (3b) (3c) ...

【0006】然し乍ら、写真蝕刻技術は細密加工の上で
優れてはいるが、蝕刻パターンを規定するフォトレジス
トのピンホールや周縁での剥れにより非晶質半導体膜に
欠陥を生じさせやすい。
However, although the photo-etching technique is excellent in fine processing, it tends to cause defects in the amorphous semiconductor film due to peeling of the photoresist defining the etching pattern at the pinholes or at the peripheral edge.

【0007】特開昭57-12568号公報に開示された先行技
術は、レーザビームの照射による膜の焼き切りで上記隣
接間隔を設けるものであり、写真蝕刻技術で必要なフォ
トレジスト、即ちウエットプロセスを一切使わず細密加
工性に富むその技法は上記の課題を解決する上で極めて
有効である。
The prior art disclosed in Japanese Patent Application Laid-Open No. 57-12568 is to provide the above-mentioned adjacent intervals by burning off the film by irradiating a laser beam. The technique, which does not use at all and is rich in fine workability, is extremely effective in solving the above problems.

【0008】然し乍ら、上述の如くウエットプロセスを
一切使わないレーザ加工は細密加工性の点に於いて極め
て有効である反面図2、図3に夫々要部を拡大して示す
如く、各光電変換領域(5a)(5b)…に連続して被着され
た非晶質半導体膜或いは裏面電極膜を各領域(5a)(5b)
…毎に分割すべくレーザビームの照射により隣接間隔部
(3’)或いは(4’)に位置する半導体膜或いは裏面電極
膜を除去すると、斯る隣接間隔部(3’)或いは(4’)に
非晶質半導体膜或いは裏面電極膜の溶融物等の残留物
(6)或いは(7)が除去部分近傍に残存したり、或いは予
め定められたパターンに正確に除去することができない
ことである。この未除去による残留物(6)(7)は特にレ
ーザビームの走査方向の両側面に於いて残存する。斯る
両側面に残存する残留物(6)(7)は、レーザビームに於
けるエネルギ密度の分布が僅かながらも正規分布するた
めに、隣接間隔部(3’)(4’)の両側面が低エネルギ分
布となり、その結果発生するものと考えられる 。何れ
の原因にしろ除去すべき隣接間隔部(3’)(4’)に上記
残留物(6)(7)が存在すると、図2の非晶質半導体の残
留物(6)にあっては分割後該半導体膜(3a)(3b)上に被
着される裏面電極膜(4a)(4b) の付着強度を低下せし
め、遂には裏面電極膜(4a)(4b)の剥離事故を招く原因
となり、また図3の裏面電極膜の残留物(7)にあっては
同じ光電変換領域(5b)に 於ける透明電極膜(2b)と裏
面電極膜(4b)とが直接接触し短絡事故となる。
However, as described above, the laser processing which does not use any wet process is extremely effective in terms of the fine workability, but as shown in the enlarged view of each of the photoelectric conversion regions in FIGS. (5a) (5b) ... Amorphous semiconductor film or backside electrode film continuously deposited on each region (5a) (5b)
... Adjacent spacing by laser beam irradiation to divide each
When the semiconductor film or the back electrode film located at (3 ′) or (4 ′) is removed, a melted material of the amorphous semiconductor film or the back electrode film or the like is formed in the adjacent space (3 ′) or (4 ′). Residue of
(6) or (7) remains in the vicinity of the removed portion or cannot be accurately removed in a predetermined pattern. The residues (6) and (7) due to the non-removal remain particularly on both side surfaces in the scanning direction of the laser beam. The residues (6) and (7) remaining on the both side surfaces have a normal distribution although the energy density distribution in the laser beam is small, so that the both side surfaces of the adjacent spacing portions (3 ′) (4 ′) are Is a low energy distribution, which is considered to be the result. Regardless of the cause, if the residues (6) and (7) are present in the adjacent gaps (3 ′) (4 ′) to be removed, the residue (6) of the amorphous semiconductor shown in FIG. The reason why the adhesion strength of the back surface electrode films (4a) (4b) deposited on the semiconductor films (3a) (3b) after the division is reduced, and finally the back surface electrode films (4a) (4b) are peeled off Also, in the case of the residue (7) on the back surface electrode film in FIG. 3, the transparent electrode film (2b) and the back surface electrode film (4b) in the same photoelectric conversion region (5b) are in direct contact with each other, resulting in a short circuit accident. Become.

【0009】更に、隣接する光電変換領域(5a)(5b)…
を直列接続するために、図2の如く右隣りの非晶質半導
体膜(3b)から露出せしめられる透明電極膜(2b)の露出
長(D)を、光電変換に対する有効面積を可及的に減少せ
しめることなく大きくしなければならないことである。
従来、斯る要求を満すべくレーザビームの走査速度を遅
くしたり、或いは走査回数を増やすことにより対処して
いる。
Further, adjacent photoelectric conversion regions (5a) (5b) ...
In order to connect the two in series, the exposure length (D) of the transparent electrode film (2b) exposed from the adjacent amorphous semiconductor film (3b) as shown in FIG. It must be increased without reducing it.
Heretofore, in order to satisfy such a demand, the scanning speed of the laser beam is slowed down or the number of times of scanning is increased to deal with it.

【0010】[0010]

【発明が解決しようとする課題】本発明は斯る点に鑑み
て為されたものであって、その第1の目的は、太陽電池
にあっては裏面電極膜の剥離事故の原因となり、また複
数のセンサ領域を一次元的に配列せしめた一次元光セン
サにあってはパターン精度の低下を招く残留物の形成を
抑圧するにも拘わず、ウエットプロセスを含まないレー
ザビームの如きエネルギビームの利用を可能ならしめる
ことにある。
SUMMARY OF THE INVENTION The present invention has been made in view of the above problems, and its first object is to cause a peeling accident of a back electrode film in a solar cell. In a one-dimensional optical sensor in which a plurality of sensor areas are arranged one-dimensionally, an energy beam such as a laser beam that does not include a wet process despite suppressing the formation of a residue that causes a reduction in pattern accuracy. To enable the use of.

【0011】また第2の目的は、太陽電池にあっては、
半導体膜を低出力で以って加工幅を広くとり、直列接続
部を適度に大きくすることにある。
A second object of the solar cell is
It is intended to make the semiconductor film have a low processing power so as to have a wide working width and to appropriately increase the size of the serial connection portion.

【0012】[0012]

【課題を解決するための手段】本発明半導体装置の製造
方法の特徴とするところは、透光性基板の一主面に於け
る複数の領域に跨って被着された半導体膜の分割すべき
隣接間隔部に対して、上記基板の他方の主面側から波長
を約0.53μmとするレーザビームをパルス的に照射し該
隣接間隔部に位置した半導体膜を除去して、上記半導体
膜を複数の領域毎に分割することにある。
The method of manufacturing a semiconductor device according to the present invention is characterized in that a semiconductor film deposited over a plurality of regions on one main surface of a transparent substrate should be divided. A plurality of semiconductor films are formed by irradiating the adjacent spacing portion with a laser beam having a wavelength of about 0.53 μm from the other main surface side of the substrate in a pulsed manner to remove the semiconductor film located in the adjacent spacing portion. It is to divide into each area.

【0013】[0013]

【作用】本発明製造方法によれば、複数の領域に跨って
被着された半導体膜を、少なくとも基板の他方の主面側
からレーザビームを照射することから、その照射された
隣接間隔部の半導体膜を、太陽電池にあっては裏面電極
膜の剥離事故、或いは一次元光センサにあってはパター
ン精度の低下を招く残留物の形成、を抑圧することがで
きることとなり、ウエットプロセスを含まないレーザビ
ームの利用を可能ならしめる。
According to the manufacturing method of the present invention, the semiconductor film deposited over a plurality of regions is irradiated with the laser beam from at least the other main surface side of the substrate. The semiconductor film can suppress the peeling accident of the back electrode film in the case of a solar cell, or the formation of a residue that causes a reduction in pattern accuracy in a one-dimensional optical sensor, and does not include a wet process. Enable the use of laser beams.

【0014】また、約0.53μmの波長にあるレーザビー
ムをパルス的に従来の照射方向と反転させて照射するこ
とで半導体膜の加工幅を低出力で以って広くすることが
できることから、隣接間隔部において電気的な直列接続
を施す場合にあっては、そのレーザビームの走査速度の
上昇、或いは走査回数を減少せしめることができ、生産
性の向上が図れる。
Further, by irradiating a laser beam having a wavelength of about 0.53 μm in a pulsed manner by reversing the conventional irradiation direction, the processing width of the semiconductor film can be widened with a low output. In the case of electrically connecting in series in the gap portion, the scanning speed of the laser beam can be increased or the number of times of scanning can be reduced, and the productivity can be improved.

【0015】[0015]

【実施例】図4乃至図9は本発明製造方法の実施例を工
程順に示している。図4の工程では、厚さ1mm〜3mm面
積10cm×10cm〜40cm×40cm程度の透明なガラス等の基板
(10)上全面に、厚さ2000Å〜5000Åの酸化錫(SnO2)か
ら成る透明電極膜(11)が被着される。
Embodiments FIGS. 4 to 9 show an embodiment of the manufacturing method of the present invention in the order of steps. In the process of FIG. 4, a substrate such as transparent glass having a thickness of 1 mm to 3 mm and an area of 10 cm × 10 cm to 40 cm × 40 cm.
(10) A transparent electrode film (11) made of tin oxide (SnO 2 ) having a thickness of 2000Å to 5000Å is deposited on the entire upper surface.

【0016】図5の工程では、隣接間隔部(11’)がレー
ザビームの照射により除去されて、個別の各透明電極膜
(11a)(11b)(11c)…が分離形成される。使用されるレー
ザは基板(10)にほとんど吸収されることのない波長が適
当であり、上記ガラスに対しては0.35μm〜2.5μmの波
長のパルス出力型が好ましい。斯る好適な実施例は、波
長約1.06μmエネルギ密度13J/cm2、パルス周波数3K
HzのNd:YAGレーザであり、隣接間隔部(11’)の
間隔(L1)は約100μmに設定される。
In the process of FIG. 5, the adjacent gaps (11 ') are removed by the irradiation of the laser beam, and the individual transparent electrode films are removed.
(11a) (11b) (11c) ... Are separated and formed. The wavelength of the laser used is such that it is hardly absorbed by the substrate (10), and a pulse output type with a wavelength of 0.35 μm to 2.5 μm is preferable for the above glass. Such a preferred embodiment has a wavelength of about 1.06 μm, an energy density of 13 J / cm 2 , and a pulse frequency of 3K.
It is a Nd: YAG laser of Hz, and the interval (L 1 ) between the adjacent interval parts (11 ′) is set to about 100 μm.

【0017】図6の工程では、各透明電極膜(11a)(11b)
(11c)…の表面を含んで基板(10)上全面に光電変換に有
効に寄与する厚さ5000Å〜7000Åの非晶質シリコン(a
−Si)等の非晶質半導体膜(12)が被着される。斯る半
導体膜(12)はその内部に膜面に平行なPIN接合を含
み、従ってより具体的には、まずP型の非晶質シリコン
カーバイドが被着され、次いでI型及びN型の非晶質シ
リコンが順次積層被着される。
In the process of FIG. 6, each transparent electrode film (11a) (11b)
(11c) ... The entire surface of the substrate (10) including the surface of the amorphous silicon (a) having a thickness of 5000 Å to 7000 Å that effectively contributes to photoelectric conversion.
An amorphous semiconductor film (12) such as -Si) is deposited. Such a semiconductor film (12) contains inside it a PIN junction parallel to the film plane, so more specifically, firstly P-type amorphous silicon carbide is deposited, then I-type and N-type non-crystalline silicon. Amorphous silicon is sequentially deposited.

【0018】図7の工程では、隣接間隔部(12’)が矢印
で示す如き基板(10)の他方の主面側からレーザビームの
照射により除去されて、個別の各非晶質半導体膜(12a)
(12b)(12c)…が分離形成される。使用されるレーザは非
晶質半導体膜(12)に比較的吸収される波長帯域のものが
適当であり、例えば本実施例の如き非晶質シリコン(a
−Si)系の吸収特性は図10の如く紫外領域及び可視光
領域に吸収係数(α)が高く、基板(10)の材料として最適
なガラスの透過率(T)が約0.35μm以上に於いて約90%
以上あることから波長約0.35μm以上の紫外領域及び可
視光領域のパルス出力型レーザが好適であり、例えば上
記波長領域に含まれる波長0.53μmのパルス出力型レー
ザが使用される。尚、可視光領域の上限波長は先行技術
である上記特開昭57-12568号公報に開示された波長1.06
μmに対し吸収係数が高くその値が104cm-1を呈する約0.
78μm付近であり、またガラスの透過率(T)は米国コー
ニング社製 型番「7740」商品名パイレックス(登録商
標)の特性である。
In the step shown in FIG. 7, the adjacent spacing portions (12 ') are removed by laser beam irradiation from the other main surface side of the substrate (10) as shown by an arrow, and each individual amorphous semiconductor film ( 12a)
(12b), (12c) ... Are separated and formed. It is appropriate that the laser used has a wavelength band that is relatively absorbed by the amorphous semiconductor film (12). For example, the amorphous silicon (a) as in this embodiment is used.
As shown in Fig. 10, the absorption characteristics of the (Si) system are high in the ultraviolet region and the visible light region (α), and the optimum glass transmittance (T) as a material for the substrate (10) is about 0.35 µm or more. About 90%
From the above, a pulse output type laser having a wavelength of about 0.35 μm or more in the ultraviolet region and visible light region is suitable, and for example, a pulse output type laser having a wavelength of 0.53 μm included in the above wavelength region is used. Incidentally, the upper limit wavelength of the visible light region is the wavelength 1.06 disclosed in the prior art JP-A-57-12568.
The absorption coefficient is high with respect to μm, and its value is 10 4 cm -1, which is about 0.
It is around 78 μm, and the transmittance (T) of glass is a characteristic of Pyrex (registered trademark) of Corning Incorporated, model number “7740”.

【0019】従って、斯る工程にあっては、波長を約0.
35μm〜0.78μmとする紫外領域及び可 視光領域にある
レーザビームをパルス的に照射することが好ましい。
Therefore, in such a process, the wavelength is set to about 0.
It is preferable to irradiate the laser beam in the ultraviolet region and the visible light region of 35 μm to 0.78 μm in a pulsed manner.

【0020】上述の如き波長0.53μmのパルス出力型レ
ーザの照射条件は、パルス繰返し周波数4KHz、エネ
ルギ密度0.7J /cm2で、除去される隣接間隔部(12’)の
距離(L2)は約300μm〜500μmに設定される。
The irradiation conditions of the pulse output type laser having the wavelength of 0.53 μm as described above are such that the pulse repetition frequency is 4 KHz, the energy density is 0.7 J / cm 2 , and the distance (L 2 ) between the adjacent interval portions (12 ′) to be removed is It is set to about 300 μm to 500 μm.

【0021】斯るレーザビームの照射に於いて留意すべ
きはレーザビームの照射方向が除去すべき隣接間隔部(1
2’)…の露出面側、即ち非晶質半導体膜(12)の露出面側
からではなく透明電極膜(11a)(11b)(11c)…との被着界
面側である非晶質半導体膜(12)…側からとなるべく基板
(10)の他方の主面側から為されている点にある。即ち、
従来のレーザビームの照射は露出面側から施され、従っ
て、その厚み方向の除去も露出面側から序々に蒸発除去
されていたために、レーザビームが正規型のエネルギ密
度分布を持つと、隣接間隔部(12’)の除去断面もほぼ正
規型に近い形状 となり両側面に於いて図2に示す如く
未除去による残留物が発生していたのに対し、レーザビ
ームを正反対の基板(10)の他方の主面側から照射する
と、該レーザビームは基板(10)及び透明電極膜(11a)(11
b)(11c)…を透過して先ず該透明電極 膜(11a)(11b)(11
c)…との界面に被着された非晶質半導体膜(12)に到達
し、除去 すべき隣接間隔部(12’)の膜をその被着面か
ら除去しようとする。その際、上記 レーザビームの照
射により溶融した非晶質半導体膜(12)は当然のことなが
ら基板(10)、透明電極膜(12a)(12b)(12c)…及び未だ溶
融に至っていない非晶質半導体膜(12)に囲まれた隣接間
隔部(12’)に位置している。従って、界面から溶融した
非晶質半導体膜の溶融状態は上記界面から露出面(表
面)に向って膨張しながら進行し、膜厚が極めて薄くな
った時点で、上記溶融物は上記肉薄となった膜を打破
し、その殆んどは大気中に散逸する。その結果、残留物
は加工後ほとんど存在しない。とりわけ、波長を約0.35
μm〜0.78μmとするレーザビームをパルス的に照射 す
ることは、被照射物である非晶質半導体膜(12)の透明電
極膜側に於て十分レーザ光を吸収し得ると共に、その非
晶質半導体膜(12)のレーザビームの照射側表面と裏面と
の温度差が大きくできることから、上記界面と上記露出
面との温度差が大きくなり、効果的な上記溶融が発生す
ることとなる。
It should be noted that the irradiation direction of the laser beam should be noted in the irradiation of the laser beam.
2 ') ... Amorphous semiconductor not on the exposed surface side of the amorphous semiconductor film (12), but on the adhered interface side with the transparent electrode films (11a) (11b) (11c). Membrane (12) ... substrate as possible from the side
It is done from the other principal surface side of (10). That is,
Conventional laser beam irradiation is performed from the exposed surface side, and therefore the removal in the thickness direction is also gradually evaporated and removed from the exposed surface side.Therefore, if the laser beam has a normal type energy density distribution, The removed cross section of the part (12 ') also became a shape close to the normal type, and residues were generated on both sides due to unremoved as shown in Fig. 2. When irradiated from the other main surface side, the laser beam is emitted from the substrate (10) and the transparent electrode film (11a) (11a).
b) (11c) ... penetrates the transparent electrode film (11a) (11b) (11
It reaches the amorphous semiconductor film (12) deposited on the interface with (c), and tries to remove the film of the adjacent gap portion (12 ') to be removed from the deposition surface. At that time, the amorphous semiconductor film (12) melted by the laser beam irradiation is, of course, the substrate (10), the transparent electrode films (12a) (12b) (12c) ... and the amorphous material which has not yet been melted. Located in the adjacent space portion (12 ') surrounded by the semiconductor film (12). Therefore, the molten state of the amorphous semiconductor film melted from the interface progresses while expanding from the interface toward the exposed surface (surface), and when the film thickness becomes extremely thin, the melt becomes thin. The membrane breaks down and most of it dissipates into the atmosphere. As a result, little residue is present after processing. Above all, the wavelength is about 0.35
Irradiating the laser beam in the range of μm to 0.78 μm in a pulsed manner can sufficiently absorb the laser beam on the transparent electrode film side of the amorphous semiconductor film (12), which is the irradiation target, and Since the temperature difference between the laser beam irradiation side surface and the back surface of the high quality semiconductor film (12) can be increased, the temperature difference between the interface and the exposed surface becomes large, and the effective melting occurs.

【0022】図11は本発明方法を原理的に示す概念図で
あり、同図に於いて、(LA)はレーザ装置で、該レーザ
装置(LA)を出発したレーザビーム(LB)は反射鏡(R
M)、対物レンズ(OL)、基板(10)及び透明電極膜(11)
を介して被加工膜である非晶質半導体膜(12)に到達す
る。一方、従来方法にあっては図12のように対物レンズ
(OL)によりビーム径が調整されたレーザビーム(LB)
は基板(1)、透明電極膜(2)を透過することなく直接被
加工膜の非晶質半導体膜(3)の表面を照射していたので
ある。
FIG. 11 is a conceptual diagram showing the principle of the method of the present invention. In FIG. 11, (LA) is a laser device, and the laser beam (LB) leaving the laser device (LA) is a reflecting mirror. (R
M), objective lens (OL), substrate (10) and transparent electrode film (11)
It reaches the amorphous semiconductor film (12) which is the film to be processed through. On the other hand, in the conventional method, as shown in FIG.
Laser beam (LB) whose beam diameter is adjusted by (OL)
Irradiates the surface of the amorphous semiconductor film (3) as the film to be processed directly without penetrating the substrate (1) and the transparent electrode film (2).

【0023】以下に上記レーザビーム(LB)の加工特性
の違いを理論計算と実験結果に基づき説明する。
The difference in the processing characteristics of the laser beam (LB) will be described below based on theoretical calculation and experimental results.

【0024】図13、図14及び図15は本発明方法を実施せ
る基板(10)の他方の主面側から非晶質シリコン系の非晶
質半導体膜(12)にレーザビーム(LB)を照射したときの
吸収率(A)、反射率(R)、透過率(T)の各強度を透明電
極膜(11)の膜厚をパラメータとして光学的に解析し線図
化したものであって、横軸は非晶質半導体膜(12)の膜厚
であり、縦軸は各強度を表わしている。即ち、図13の透
明電極膜(11)の膜厚(Ttco)は約2100Åであり、図14、図
15のそれは各々約2800Å、約3300Åであって、上記膜厚
は通常の光起電力装置の透明電極膜(11)として使用され
る範囲である。斯る理論計算の結果、非晶質半導体膜(1
2)に於けるレーザビームの吸収特性はその照射面側に設
けられる透明電極膜(11)の膜厚によって変動するもの
の、最低の図14の吸収率(A)でも非晶質半導体膜(12)が
光活性層として実用に供せられる約5000Å或いは約4000
Å以上にあっては約64%あり、また最高の図13に至って
は99%の吸収特性を呈する。
13, 14 and 15 show a laser beam (LB) from the other main surface side of the substrate (10) on which the method of the present invention is applied to the amorphous silicon-based amorphous semiconductor film (12). Absorption rate (A), reflectance (R), and transmittance (T) intensities upon irradiation are optically analyzed using the film thickness of the transparent electrode film (11) as a parameter and plotted. The horizontal axis represents the film thickness of the amorphous semiconductor film (12), and the vertical axis represents each intensity. That is, the film thickness (Ttco) of the transparent electrode film (11) of FIG. 13 is about 2100Å, and
Those of 15 are about 2800Å and about 3300Å, respectively, and the above-mentioned film thickness is in a range used as a transparent electrode film (11) of a usual photovoltaic device. As a result of such theoretical calculation, the amorphous semiconductor film (1
Although the absorption characteristics of the laser beam in 2) vary depending on the film thickness of the transparent electrode film (11) provided on the irradiation surface side, the amorphous semiconductor film (12) has the lowest absorption rate (A) in FIG. ) For practical use as a photoactive layer is about 5000Å or about 4000
Absorption characteristics of about 64% above Å, and 99% at the highest in Fig. 13.

【0025】一方、図16は、従来方法による非晶質半導
体膜(3)をその露出表面からレーザビーム(LB)を照射
した場合の吸収率(A)、反射率(R)及び透過率(T)の各
強度と透明電極膜(2)の膜厚との関係を示している。即
ち、非晶質半導体膜(3)の膜厚を光活性層として実用に
供せられる5000Åとしたときの上記A、R、Tの何れの
強度も下層の透明電極膜(2)の膜厚に依存しないことが
判る。
On the other hand, FIG. 16 shows the absorptance (A), reflectance (R) and transmittance (a) when the amorphous semiconductor film (3) according to the conventional method is irradiated with a laser beam (LB) from its exposed surface. The relationship between each intensity of T) and the film thickness of the transparent electrode film (2) is shown. That is, when the film thickness of the amorphous semiconductor film (3) is set to 5000 Å which can be practically used as a photoactive layer, the strength of any of A, R, and T is the film thickness of the lower transparent electrode film (2). It turns out that it doesn't depend on.

【0026】図17は、上記図16から従来方法にあっては
非晶質半導体膜(3)のレーザビーム(LB)の照射に於い
て、A、R、及びTの何れの強度も透明電極膜(2)の膜
厚に依存しないことが判明した結果、斯る透明電極膜
(2)の膜厚(Ttco)を2000Åと固定した場合の非晶質半
導体膜(3)の膜厚依存性を理論計算したものである。
FIG. 17 shows that, in the conventional method from FIG. 16, in the irradiation of the laser beam (LB) of the amorphous semiconductor film (3), any intensity of A, R, and T is applied to the transparent electrode. As a result of clarification that the film thickness does not depend on the film thickness of the film (2), the film thickness dependence of the amorphous semiconductor film (3) when the film thickness (Ttco) of the transparent electrode film (2) is fixed to 2000Å Is a theoretical calculation.

【0027】図18は図17と同一構成にある基板(10)、透
明電極膜(11)、非晶質半導体膜(12)の被加工膜、即ち非
晶質半導体膜(12)に対し、図11の本発明方法の原理に基
づきレーザビーム(LB)を照射したときの比較例であ
る。使用されたレーザ及びその他のレーザ条件は両者共
に同一であり、異なるのはレーザビーム(LB)の照射方
向のみである。この様に本発明方法にあっては非晶質半
導体膜(12)に於ける吸収率(A)が実用膜厚に於いて90%
を越えており、従来方法に比して低出力での加工が可能
となる。
FIG. 18 shows the substrate (10), the transparent electrode film (11) and the amorphous semiconductor film (12) to be processed, that is, the amorphous semiconductor film (12), which have the same structure as FIG. 13 is a comparative example when a laser beam (LB) is irradiated based on the principle of the method of the present invention in FIG. The laser used and the other laser conditions are the same for both, and only the irradiation direction of the laser beam (LB) is different. Thus, in the method of the present invention, the absorption rate (A) in the amorphous semiconductor film (12) is 90% in the practical film thickness.
Therefore, it is possible to process at a lower output than the conventional method.

【0028】図19及び図20は上記図18及び図17により求
められた反射率及び吸収率に基づくエネルギ密度を以っ
てレーザビーム(LB)を照射したときの温度分布をシュ
ミレーションしたものである。斯るシュミレーションに
あっては、図19の本発明方法に於けるレーザビームのエ
ネルギ密度は0.351J /cm2に設定され、また図20の従来
方法のそれは0.559J/cm2であり、本発明方法の方が低
エネルギ密度であるにも拘わずレーザビーム(LB)の照
射開始から同一時間経過後の温度上昇は両者共ほぼ等し
くなっている。
19 and 20 are simulations of the temperature distribution when the laser beam (LB) is irradiated with the energy density based on the reflectance and the absorptance obtained in FIGS. 18 and 17. . In the斯Ru simulation, energy density of at laser beam to the present invention the method of FIG. 19 is set to 0.351J / cm 2, also that of the conventional method of FIG. 20 is a 0.559J / cm 2, the present invention Although the method has a lower energy density, the temperature rises after the elapse of the same time from the start of laser beam (LB) irradiation are almost the same in both cases.

【0029】以上の理論計算に基づき実際にレーザビー
ム(LB)を照射した場合、エネルギ密度と、非晶質半導
体膜(12)の加工幅(除去幅)と、について本発明方法と従
来方法との比較例を図21及び図22に示す。即ち、図21は
膜厚約6000Åの非晶質シリコン系の非晶質半導体膜(12)
を、既に形成済みの透明電極膜(11)に熱的ダメージを与
えることなく除去するのに必要なレーザビームの閾値エ
ネルギ密度と走査速度の関係を示しており、同図から明
らかな如く基板(10)の他方の主面側からレーザビームを
照射する本発明方法の方が約1/2のエネルギ密度で済
む。また、図22は非晶質半導体膜(12)に対し、1回のレ
ーザビーム(LB)の走査でどれくらいの半導体膜(12)を
加工(除去)できるのかを示しており、同一条件下に於い
て本発明方法にあっては幅広な加工ができることが判
る。即ち、斯る幅広な加工は図2に於いて符号Dで示す
透明電極(2b)(或いは本発明実施例にあっては(11b))の
露出長を、レーザビーム(LB)の走査速度を遅くする
ことなく、或いは走査回数を2〜3回止りで十分な長さ
のものが得られることを意味し、生産性の向上が図れ
る。
When the laser beam (LB) is actually irradiated on the basis of the above theoretical calculation, the energy density and the processing width (removal width) of the amorphous semiconductor film (12) are compared with the method of the present invention and the conventional method. 21 and 22 show comparative examples. That is, FIG. 21 shows an amorphous silicon-based amorphous semiconductor film (12) with a film thickness of about 6000 Å.
Shows the relationship between the threshold energy density of the laser beam and the scanning speed necessary to remove the already formed transparent electrode film (11) without causing thermal damage, and as shown in the figure, the substrate ( The method of the present invention in which the laser beam is irradiated from the other main surface side of 10) requires an energy density of about 1/2. Further, FIG. 22 shows how much the semiconductor film (12) can be processed (removed) with respect to the amorphous semiconductor film (12) by one scanning of the laser beam (LB), and under the same conditions. Therefore, it can be seen that the method of the present invention can perform wide processing. That is, such wide processing is performed by setting the exposure length of the transparent electrode (2b) (or (11b) in the embodiment of the present invention) indicated by the symbol D in FIG. 2 to the scanning speed of the laser beam (LB). This means that a product having a sufficient length can be obtained without delaying the scanning or stopping the scanning a few times, and the productivity can be improved.

【0030】尚、斯る実験に共通に使用されたレーザは
繰返し周波数4KHz、波長0.53μmのパルス出力型レ
ーザである。
The laser commonly used in such experiments is a pulse output type laser having a repetition frequency of 4 KHz and a wavelength of 0.53 μm.

【0031】図23及び図24は本発明方法と従来方法によ
り上述の如く非晶質半導体膜(12)をパルス出力型のレー
ザビームにより1回走査させたときの顕微鏡写真の模式
図であり、両者共に同一方向である非晶質半導体膜(12)
の露出面側から臨んだものである。両図に於いて、使用
されたレーザは上述の如く波長0.53μmのパルス出力型
レーザであり、レーザ出力、走査速度等の条件は同一で
あって、レーザビーム( LB)の照射方向のみが、本発
明方法による図23のものが図11の如く基板(10)の 他方
の主面側である点についてのみ相違している。
FIG. 23 and FIG. 24 are schematic views of micrographs obtained by scanning the amorphous semiconductor film (12) once with a pulsed laser beam by the method of the present invention and the conventional method, Amorphous semiconductor film where both are in the same direction (12)
From the exposed surface side of. In both figures, the laser used is a pulse output type laser with a wavelength of 0.53 μm as described above, the conditions such as laser output and scanning speed are the same, and only the irradiation direction of the laser beam (LB) is 23 according to the method of the present invention is different only in that it is the other main surface side of the substrate (10) as shown in FIG.

【0032】この様に照射方向を除き同一条件でレーザ
加工を施したにも拘わず、本発明方法にあっては残留物
のない鮮明な加工界面が得られ、また加工(除去)幅も広
いものが得られることが理解できよう。更に、加工界面
に従来では見られた熱影響層の発生も抑圧されている。
In this way, despite the fact that the laser processing was performed under the same conditions except for the irradiation direction, a clear processing interface without residue was obtained and the processing (removal) width was also obtained in the method of the present invention. It can be understood that a wide range can be obtained. Furthermore, the generation of the heat-affected layer, which has been conventionally seen at the processing interface, is suppressed.

【0033】而して、上述の如く非晶質半導体膜(12a)
(12b)(12c)…が図7のように基板(10)の他の主面側から
のレーザビーム(LB)の照射により各個別に鮮明に分離
された後、該非晶質半導体膜(12a)(12b)(12c)…及び透
明電極膜(11a)(11b)(11c)…の各露出部分を含んで基板
(10)上全面に4000Å〜2μm程度の厚さのアルミニウム
単層構造、或いは該アルミニウムにチタンまたはチタン
銀を二層構造、更には斯る二層構造を二重に積み重ねた
裏面電極膜(13)が被着される。(図8)図9の最終工程で
は、隣接間隔部(13’)がレーザビーム(LB)の照射によ
り除去されて、個別の各裏面電極膜(13a)(13b)(13c)…
が形成される。その結果、各光電変換領域(14a)(14b)(1
4c)…が電気的に直列接続される。上記レーザビーム(L
B)の照射は除去すべき隣接間隔部(13’)が透明電極膜
(11a)(11b)(11c)…の露 出部分上に位置する場合、上記
非晶質半導体膜(12)の照射方向と同じく基板(10)の他方
の主面側から施される。使用されるレーザは波長1.06μ
mのパルス出力型レーザであり、その時のエネルギ密度
は約3J/cm2である。斯る隣接間隔部(13’)の間隔(L
3)は例えば約20μm〜100μmに設定される。
Thus, as described above, the amorphous semiconductor film (12a)
(12b), (12c), etc. are individually and clearly separated by irradiation with a laser beam (LB) from the other main surface side of the substrate (10) as shown in FIG. ) (12b) (12c) ... and transparent electrode films (11a) (11b) (11c) ...
(10) An aluminum single-layer structure having a thickness of about 4000 Å to 2 μm on the entire upper surface, a double-layer structure of titanium or titanium silver on the aluminum, and a double-layered back electrode film (13). ) Is deposited. (FIG. 8) In the final step of FIG. 9, the adjacent gap portion (13 ′) is removed by irradiation with the laser beam (LB), and the individual back electrode films (13a) (13b) (13c) ...
Is formed. As a result, each photoelectric conversion area (14a) (14b) (1
4c) ... are electrically connected in series. The laser beam (L
Adjacent interval (13 ') to be removed by irradiation of B) is a transparent electrode film
When located on the exposed portions of (11a), (11b), (11c), ..., It is applied from the other main surface side of the substrate (10) in the same direction as the irradiation direction of the amorphous semiconductor film (12). The laser used has a wavelength of 1.06μ
It is a pulse output laser of m, and the energy density at that time is about 3 J / cm 2 . The space (L) between the adjacent space portions (13 ')
3) is set to, for example, about 20 μm to 100 μm.

【0034】図25は、厚み5000Åのアルミニウムからな
る裏面電極膜(13)に対し、レーザビーム(LB)の照射が
基板(10)の他方の主面側から行なわれたときの透明電極
膜(11)の膜厚依存性を吸収率(A)、反射率(R)及び透過
率(T)につき光学的に解析した結果で、透過率(T)は零
であったために図中には示されていない。この光学的解
析により透明電極膜(11)の膜厚により裏面電極膜(13)の
吸収率(A)は周期的に変動するものの、裏面電極膜(13)
の露出面側からレーザビーム(LB)を照射した場合の解
析結果を示す図26に比較して、約1.6倍〜2.25倍の増加
が見られる。即ち、斯る吸収率の増加は基板(10)の他方
の主面側からレーザビーム(LB)を照射することにより
低出力により加工ができ、レーザビームの有効利用が図
れることを意味している。
FIG. 25 shows a transparent electrode film (irradiation of a laser beam (LB) from the other main surface side of the substrate (10) to the back electrode film (13) made of aluminum having a thickness of 5000 Å. The film thickness dependence of 11) is optically analyzed with respect to the absorptance (A), reflectance (R) and transmittance (T). It has not been. According to this optical analysis, although the absorptance (A) of the back electrode film (13) changes periodically depending on the film thickness of the transparent electrode film (11), the back electrode film (13)
Compared with FIG. 26 showing the analysis result when the laser beam (LB) is irradiated from the exposed surface side, an increase of about 1.6 to 2.25 times is seen. That is, such an increase in the absorptance means that the laser beam (LB) can be applied from the other main surface side of the substrate (10) to perform processing with low output, and effective use of the laser beam can be achieved. .

【0035】このレーザビーム(LB)の照射による除去
工程に於いて除去すべき隣接間隔部(13’)に位置してい
る裏面電極膜(13)の溶融状態は非晶質半導体膜(12)の除
去工程と同じくレーザビーム(LB)入射側の透明電極膜
(11)との界面から露出面(表面)に向って膨張しながら進
行し、該裏面電極膜(13)が肉薄となった時点で該膜(13)
を打破して大気中に散逸するために、その加工界面は残
留物(7)のない鮮明なものとなる。従って、図3の如き
裏面電極膜(13)の残留物(7)を媒体とした1つの光電変
換領域(14a)(14b)(14c)…の短絡事故は発生しない。即
ち、裏面電極 膜(13)の露出面側から隣接間隔部(13’)
を除去する場合、該裏面電極膜(13)の下 層には透明電
極膜(11)が存在しており、高エネルギ密度のレーザビー
ム(LB)により裏面電極膜(13)を除去しようとすれば下
層の透明電極膜(11)に熱的ダメージを与えたり、或いは
上記露出面側からレーザビーム(LB)を照射するが故に
図3に示す如く加工界面に残留物(7)が残存していたの
である。
In the removal process by irradiation with the laser beam (LB), the melted state of the back electrode film (13) located in the adjacent interval portion (13 ') to be removed is the amorphous semiconductor film (12). The transparent electrode film on the laser beam (LB) side
The film progresses while expanding from the interface with (11) toward the exposed surface (surface), and when the back electrode film (13) becomes thin, the film (13)
Since it breaks down and dissipates into the atmosphere, the processed interface becomes clear without any residue (7). Therefore, the short circuit accident of one photoelectric conversion region (14a) (14b) (14c) ... Using the residue (7) of the back electrode film (13) as a medium as shown in FIG. 3 does not occur. That is, from the exposed surface side of the back surface electrode film (13) to the adjacent spacing portion (13 ')
When removing the back electrode film, the transparent electrode film (11) exists under the back electrode film (13), and the back electrode film (13) is removed by a high energy density laser beam (LB). For example, since the lower transparent electrode film (11) is thermally damaged or the laser beam (LB) is irradiated from the exposed surface side, the residue (7) remains at the processing interface as shown in FIG. It was.

【0036】図27乃至図31は本発明製造方法に含まれる
実施例を工程別に示したものであり、第1、第2の本発
明方法の実施例を工程別に示した図5乃至図9の工程に
実質的に対応している。
FIGS. 27 to 31 show the steps included in the manufacturing method of the present invention, and FIGS. 5 to 9 show the steps of the first and second embodiments of the present invention. Substantially corresponds to the process.

【0037】即ち、図27の工程では既にレーザビーム
(LB)の照射により各光電変換領域(14a)(14b)…毎に分
割された透明電極膜(11a)(11b)…の露出予定箇所にSi
2、Si34 等の透光性絶縁断熱層(15)が選択的に
形成される。斯る絶縁断熱層(15)は例えば1982年4月15
日発行のAppl.phys.Lett.40(8)第716頁乃至第718頁「La
ser-induced chemical vapor deposition of SiO
2 」に開示された如く、シラン(SiH4 )と亜酸化窒素
(N2O)とを反応チャンバ内に導入し、波長193nmArF
レーザにより光励起されたプラズマが上記反応ガスを分
解し、斯るレーザビームが照射された箇所にのみ選択的
に形成することができる。
That is, in the process of FIG. 27, the laser beam has already been
(LB) is applied to the photoelectric conversion regions (14a) (14b) ... Divided into transparent electrode films (11a) (11b).
A transparent insulating heat insulating layer (15) such as O 2 or Si 3 N 4 is selectively formed. Such an insulating and heat-insulating layer (15) is, for example, 15 April 1982.
Appl. Phys. Lett. 40 (8) pp. 716-718 “La
ser-induced chemical vapor deposition of SiO
2 "and silane (SiH 4 ) and nitrous oxide.
(N 2 O) was introduced into the reaction chamber, and the wavelength was 193 nm ArF.
The plasma photo-excited by the laser decomposes the reaction gas, and it can be selectively formed only at the portion irradiated with the laser beam.

【0038】図28の工程では図6の工程と同じく透明電
極膜(11a)(11b)…及び絶縁断熱層(15)を含んで基板(10)
の全面に非晶質半導体膜(12)が被着され、続く図29の工
程でレーザビーム(LB)が基板(10)の他方の主面側から
照射されて、非晶質半導体膜(12)の隣接間隔部(12’)が
除去されて、各光電変換領域(14a)(14b)…毎に分割され
る。斯る工程に於いて隣接間隔部(12’)からは左隣りの
光電変換領域(14a)から延出して来る裏面電極膜(13a)の
延長部分と電気的に結合すべく非晶質半導体膜(12b)か
ら下層の透明電極膜(11b)の左端が露出すると共に、そ
の露出界面は上記 絶縁断熱層(15)に覆われている。
In the process of FIG. 28, the substrate (10) including the transparent electrode films (11a) (11b) ... And the insulating and heat insulating layer (15) is included as in the process of FIG.
An amorphous semiconductor film (12) is deposited on the entire surface of the substrate, and the laser beam (LB) is irradiated from the other main surface side of the substrate (10) in the process of FIG. The adjacent spacing part (12 ′) of () is removed, and each photoelectric conversion region (14a) (14b) ... Is divided. In such a step, the amorphous semiconductor film is electrically coupled to the extended portion of the back surface electrode film (13a) extending from the photoelectric conversion region (14a) on the left from the adjacent spacing portion (12 '). The left end of the lower transparent electrode film (11b) is exposed from (12b), and the exposed interface is covered with the insulating heat insulating layer (15).

【0039】図30の工程では個別に分割された非晶質半
導体膜(12a)(12b)…及び透明電極膜(11b)の露出部分、
更には上記絶縁断熱層(15)を含んで基板(10)全面にアル
ミニウム(Al)等からなる裏面電極膜(13)が被着され
る。被着後図中一点鎖線で規定する隣接間隔部(13’)に
対しレーザビーム(LB)が裏面電極膜(13)の露出面(表
面)側から照射される。
In the process of FIG. 30, the exposed portions of the amorphous semiconductor films (12a) (12b) ... And the transparent electrode film (11b), which are individually divided,
Further, a back electrode film (13) made of aluminum (Al) or the like is deposited on the entire surface of the substrate (10) including the insulating heat insulating layer (15). After the deposition, the laser beam (LB) is irradiated from the exposed surface (front surface) side of the back electrode film (13) to the adjacent spacing portion (13 ') defined by the dashed line in the figure.

【0040】図32は上述の如く膜厚5000ÅのSiO2
絶縁断熱層(15)を膜厚5000ÅのSnO2 上に配置せしめ
た構造に於いて隣接間隔部(13’)のa−Si系非晶質半
導体膜(12b)の存在しない領域(131)に於ける温度分布を
示しており、また図33は非晶質半導体膜(12b)の存在す
る領域(132)に於ける温度分布を示している。尚、基板
(10)はガラスからなっている。
FIG. 32 shows the structure in which the insulating heat insulating layer (15) made of SiO 2 having a film thickness of 5000 Å is arranged on SnO 2 having a film thickness of 5000 Å as described above. FIG. 33 shows the temperature distribution in the region (131) where the amorphous semiconductor film (12b) does not exist, and FIG. 33 shows the temperature distribution in the region (132) where the amorphous semiconductor film (12b) exists. Shows. The substrate
(10) is made of glass.

【0041】一方、図34は上記領域(131)に於いて絶縁
断熱層(15)のないときの温度分布であり、図35は上記領
域(132)に於ける絶縁断熱層(15)のないときの温度分布
である。
On the other hand, FIG. 34 shows the temperature distribution when the insulating heat insulating layer (15) is not present in the region (131), and FIG. 35 is the insulating heat insulating layer (15) is not present in the region (132). This is the temperature distribution when.

【0042】使用されるレーザは全て波長1.06μmのパ
ルス出力型のレーザであり、斯るレーザビームのエネル
ギ密度Eoは図中に示す如く、除去すべきアルミニウム
の裏面電極膜(13)の表面温度が融点に到達するに要する
出力とした。
All the lasers used are pulse output type lasers having a wavelength of 1.06 μm, and the energy density Eo of such a laser beam is as shown in the figure, the surface temperature of the aluminum back electrode film (13) to be removed. Was the output required to reach the melting point.

【0043】この様に絶縁断熱層(15)を除去すべき隣接
間隔部(13’)の透明電極膜(12b)…上に配置することに
より断熱体として作用し、斯る透明電極膜(12b)…に熱
的ダメ ージを与えない。また透明電極膜(12b)…への熱
伝導が遮断される結果、熱の散 逸が抑圧され低出力で
以って加工することが可能となる。
In this way, by arranging the insulating heat insulating layer (15) on the transparent electrode film (12b) ... In the adjacent space portion (13 ') to be removed, the insulating heat insulating layer (15) acts as a heat insulator, and the transparent electrode film (12b). ) ... give no thermal damage. Further, as a result of blocking the heat conduction to the transparent electrode films (12b) ..., the dissipation of heat is suppressed and it becomes possible to process with low output.

【0044】図31は裏面電極膜(13a)(13b)…の隣接間隔
部(13’)を除去せしめた状態で、隣接せる光電変換領域
(14a)(14b)…は電気的に直列接続されている。一方、1
つの光電変換領域(14b)に於いてレーザビーム(LB)を
図30に示す如く基板(10)の他 方の主面側からではなく
裏面電極膜(13)の露出面(表面)側から照射したために、
加工界面に於いて裏面電極膜(13)の残留物(7)が発生し
ている。この残留物(7)は図3に示した従来例にあって
は当該光電変換領域(5b)を短絡せしめる要因と なって
いたが、図から明らかな如く透明電極膜(11b)…の露出
界面(11b’)は絶縁 断熱層(15)により覆われているため
に短絡するに至らない。即ち、上記絶縁断熱層(15)はレ
ーザビーム(LB)の照射時は、下層への熱伝導を遮断し
熱的ダメージの回避及び加工の低出力化に貢献する断熱
体として作用し、照射後は、裏面電極膜(13b)の残留物
(7)を媒体とする短絡事故を防止する絶縁体として作用
する。 尚、透明電極膜(11)のレーザビーム(LB)の
照射方向については別段どちらでも良いが、斯るレーザ
ビーム(LB)の照射により散逸する飛散物がレーザ装置
( LA)側の対物レンズ(OL)を傷付けない点から基板
(10)の他方の主面側から施 されるのが良い。
FIG. 31 shows the photoelectric conversion regions which are adjacent to each other in a state where the adjacent gap portions (13 ') of the back surface electrode films (13a) (13b) ... Are removed.
(14a) (14b) ... are electrically connected in series. On the other hand, 1
In one photoelectric conversion region (14b), the laser beam (LB) is irradiated from the exposed surface (front surface) side of the back electrode film (13), not from the other main surface side of the substrate (10) as shown in FIG. Because I did
A residue (7) of the back electrode film (13) is generated at the processing interface. This residue (7) was a factor that short-circuited the photoelectric conversion region (5b) in the conventional example shown in FIG. 3, but as is clear from the figure, the exposed interface of the transparent electrode film (11b) ... Since (11b ') is covered by the insulating heat insulating layer (15), a short circuit does not occur. That is, when the laser beam (LB) is irradiated, the insulating heat insulating layer (15) acts as a heat insulator that blocks heat conduction to the lower layer and contributes to avoiding thermal damage and reducing the output of processing. Is the residue of the back electrode film (13b)
Acts as an insulator to prevent short circuit accidents using (7) as a medium. The irradiation direction of the laser beam (LB) on the transparent electrode film (11) may be either, but scattered matter scattered by the irradiation of the laser beam (LB) is a laser device.
Substrate from the point of not scratching the objective lens (OL) on the (LA) side
It is good to apply from the other main surface side of (10).

【0045】[0045]

【発明の効果】本発明は以上の説明から明らかな如く、
透光性基板の一主面に複数の領域に跨って被着された半
導体膜は、少なくとも基板の他方の主面側からレーザビ
ームを照射したので、照射された隣接間隔部の半導体膜
を、太陽電池にあっては裏面電極膜の剥離事故の原因と
なり、また複数のセンサ領域を一次元的に配列せしめた
一次元光センサにあってはパターン精度の低下を招く残
留物の形成を抑圧するにも拘わず、除去することがで
き、ウエットプロセスを含まないレーザビームの利用を
可能ならしめることができる。また、約0.35μm〜0.78
μmの波長領域にあるレ ーザビームをパルス的に従来の
照射方向と反転させて照射することで半導体膜の加工幅
を低出力で以って広くすることができ、隣接間隔部に於
いて電気的な直列接続を施す太陽電池の製造に適用した
場合、レーザビームの走査速度を上昇せしめたり或いは
走査回数を減少せしめることができる結果、生産性の向
上が図れる。
As is apparent from the above description, the present invention is as follows.
Since the semiconductor film deposited over the plurality of regions on the one main surface of the translucent substrate is irradiated with the laser beam from at least the other main surface side of the substrate, the semiconductor film in the irradiated adjacent gap portion is In the case of solar cells, it causes the back electrode film peeling accident, and in the case of a one-dimensional optical sensor in which multiple sensor areas are arranged one-dimensionally, it suppresses the formation of residues that lowers the pattern accuracy. Nevertheless, it can be removed and a laser beam without a wet process can be used. Also, about 0.35 μm to 0.78
By irradiating the laser beam in the wavelength region of μm in a pulsed manner by reversing the irradiation direction, it is possible to widen the processing width of the semiconductor film with a low output, and to increase the electrical width in the adjacent space. When applied to the production of solar cells connected in series, the scanning speed of the laser beam can be increased or the number of times of scanning can be decreased, resulting in improvement in productivity.

【図面の簡単な説明】[Brief description of drawings]

【図1】太陽電池の典型例を示す素子構造断面図であ
る。
FIG. 1 is a cross-sectional view of an element structure showing a typical example of a solar cell.

【図2】従来の太陽電池を説明するための拡大断面図で
ある。
FIG. 2 is an enlarged cross-sectional view for explaining a conventional solar cell.

【図3】従来の太陽電池を説明するための拡大断面図で
ある。
FIG. 3 is an enlarged cross-sectional view for explaining a conventional solar cell.

【図4】本発明製造方法を説明するための素子構造断面
図である。
FIG. 4 is a sectional view of an element structure for explaining the manufacturing method of the present invention.

【図5】本発明製造方法を説明するための素子構造断面
図である。
FIG. 5 is a sectional view of an element structure for explaining the manufacturing method of the present invention.

【図6】本発明製造方法を説明するための素子構造断面
図である。
FIG. 6 is a cross-sectional view of an element structure for explaining the manufacturing method of the present invention.

【図7】本発明製造方法を説明するための素子構造断面
図である。
FIG. 7 is a cross-sectional view of an element structure for explaining the manufacturing method of the present invention.

【図8】本発明製造方法を説明するための素子構造断面
図である。
FIG. 8 is a sectional view of an element structure for explaining the manufacturing method of the present invention.

【図9】本発明製造方法を説明するための素子構造断面
図である。
FIG. 9 is a sectional view of an element structure for explaining the manufacturing method of the present invention.

【図10】非晶質シリコン系の半導体膜の吸収係数及び
ガラスの透過率と波長との関係を示す曲線図である。
FIG. 10 is a curve diagram showing the relationship between the absorption coefficient of an amorphous silicon-based semiconductor film and the transmittance of glass and the wavelength.

【図11】本発明製造方法の原理を説明するための概念
図である。
FIG. 11 is a conceptual diagram for explaining the principle of the manufacturing method of the present invention.

【図12】従来の製造方法の原理を説明するための概念
図である。
FIG. 12 is a conceptual diagram for explaining the principle of a conventional manufacturing method.

【図13】本発明製造方法に於ける透明電極膜の吸収率
(A)、反射率(R)及び透過率(T)の各強度を光学
的に解析した曲線図である。
FIG. 13 is a curve diagram obtained by optically analyzing the respective intensities of absorptance (A), reflectance (R) and transmittance (T) of the transparent electrode film in the production method of the present invention.

【図14】本発明製造方法に於ける透明電極膜の吸収率
(A)、反射率(R)及び透過率(T)の各強度を光学
的に解析した曲線図である。
FIG. 14 is a curve diagram obtained by optically analyzing the respective intensities of absorptance (A), reflectance (R) and transmittance (T) of the transparent electrode film in the production method of the present invention.

【図15】本発明製造方法に於ける透明電極膜の吸収率
(A)、反射率(R)及び透過率(T)の各強度を光学
的に解析した曲線図である。
FIG. 15 is a curve diagram obtained by optically analyzing the respective intensities of absorptance (A), reflectance (R) and transmittance (T) of the transparent electrode film in the production method of the present invention.

【図16】従来の製造方法に於ける非晶質半導体膜の吸
収率(A)、反射率(R)及び透過率(T)の各強度の
透明電極膜の膜厚に対する依存性を光学的に解析した曲
線図である。
FIG. 16 is a graph showing the dependence of the respective absorptances (A), reflectances (R) and transmittances (T) of the amorphous semiconductor film on the thickness of the transparent electrode film in the conventional manufacturing method. It is the curve figure analyzed in FIG.

【図17】同一構成の被加工体に対する吸収率(A)、
反射率(R)及び透過率(T)とを比較するための曲線
図である。
FIG. 17 is an absorption rate (A) for a workpiece having the same structure,
It is a curve figure for comparing a reflectance (R) and a transmittance (T).

【図18】本発明製造方法に於ける吸収率(A)、反射
率(R)及び透過率(T)の光学的解析特性図である。
FIG. 18 is an optical analysis characteristic diagram of absorptance (A), reflectance (R) and transmittance (T) in the manufacturing method of the present invention.

【図19】本発明製造方法による深さ方向の温度分布を
示す曲線図である。
FIG. 19 is a curve diagram showing a temperature distribution in the depth direction according to the manufacturing method of the present invention.

【図20】従来の製造方法に於ける深さ方向の温度分布
を示す曲線図である。
FIG. 20 is a curve diagram showing the temperature distribution in the depth direction in the conventional manufacturing method.

【図21】レーザビーム走査速度に対する閾値エネルギ
密度の関係を示す曲線図である。
FIG. 21 is a curve diagram showing the relationship between the laser beam scanning speed and the threshold energy density.

【図22】本発明製造方法と従来例製造方法における、
非晶質半導体膜の加工幅を示す曲線図である。
FIG. 22 is a diagram showing a manufacturing method of the present invention and a manufacturing method of a conventional example,
It is a curve figure which shows the processing width of an amorphous semiconductor film.

【図23】本発明製造方法により非晶質半導体膜を除去
したときの隣接間隔部の顕微鏡写真の模式図である。
FIG. 23 is a schematic diagram of a micrograph of an adjacent gap portion when an amorphous semiconductor film is removed by the manufacturing method of the present invention.

【図24】従来の方法により非晶質半導体膜を除去した
ときの隣接間隔部の顕微鏡写真の模式図である。
FIG. 24 is a schematic diagram of a micrograph of an adjacent gap portion when an amorphous semiconductor film is removed by a conventional method.

【図25】裏面電極膜に対する光学的解析特性図であ
る。
FIG. 25 is an optical analysis characteristic diagram for the back electrode film.

【図26】裏面電極膜に対する光学的解析特性図であ
る。
FIG. 26 is an optical analysis characteristic diagram for the back electrode film.

【図27】本発明製造方法を説明する素子構造断面図で
ある。
FIG. 27 is a sectional view of an element structure for explaining the manufacturing method of the present invention.

【図28】本発明製造方法を説明する素子構造断面図で
ある。
FIG. 28 is a sectional view of the element structure for explaining the manufacturing method of the present invention.

【図29】本発明製造方法を説明する素子構造断面図で
ある。
FIG. 29 is a sectional view of the element structure for explaining the manufacturing method of the present invention.

【図30】本発明製造方法を説明する素子構造断面図で
ある。
FIG. 30 is a sectional view of the element structure for explaining the manufacturing method of the present invention.

【図31】本発明製造方法を説明する素子構造断面図で
ある。
FIG. 31 is a sectional view of an element structure for explaining the manufacturing method of the present invention.

【図32】本発明製造方法に於ける温度分布を示す曲線
図である。
FIG. 32 is a curve diagram showing a temperature distribution in the manufacturing method of the present invention.

【図33】本発明製造方法に於ける温度分布を示す曲線
図である。
FIG. 33 is a curve diagram showing a temperature distribution in the manufacturing method of the present invention.

【図34】従来の製造方法に於ける温度分布を示す曲線
図である。
FIG. 34 is a curve diagram showing a temperature distribution in the conventional manufacturing method.

【図35】従来の製造方法に於ける温度分布を示す曲線
図である。
FIG. 35 is a curve diagram showing a temperature distribution in a conventional manufacturing method.

【符号の説明】[Explanation of symbols]

(10)…基板 (12)(12a)(12
b)(12c)…非晶質基板 (13)(13a)(13b)(13c)…裏面電極膜 (15)…絶縁断
熱層
(10) ... Substrate (12) (12a) (12
b) (12c) ... Amorphous substrate (13) (13a) (13b) (13c) ... Back electrode film (15) ... Insulation heat insulation layer

【手続補正書】[Procedure amendment]

【提出日】平成5年9月30日[Submission date] September 30, 1993

【手続補正1】[Procedure Amendment 1]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】特許請求の範囲[Name of item to be amended] Claims

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【特許請求の範囲】[Claims]

【手続補正2】[Procedure Amendment 2]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0012[Correction target item name] 0012

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0012】[0012]

【課題を解決するための手段】本発明半導体装置の製造
方法を特徴とするところは、透光性基板の一主面に於け
る複数の領域に跨って被着された半導体膜の分割すべき
隣接間隔部に対して、上記基板の他方の主面側から波長
を約0.53μmであってパルス幅が244nse c以下の
レ−ザビ−ムをパルス的に照射し該隣接間隔部に位置し
た半導体膜を除去して、上記半導体膜を複数の領域毎に
分割することにあり、又その半導体膜の膜厚を4000
Å以上としたことにある。
The method of manufacturing a semiconductor device according to the present invention is characterized in that a semiconductor film deposited over a plurality of regions on one main surface of a transparent substrate should be divided. A laser beam having a wavelength of about 0.53 μm and a pulse width of 244 nsec or less is radiated from the other main surface side of the substrate in a pulsed manner to the adjacent spacing portion. Is to remove the semiconductor film located at the position to divide the semiconductor film into a plurality of regions, and the thickness of the semiconductor film is 4000.
Å More than that.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 7210−4M H01L 27/14 C ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification code Internal reference number FI Technical indication 7210-4M H01L 27/14 C

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 透光性基板の一主面に於ける複数の領域
に跨って被着された半導体膜の分割すべき隣接間隔部に
対して、上記基板の他方の主面側から波長を約0.53μm
とするレーザビームをパルス的に照射し該隣接間隔部に
位置した半導体膜を除去して、上記半導体膜を複数の領
域毎に分割することを特徴とした半導体装置の製造方
法。
1. A wavelength is applied from the other main surface side of the substrate to an adjacent space to be divided of a semiconductor film which is deposited over a plurality of regions on one main surface of the transparent substrate. About 0.53 μm
A method of manufacturing a semiconductor device, comprising: irradiating a laser beam in a pulse manner to remove the semiconductor film located in the adjacent space portion and dividing the semiconductor film into a plurality of regions.
JP5217571A 1993-09-01 1993-09-01 Manufacture of semiconductor device Pending JPH0779007A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5217571A JPH0779007A (en) 1993-09-01 1993-09-01 Manufacture of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5217571A JPH0779007A (en) 1993-09-01 1993-09-01 Manufacture of semiconductor device

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP59135825A Division JPH0650781B2 (en) 1984-06-20 1984-06-29 Method for manufacturing semiconductor device

Publications (1)

Publication Number Publication Date
JPH0779007A true JPH0779007A (en) 1995-03-20

Family

ID=16706361

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5217571A Pending JPH0779007A (en) 1993-09-01 1993-09-01 Manufacture of semiconductor device

Country Status (1)

Country Link
JP (1) JPH0779007A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002528888A (en) * 1998-09-17 2002-09-03 シーメンス ソーラー ゲゼルシャフト ミット ベシュレンクテル ハフツング Method for structuring a transparent electrode layer
US6506260B1 (en) 1999-07-29 2003-01-14 Kaneka Corporation Method for cleaning photovoltaic module and cleaning apparatus
JP2010087204A (en) * 2008-09-30 2010-04-15 Kaneka Corp Patterning method of transparent conductive film
CN102479867A (en) * 2010-11-23 2012-05-30 深圳市拓日新能源科技股份有限公司 Manufacturing method of thin-film solar cell, thin-film solar cell and generating system

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6014479A (en) * 1983-07-04 1985-01-25 Semiconductor Energy Lab Co Ltd Manufacture of photoelectric conversion device

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6014479A (en) * 1983-07-04 1985-01-25 Semiconductor Energy Lab Co Ltd Manufacture of photoelectric conversion device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002528888A (en) * 1998-09-17 2002-09-03 シーメンス ソーラー ゲゼルシャフト ミット ベシュレンクテル ハフツング Method for structuring a transparent electrode layer
US6506260B1 (en) 1999-07-29 2003-01-14 Kaneka Corporation Method for cleaning photovoltaic module and cleaning apparatus
JP2010087204A (en) * 2008-09-30 2010-04-15 Kaneka Corp Patterning method of transparent conductive film
CN102479867A (en) * 2010-11-23 2012-05-30 深圳市拓日新能源科技股份有限公司 Manufacturing method of thin-film solar cell, thin-film solar cell and generating system

Similar Documents

Publication Publication Date Title
JP3436858B2 (en) Manufacturing method of thin film solar cell
JP3510740B2 (en) Manufacturing method of integrated thin-film solar cell
US4668840A (en) Photovoltaic device
US6455347B1 (en) Method of fabricating thin-film photovoltaic module
US4650524A (en) Method for dividing semiconductor film formed on a substrate into plural regions by backside energy beam irradiation
JPH05218472A (en) Laser beam machining method of thin-film structure
US5413959A (en) Method of modifying transparent conductive oxide film including method of manufacturing photovoltaic device
US8048706B1 (en) Ablative scribing of solar cell structures
KR101155563B1 (en) Method for manufacturing for Solar cell using a Laser
US20120094425A1 (en) Ablative scribing of solar cell structures
JP2010251428A (en) Photoelectric conversion device manufacturing method, photoelectric conversion device manufacturing device, and photoelectric conversion device
JPH0779007A (en) Manufacture of semiconductor device
JPS616828A (en) Manufacture of semiconductor device
JP2006054254A (en) Method for manufacturing photoelectric converter
US6576866B1 (en) Method for structuring transparent electrode layers
JPH0650781B2 (en) Method for manufacturing semiconductor device
JP4287560B2 (en) Method for manufacturing thin film photoelectric conversion module
JP2001094131A (en) Method for fabricating integrated photovoltaic power device
JP2001274446A (en) Method of manufacturing integrated hybrid thin film solar battery
JP2006121011A (en) Method for processing transparent layer and thin-film photoelectric converting device using same
JPS61280680A (en) Manufacture of semiconductor device
JPS6114769A (en) Photovoltaic device
JPH06314807A (en) Manufacture of photovoltaic device
JP2648064B2 (en) Method for manufacturing optical semiconductor device
JP3402921B2 (en) Method for removing metal film, method for manufacturing solar cell, and solar cell