JPH0778881A - Semiconductor device - Google Patents

Semiconductor device

Info

Publication number
JPH0778881A
JPH0778881A JP5222681A JP22268193A JPH0778881A JP H0778881 A JPH0778881 A JP H0778881A JP 5222681 A JP5222681 A JP 5222681A JP 22268193 A JP22268193 A JP 22268193A JP H0778881 A JPH0778881 A JP H0778881A
Authority
JP
Japan
Prior art keywords
conductivity type
well
source
substrate
surface layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5222681A
Other languages
Japanese (ja)
Inventor
Hajime Tada
元 多田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP5222681A priority Critical patent/JPH0778881A/en
Publication of JPH0778881A publication Critical patent/JPH0778881A/en
Pending legal-status Critical Current

Links

Landscapes

  • Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)
  • Semiconductor Integrated Circuits (AREA)

Abstract

PURPOSE:To set a potential in a first conductivity type well in a potential different from a substrate potential by a method wherein the same conductivity type channel is formed in the substrate of the MOSFET on one side of MOSFETs of a CMOS structure, a second conductivity type well is formed in the surface layer of a first conductivity type substrate and this first conductivity type well is formed in the surface layer of the second conductivity type well. CONSTITUTION:In an N-channel MOSFET 40 on one side of MOSFETs of a logic circuit part CMOS 10, an N-type well 3 is formed in the surface layer of a P-type substrate 1 and a P-type well 4 is formed in the surface layer of the well 3. An N-type impurity-doped gate electrode 43 consisting of a polycrystalline silicon film is provided on the surface of the well 4 via a gate oxide film 71. An N<+> region 41, which is used as a source, and an N<+> region 42, which is used as a drain, are formed. Thereby, a potential in the well 3, which is a first conductivity type, can be set at an arbitrary value different from that of a substrate potential, is made equipotential with a source potential and can avoid a back gate bias.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、特に液晶ディスプレイ
(以下LCDと略す) の駆動用集積回路などに用いられ
る半導体装置に関する。
BACKGROUND OF THE INVENTION The present invention is particularly applicable to liquid crystal displays.
The present invention relates to a semiconductor device used for a driving integrated circuit (hereinafter abbreviated as LCD).

【0002】[0002]

【従来の技術】LCDの駆動用ICのように、ロジック
回路部信号を受けて高レベル論理振幅に変換するレベル
シフト回路をもつICのなかには、図2(a) 、(b) に示
すように20Vと15Vのロジック部信号をそれぞれ+側の
40V、一側の0Vにレベルシフトするものがある。図3
はそのようなロジック回路部と高電圧駆動回路部を集積
したICの半導体基板のロジック回路部CMOS10と高
電圧駆動回路部CMOS20とを示す。図において、ロジ
ック部CMOS10は、P形シリコン基板1の表面層に形
成されたNウエル3とその表面層に形成されたP+ ソー
ス・ドレイン層31、32とその間の表面上にゲート酸化膜
71を介して形成されたゲート電極33とを有するPチャネ
ルMOSFET30、ならびにP基板1の表面層に形成さ
れたPウエル4とその表面層に形成されたN+ ソース・
ドレイン層41、42とその間の表面上にゲート酸化膜71を
介して形成されたゲート電極43とを有するNチャネルM
OSFET40とからなる。高電圧駆動回路部CMOS20
は、同様にNウエル5を用いて形成されるPチャネルM
OSFET50ならびにP基板1の同じ導電形のPウエル
6内に形成されるNチャネルMOSFET60とからな
る。ただし、高耐圧化のため、MOSFET50のP+
ース・ドレイン層51、52はPオフセット層54に囲まれ、
MOSFET60のN+ ソース・ドレイン層61、62はNオ
フセット層64に囲まれ、さらに各オフセット層54、64の
周りにN+ ガードリング55、P+ ガードリング65が設け
られている。基板1の表面は、ゲート酸化膜71以外の部
分はフィールド酸化膜72で覆われている。このほか、図
示は省略されているが、各ソース・ドレイン層への接触
孔、配線および表面保護膜が形成されている。
2. Description of the Related Art Some ICs, such as LCD driving ICs, having a level shift circuit that receives a logic circuit signal and converts it into a high-level logic amplitude are shown in FIGS. 2 (a) and 2 (b). 20V and 15V logic part signals of + side respectively
Some have level shift to 40V and 0V on one side. Figure 3
Shows a logic circuit section CMOS10 and a high voltage drive circuit section CMOS20 on a semiconductor substrate of an IC in which such a logic circuit section and a high voltage drive circuit section are integrated. In the figure, the logic part CMOS10 includes an N well 3 formed in a surface layer of a P-type silicon substrate 1, P + source / drain layers 31 and 32 formed in the surface layer, and a gate oxide film on the surface between them.
P-channel MOSFET 30 having a gate electrode 33 formed via 71, P well 4 formed in the surface layer of P substrate 1 and N + source formed in the surface layer.
N-channel M having drain layers 41, 42 and a gate electrode 43 formed on the surface between them by a gate oxide film 71
It consists of OSFET40. High voltage drive circuit CMOS20
Is a P channel M formed similarly using the N well 5.
It comprises an OSFET 50 and an N-channel MOSFET 60 formed in a P well 6 of the same conductivity type of the P substrate 1. However, for higher breakdown voltage, the P + source / drain layers 51 and 52 of the MOSFET 50 are surrounded by the P offset layer 54,
The N + source / drain layers 61 and 62 of the MOSFET 60 are surrounded by an N offset layer 64, and an N + guard ring 55 and a P + guard ring 65 are provided around each offset layer 54 and 64. The surface of the substrate 1 is covered with a field oxide film 72 except for the gate oxide film 71. In addition, although not shown, contact holes to each source / drain layer, wiring, and a surface protection film are formed.

【0003】このようなICを製造するには、CZ法に
よる抵抗率10Ω・cm程度のP形の(100) シリコン基板1
の表面層にNウエル3および5、Pウエル4および6を
形成し、Nウエル5およびPウエル6の表面層にそれぞ
れPオフセット拡散層54、Nオフセット拡散層64を形成
する。そして、それぞれのMOSFETに対し、フィー
ルド酸化膜72、ゲート酸化膜71およびゲート電極43、5
3、63、73を形成し、そのゲート電極をマスクに利用し
て、PチャネルMOSFETに対しては、N+ ソース・
ドレイン層31、32、51、52、NチャネルMOSFETに
対しては、P+ ソース・ドレイン層41、42、61、62を形
成する。このあと、接触孔形成工程、配線形成工程およ
び保護膜形成工程を経て完成する。
To manufacture such an IC, a P-type (100) silicon substrate 1 having a resistivity of about 10 Ω · cm by the CZ method is used.
N wells 3 and 5 and P wells 4 and 6 are formed in the surface layers of the above, and P offset diffusion layers 54 and N offset diffusion layers 64 are formed in the surface layers of the N wells 5 and 6, respectively. Then, for each MOSFET, a field oxide film 72, a gate oxide film 71 and gate electrodes 43, 5
3, 63, 73 are formed, and the gate electrode thereof is used as a mask to form an N + source
P + source / drain layers 41, 42, 61, 62 are formed for the drain layers 31, 32, 51, 52 and the N-channel MOSFET. After that, a contact hole forming step, a wiring forming step, and a protective film forming step are completed.

【0004】[0004]

【発明が解決しようとする課題】このICは、図2に示
したようにロジック回路部からの15〜20Vの振幅の信号
を高電圧駆動回路部0〜40Vの振幅にレベルシフトする
ものである。その場合各部の電位は、接地されるP基板
0V、従ってPウエル4および6が0V、Nウエル3が
20V、P+ ソース・ドレイン領域31、32のうち、ソース
が20V、ドレインが15〜20V、N+ ソース・ドレイン領
域41、42のうち、ソースが15V、ドレインが15〜20V、
ゲート電極33、43が15〜20V、Nウエル5が40V、P+
ソース・ドレイン領域51、52のうち、ソースが40V、ド
レインが0〜40V、N+ ソース・ドレイン領域61、62の
うち、ソースが0V、ドレインが0〜40V、ゲート電極
53、63が0〜40Vである。すなわち、ロジック回路部の
NチャネルMOSFET40は、ソース電位が15Vである
のに対しPウエルの電位が0Vであり、バックゲート電
圧がかかった状態で使われることになる。さらにこのM
OSFETのゲート、ソース、ドレインの各電極とPウ
エル4の間には15〜20Vの電圧が加わるため、ゲート酸
化膜71に加わる電界を通常の4MV/cm程度以下に抑える
ためには、ゲート酸化膜71を250 Å程度までより薄くで
きず、またソース・ドレイン間の耐圧を確保するための
対策ガ必要で、デバイスサイズが大きくなり、近年のL
CD駆動用ICなどに対する動作速度の高速化およびチ
ップサイズの小型化に伴う微細化の要求に対応できなく
なってきている。
As shown in FIG. 2, this IC is for level-shifting a signal having an amplitude of 15 to 20 V from a logic circuit section to an amplitude of a high voltage driving circuit section 0 to 40 V. . In that case, the potential of each part is 0V for the P substrate grounded, that is, 0V for the P wells 4 and 6, and the
20V, of the P + source / drain regions 31, 32, the source is 20V, the drain is 15 to 20V, and of the N + source / drain regions 41, 42, the source is 15V, the drain is 15 to 20V,
Gate electrodes 33 and 43 are 15 to 20V, N well 5 is 40V, P +
Of the source / drain regions 51 and 52, the source is 40 V, the drain is 0 to 40 V, and of the N + source / drain regions 61 and 62, the source is 0 V, the drain is 0 to 40 V, and the gate electrode
53 and 63 are 0 to 40V. That is, the N-channel MOSFET 40 in the logic circuit section has a source potential of 15V, but has a P-well potential of 0V, and is used in a state in which a back gate voltage is applied. Furthermore, this M
Since a voltage of 15 to 20 V is applied between each of the gate, source and drain electrodes of the OSFET and the P-well 4, in order to suppress the electric field applied to the gate oxide film 71 to the normal level of about 4 MV / cm or less, gate oxidation is required. The film 71 cannot be made thinner than about 250 Å, and it is necessary to take measures to secure the withstand voltage between the source and drain.
It has become difficult to meet the demand for miniaturization accompanying the increase in operating speed and the reduction in chip size for CD driving ICs and the like.

【0005】本発明の目的は、このような問題を解決
し、微細加工および高速動作を可能にする半導体装置を
提供することにある。
An object of the present invention is to solve the above problems and to provide a semiconductor device which enables fine processing and high speed operation.

【0006】[0006]

【課題を解決するための手段】上記の目的を達成するた
めに、本発明は、第一導電形半導体基板の表面部にCM
OS構造が集積され、動作時に各MOSFETのゲート
およびソース、ドレインに基板電位と異なる値の電位が
印加される半導体装置において、半導体基板の表面層に
第二導電形ウエルが形成され、その間に第一導電形チャ
ネルが形成される第一導電形のソース・ドレイン領域は
その第二導電形ウエルの表面層に、その間に第二導電形
チャネルが形成される第二導電形のソース・ドレイン領
域は、前記第二導電形ウエルの表面層に形成された第一
導電形ウエルの表面層にそれぞれ設けられたものとす
る。各MOSFETのゲートおよびソース、ドレイン基
板電位と異なる値の電位が印加される低電圧駆動CMO
S構造の集積された半導体基板に、高電圧駆動CMOS
構造が集積されたことが有効である。そのような半導体
装置の低電圧駆動CMOS構造がロジック回路部の要素
であり、高電圧駆動CMOS構造が高電圧駆動回路部の
要素であることが考えられる。その場合、低電圧駆動C
MOS構造の第一導電形ウエルが高電圧駆動CMOS構
造のその間に第一導電形チャネルが形成される第一導電
形ソース・ドレイン領域を囲む第一導電形オフセット層
と同一表面不純物濃度および同一深さを有することが良
い方法である。
In order to achieve the above object, the present invention provides a CM on the surface of a first conductivity type semiconductor substrate.
In a semiconductor device in which an OS structure is integrated and a potential different from the substrate potential is applied to the gate, source, and drain of each MOSFET during operation, a second conductivity type well is formed in the surface layer of the semiconductor substrate, and a well of the second conductivity type is formed between the wells. The source / drain region of the first conductivity type in which the one conductivity type channel is formed is in the surface layer of the second conductivity type well, and the source / drain region of the second conductivity type in which the second conductivity type channel is formed is , Provided on the surface layer of the first conductivity type well formed on the surface layer of the second conductivity type well. Low-voltage drive CMO to which a potential different from the gate, source, and drain substrate potentials of each MOSFET is applied
High-voltage-driven CMOS on an S-structure integrated semiconductor substrate
It is effective that the structures are integrated. It is conceivable that the low voltage drive CMOS structure of such a semiconductor device is an element of the logic circuit section and the high voltage drive CMOS structure is an element of the high voltage drive circuit section. In that case, low voltage drive C
The first conductivity type well of the MOS structure has the same surface impurity concentration and the same depth as the first conductivity type offset layer surrounding the first conductivity type source / drain region in which the first conductivity type channel is formed between the wells of the high voltage driving CMOS structure. It is a good way to have

【0007】[0007]

【作用】動作時に各MOSFETゲートおよびソース・
ドレインに半導体基板の電位と異なる値の電位が印加さ
れるCMOS構造の一方のMOSFETの基板と同一導
電形のチャネルを、第一導電形の基板の表面層に形成さ
れた第二導電形ウエルのさらにその表面層に形成された
第一導電形ウエルに形成することにより、この第一導電
形ウエルの電位に基板と異なる電位をとることができる
ため、ソースとウエルの電位を等しくしてバックゲート
バイアスが加わらないようにできる。そのため、ゲート
酸化膜の厚さを薄くすることができ、高速動作および微
細加工が可能になる。
[Operation] Each MOSFET gate and source during operation
A channel of the same conductivity type as the substrate of one MOSFET of the CMOS structure in which a potential having a value different from the potential of the semiconductor substrate is applied to the drain is formed in the well of the second conductivity type formed in the surface layer of the substrate of the first conductivity type. Further, by forming the well of the first conductivity type formed on the surface layer, the potential of the well of the first conductivity type can be set to a potential different from that of the substrate. Bias can be avoided. Therefore, the thickness of the gate oxide film can be reduced, which enables high-speed operation and fine processing.

【0008】[0008]

【実施例】以下、図2と共通の部分に同一の符号を付し
た図1を引用して本発明の一実施例について説明する。
図においてP形シリコン基板1の表面部に、ロジック回
路として15〜20Vの電圧振幅で駆動されるCMOS10
と、0〜40Vの電圧振幅で駆動される高電圧駆動回路部
CMOS20とからなるLCD駆動ICが集積されてい
る。CMOS10はPチャネルMOSFET30とNチャネ
ルMOSFET40とから構成され、CMOS20は高電圧
用PチャネルMOSFET50と高電圧用NチャネルMO
SFET60とから構成されている。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below with reference to FIG. 1 in which parts common to those in FIG.
In the figure, a CMOS 10 driven as a logic circuit with a voltage amplitude of 15 to 20 V is provided on the surface of a P-type silicon substrate 1.
And an LCD drive IC composed of a high voltage drive circuit CMOS20 driven by a voltage amplitude of 0 to 40V. The CMOS 10 is composed of a P channel MOSFET 30 and an N channel MOSFET 40, and the CMOS 20 is a high voltage P channel MOSFET 50 and a high voltage N channel MO.
It is composed of SFET60.

【0009】ロジック回路部用NチャネルMOSFET
40は、P基板1の表面層に形成されたNウエル3のさら
にその表面層に形成されたPウエル4の表面上に厚さ25
0 Åのゲート酸化膜71を介して設けた、N型不純物をド
ープした多結晶シリコンからなるゲート電極43と、ソー
スとして用いられるN+ 領域41と、ドレインとして用い
られるN+ 領域42とを有する。ロジック回路部用Pチャ
ネルMOSFET30は、Nウエル3の表面上に厚さ250
Åのゲート酸化膜71を介して設けた、N型不純物をドー
プした多結晶シリコンからなるゲート電極33と、ソース
として用いられるP+ 領域31と、ドレインとして用いら
れるP+ 領域32とを有する。
N-channel MOSFET for logic circuit section
40 is a thickness of 25 on the surface of the P well 4 formed on the surface layer of the N well 3 formed on the surface layer of the P substrate 1.
It has a gate electrode 43 made of polycrystalline silicon doped with N-type impurities, provided through a 0 Å gate oxide film 71, an N + region 41 used as a source, and an N + region 42 used as a drain. . The P-channel MOSFET 30 for the logic circuit part has a thickness of 250 on the surface of the N well 3.
It has a gate electrode 33 made of polycrystalline silicon doped with N-type impurities, provided with a gate oxide film 71 of Å, a P + region 31 used as a source, and a P + region 32 used as a drain.

【0010】高電圧駆動回路部用NチャネルMOSFE
T60は、基板1と同導電形のPウエル6の表面上に厚さ
1500Åのゲート酸化膜73を介して設けられた、上記と同
様の多結晶シリコンからなるゲート電極63と、Pウエル
6の表面層に形成された二つのN形オフセット層64と、
それぞれの表面層にさらに形成されたソースとして用い
られるN+ 領域61と、ドレインとして用いられるN+
域62とを有する。高電圧駆動回路部用PチャネルMOS
FET50は、P基板1の表面層に形成されたNウエル5
の表面上に厚さ約1500Åのゲート酸化膜73を介して設け
られた、上記と同様の多結晶シリコンからなるゲート電
極53と、Nウエルの表面層に形成された二つのP形オフ
セット層54と、それぞれの表面層にさらに形成されたソ
ースとして用いられるP+ 領域51と、ドレインとして用
いられるP+ 領域52とを有する。このように、ロジック
回路部10では、ゲート酸化膜71の厚さは250 Åであり、
ロジック回路部が高速動作化かつ小型化されている。こ
れに対し、高電圧駆動回路部20では、ゲート酸化膜73の
厚さが1500Åであるツインゲート酸化膜構造により、M
OSFET50および60が高耐圧化されている。なお、高
耐圧化のためにN+ガードリング55、P+ ガードリング6
5が設けられていることは図3の場合と同様であり、ゲ
ート酸化膜71、73以外の部分は厚いフィールド酸化膜72
で覆われていることも図3の場合と同様である。
N-channel MOSFE for high voltage drive circuit
T60 has a thickness on the surface of P well 6 of the same conductivity type as substrate 1.
A gate electrode 63 made of polycrystalline silicon similar to the above, provided via a 1500 Å gate oxide film 73, and two N-type offset layers 64 formed on the surface layer of the P well 6,
Each surface layer further has an N + region 61 used as a source and an N + region 62 used as a drain. P-channel MOS for high voltage drive circuit
The FET 50 is an N well 5 formed on the surface layer of the P substrate 1.
A gate electrode 53 made of polycrystalline silicon similar to the above, which is provided on the surface of the gate electrode through a gate oxide film 73 having a thickness of about 1500Å, and two P-type offset layers 54 formed on the surface layer of the N well. And a P + region 51 used as a source and a P + region 52 used as a drain, which are further formed on the respective surface layers. Thus, in the logic circuit section 10, the thickness of the gate oxide film 71 is 250 Å,
The logic circuit section is operating at high speed and is downsized. On the other hand, in the high voltage drive circuit unit 20, the twin gate oxide film structure in which the thickness of the gate oxide film 73 is 1500Å is
The OSFETs 50 and 60 have a high breakdown voltage. N + guard ring 55 and P + guard ring 6 for higher breakdown voltage.
5 is provided as in the case of FIG. 3, and the thick field oxide film 72 is provided except for the gate oxide films 71 and 73.
Covering with is also the same as in the case of FIG.

【0011】このようなICを次のようにして製造し
た。基板1としてCZ法による抵抗率10Ω・cmの(100)
シリコンウエーハを用い、その一面からN型不純物を導
入、拡散して深さ約5μmのNウエル3および5を形成
した。次いで、P型不純物を導入、拡散し、Nウエル3
の表面層に約1.5μmの深さのPウエル4、Nウエル5
の表面層に約1.5μmの深さのP形オフセット層54、N
チャネルMOSFET60の部分のP基板1の表面層に約
2μmの深さのPウエル6をそれぞれ形成した。Pウエ
ル4、オフセット層54の表面不純物濃度は2.0〜8.0×
1016/cm-3の範囲で同じにできるため、同時に形成でき
る。また、N型不純物の導入、拡散によりPウエル6の
表面層にN形オフセット層64を約1.5μmの深さに形成
した。さらに、Nウエル5の表面層にN+ ガードリング
55、Pウエル6の表面層にP+ ガードリング65を形成し
たのち、シリコン窒化膜をマスクとして選択的にフィー
ルド酸化膜72を形成した。このあと、フィールド酸化膜
72の形成されない部分を被覆している酸化膜を除去し、
約900 ℃、70分の湿式酸化を行い、約1500Åのゲート酸
化膜73を形成した。その上に、CVD法による約4500Å
の厚さの多結晶シリコン層を堆積、約900 ℃の温度で不
活性ガス雰囲気中でアニールしたのち、ドライエッチン
グによりパターニングして高電圧駆動回路部CMOS20
のPチャネルMOSFET50、NチャネルMOSFET
60のゲート電極53、63となるべき部分に多結晶シリコン
層を残した。そして、その多結晶シリコン層をマスクと
してロジック回路部CMOSのPチャネルMOSFET
30およびNチャネルMOSFET40の領域のゲート酸化
膜を除去したのち、約80℃の温度で約40分間の湿式酸化
を行い、厚さ250 Åの厚さのゲート酸化膜71を形成し
た。その上に、CVD法により厚さ4500Åの多結晶シリ
コン層を形成し、アニールしたのちドライエッチングで
パターニングしてゲート電極33、43となるべき部分は多
結晶シリコン層を残した。残った多結晶シリコン層は、
りんをドープして導電化することにより、それぞれゲー
ト電極53、63、33、43とした。
Such an IC was manufactured as follows. The substrate 1 has a resistivity of 10 Ω · cm (100) by the CZ method.
Using a silicon wafer, N-type impurities were introduced and diffused from one surface thereof to form N wells 3 and 5 having a depth of about 5 μm. Next, a P-type impurity is introduced and diffused, and the N well 3
P well 4 and N well 5 with a depth of about 1.5 μm on the surface layer of
P-type offset layer 54, N having a depth of about 1.5 μm on the surface layer of
P wells 6 each having a depth of about 2 μm were formed in the surface layer of the P substrate 1 at the portion of the channel MOSFET 60. The surface impurity concentration of the P well 4 and the offset layer 54 is 2.0 to 8.0 ×
Since it can be the same in the range of 10 16 / cm -3 , they can be formed at the same time. An N-type offset layer 64 was formed in the surface layer of the P-well 6 to a depth of about 1.5 μm by introducing and diffusing N-type impurities. Furthermore, an N + guard ring is formed on the surface layer of the N well 5.
55. After forming the P + guard ring 65 on the surface layer of the P well 6, the field oxide film 72 is selectively formed using the silicon nitride film as a mask. After this, the field oxide film
The oxide film covering the part where 72 is not formed is removed,
Wet oxidation was performed at about 900 ° C. for 70 minutes to form a gate oxide film 73 of about 1500 Å. In addition, about 4500Å by the CVD method
After depositing a polycrystalline silicon layer with a thickness of about 100 ° C and annealing it in an inert gas atmosphere at a temperature of about 900 ° C, patterning is performed by dry etching and the high voltage drive circuit CMOS20.
P-channel MOSFET 50, N-channel MOSFET
The polycrystalline silicon layer was left in the portions of the gate electrodes 60 and 60 that were to become the gate electrodes 53 and 63. Then, using the polycrystalline silicon layer as a mask, the P channel MOSFET of the logic circuit CMOS is formed.
After removing the gate oxide film in the regions of 30 and N-channel MOSFET 40, wet oxidation was performed at a temperature of about 80 ° C. for about 40 minutes to form a gate oxide film 71 having a thickness of 250 Å. A polycrystalline silicon layer having a thickness of 4500 Å was formed thereon by a CVD method, and annealed and then patterned by dry etching to leave the polycrystalline silicon layer in the portions to be the gate electrodes 33 and 43. The remaining polycrystalline silicon layer is
Gate electrodes 53, 63, 33, and 43 were formed by doping phosphorus and making them conductive.

【0012】この半導体装置の回路動作時のロジック回
路部CMOS10および高電圧駆動回路部CMOS20のM
OSFET30、40、50、60の、ウエル部およびソース、
ゲート、ドレイン各端子の電位を表1に示す。
M of the logic circuit section CMOS10 and the high voltage drive circuit section CMOS20 during circuit operation of this semiconductor device
Well portions and sources of the OSFETs 30, 40, 50, 60,
Table 1 shows the potentials of the gate and drain terminals.

【0013】[0013]

【表1】 この表からわかるように、各MOSFETともウエル電
位とソース電位が同じであり、バックゲートバイアスは
印加されていない。また、ロジック回路部CMOSにお
いては、各端子間の最大の電圧が5Vであり、ゲート酸
化膜を薄く形成可能とし、ロジック回路部CMOSのデ
バイスサイズを縮小可能とし、高速動作も容易にしてい
る。
[Table 1] As can be seen from this table, each MOSFET has the same well potential and source potential, and no back gate bias is applied. In the logic circuit CMOS, the maximum voltage between the terminals is 5 V, the gate oxide film can be formed thin, the device size of the logic circuit CMOS can be reduced, and high-speed operation is facilitated.

【0014】[0014]

【発明の効果】本発明によれば、CMOSのMOSFE
Tのうち、半導体基板と異なる導電形のチャネルが形成
されるものも、ソース・ドレイン領域を基板の表面層に
形成しないで、基板と異なる導電形のウエルの表面層に
さらに形成された基板と同一導電形のウエル内に形成す
ることにより、ウエルの電位を、例えば接地される基板
電位と異なる任意の値にとることができるため、ソース
電位と等電位にしてバックゲートバイアスを避けること
ができる。この結果、ゲート酸化膜を薄くできるため高
速動作化、デバイスの微細化が可能である。そしてこの
ような二重ウエル構造は、高耐圧CMOSが同一半導体
基板に集積されているときには、そのオフセット層と同
一工程で形成できるため、工程追加の必要がない。
According to the present invention, CMOS MOSFE is used.
In T, in which a channel having a conductivity type different from that of the semiconductor substrate is formed, the source / drain regions are not formed in the surface layer of the substrate, and the substrate is further formed in the surface layer of the well of a conductivity type different from the substrate. By forming in the well of the same conductivity type, the potential of the well can be set to an arbitrary value different from the substrate potential to be grounded, for example, and the potential can be made equal to the source potential to avoid back gate bias. . As a result, since the gate oxide film can be made thin, high-speed operation and device miniaturization are possible. When the high breakdown voltage CMOS is integrated on the same semiconductor substrate, such a double well structure can be formed in the same step as that of the offset layer, so that no additional step is required.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例のLCD駆動用半導体装置の
要部断面図
FIG. 1 is a sectional view of an essential part of a semiconductor device for driving an LCD according to an embodiment of the present invention.

【図2】図1の半導体装置の動作時のレベルシフト信号
を説明するもので、(a) はレベル図、(b) は信号波形図
2A and 2B are diagrams for explaining a level shift signal during operation of the semiconductor device of FIG. 1, where FIG. 2A is a level diagram and FIG. 2B is a signal waveform diagram.

【図3】従来のLCD駆動用半導体装置の要部断面図FIG. 3 is a sectional view of a main part of a conventional LCD driving semiconductor device.

【符号の説明】[Explanation of symbols]

1 P形シリコン基板 10 ロジック回路部CMOS 20 高電圧駆動回路部CMOS 30、50 PチャネルMOSFET 40、60 NチャネルMOSFET 3、5 Nウエル 4、6 Pウエル 31、41、51、61 ソース領域 32、42、52、62 ドレイン領域 33、43、53、63 ゲート電極 54、64 オフセット層 71、73 ゲート酸化膜 1 P-type silicon substrate 10 Logic circuit section CMOS 20 High voltage drive circuit section CMOS 30, 50 P-channel MOSFET 40, 60 N-channel MOSFET 3, 5 N-well 4, 6 P-well 31, 41, 51, 61 Source region 32, 42, 52, 62 Drain region 33, 43, 53, 63 Gate electrode 54, 64 Offset layer 71, 73 Gate oxide film

フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 H01L 21/822 Continuation of front page (51) Int.Cl. 6 Identification code Office reference number FI technical display location H01L 21/822

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】第一導電形半導体基板の表面部にCMOS
構造が集積され、動作時に各MOSFETのゲートおよ
びソース、ドレインに基板電位と異なる値の電位が印加
されるものにおいて、半導体基板の表面層に第二導電形
ウエルが形成され、その間に第一導電形チャネルが形成
される第一導電形のソース・ドレイン領域はその第二導
電形ウエルの表面層に、その間に第二導電形チャネルが
形成される第二導電形のソース・ドレイン領域は前記第
二導電形ウエルの表面層に形成された第一導電形ウエル
の表面層にそれぞれ設けられたことを特徴とする半導体
装置。
1. A CMOS is provided on the surface of a first conductivity type semiconductor substrate.
In a structure in which a potential different from the substrate potential is applied to the gate, source and drain of each MOSFET during operation, a second conductivity type well is formed in the surface layer of the semiconductor substrate, and the first conductivity type well is formed between them. The source / drain region of the first conductivity type in which the channel of the second conductivity type is formed is in the surface layer of the well of the second conductivity type, and the source / drain region of the second conductivity type in which the channel of the second conductivity type is formed is the first layer. A semiconductor device provided on a surface layer of a first conductivity type well formed on a surface layer of a second conductivity type well.
【請求項2】各MOSFETのゲートおよびソース、ド
レイン基板電位と異なる値の電位が印加される低電圧駆
動CMOS構造が集積された半導体基板に、高電圧駆動
CMOS構造が集積された請求項1記載の半導体装置。
2. The high voltage drive CMOS structure is integrated on a semiconductor substrate on which a low voltage drive CMOS structure to which a potential different from the gate, source and drain substrate potentials of each MOSFET is applied. Semiconductor device.
【請求項3】低電圧駆動CMOS構造がロジック回路部
の要素であり、高電圧駆動CMOS構造が高電圧駆動回
路部の要素である請求項2記載の半導体装置。
3. The semiconductor device according to claim 2, wherein the low voltage drive CMOS structure is an element of the logic circuit section, and the high voltage drive CMOS structure is an element of the high voltage drive circuit section.
【請求項4】低電圧駆動CMOS構造の第一導電形ウエ
ルが高電圧駆動CMOS構造のその間に第一導電形チャ
ネルが形成される第一導電形ソース・ドレイン領域を囲
む第一導電形オフセット層と同一表面不純物濃度および
同一深さを有する請求項2あるいは3記載の半導体装
置。
4. A first conductivity type offset layer surrounding a first conductivity type source / drain region in which a first conductivity type well of a low voltage driving CMOS structure forms a first conductivity type channel between them in a high voltage driving CMOS structure. 4. The semiconductor device according to claim 2, which has the same surface impurity concentration and the same depth as the above.
JP5222681A 1993-09-08 1993-09-08 Semiconductor device Pending JPH0778881A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5222681A JPH0778881A (en) 1993-09-08 1993-09-08 Semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5222681A JPH0778881A (en) 1993-09-08 1993-09-08 Semiconductor device

Publications (1)

Publication Number Publication Date
JPH0778881A true JPH0778881A (en) 1995-03-20

Family

ID=16786258

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5222681A Pending JPH0778881A (en) 1993-09-08 1993-09-08 Semiconductor device

Country Status (1)

Country Link
JP (1) JPH0778881A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6531356B1 (en) 1999-01-27 2003-03-11 Seiko Epson Corporation Semiconductor devices and methods of manufacturing the same
US6768178B2 (en) * 2002-03-06 2004-07-27 Seiko Epson Corporation Semiconductor device
US6853038B2 (en) 2002-03-08 2005-02-08 Seiko Epson Corporation Semiconductor device and method for manufacturing the same
US6887750B2 (en) 2002-03-07 2005-05-03 Seiko Epson Corporation Method for manufacturing semiconductor device including implanting a first impurity through an anti-oxidation mask
US6905948B2 (en) 2002-03-26 2005-06-14 Seiko Epson Corporation Method for manufacturing semiconductor device
US6924535B2 (en) 2002-03-06 2005-08-02 Seiko Epson Corporation Semiconductor device with high and low breakdown voltage transistors
US6929994B2 (en) 2002-03-07 2005-08-16 Seiko Epson Corporation Method for manufacturing semiconductor device that includes well formation
US6933575B2 (en) 2002-03-18 2005-08-23 Seiko Epson Corporation Semiconductor device and its manufacturing method
US6953718B2 (en) 2002-03-22 2005-10-11 Seiko Epson Corporation Method for manufacturing semiconductor device
US7005340B2 (en) 2002-03-06 2006-02-28 Seiko Epson Corporation Method for manufacturing semiconductor device

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6531356B1 (en) 1999-01-27 2003-03-11 Seiko Epson Corporation Semiconductor devices and methods of manufacturing the same
US6768178B2 (en) * 2002-03-06 2004-07-27 Seiko Epson Corporation Semiconductor device
US6924535B2 (en) 2002-03-06 2005-08-02 Seiko Epson Corporation Semiconductor device with high and low breakdown voltage transistors
US7005340B2 (en) 2002-03-06 2006-02-28 Seiko Epson Corporation Method for manufacturing semiconductor device
US6887750B2 (en) 2002-03-07 2005-05-03 Seiko Epson Corporation Method for manufacturing semiconductor device including implanting a first impurity through an anti-oxidation mask
US6929994B2 (en) 2002-03-07 2005-08-16 Seiko Epson Corporation Method for manufacturing semiconductor device that includes well formation
US6853038B2 (en) 2002-03-08 2005-02-08 Seiko Epson Corporation Semiconductor device and method for manufacturing the same
US6933575B2 (en) 2002-03-18 2005-08-23 Seiko Epson Corporation Semiconductor device and its manufacturing method
US6953718B2 (en) 2002-03-22 2005-10-11 Seiko Epson Corporation Method for manufacturing semiconductor device
US6905948B2 (en) 2002-03-26 2005-06-14 Seiko Epson Corporation Method for manufacturing semiconductor device

Similar Documents

Publication Publication Date Title
US5497021A (en) CMOS structure with varying gate oxide thickness and with both different and like conductivity-type gate electrodes
US4918026A (en) Process for forming vertical bipolar transistors and high voltage CMOS in a single integrated circuit chip
EP0387999B1 (en) Process for forming high-voltage and low-voltage CMOS transistors on a single integrated circuit chip
US6307235B1 (en) Another technique for gated lateral bipolar transistors
JPH09115999A (en) Semiconductor integrated circuit device
GB2153146A (en) Improvements in or relating to manufacture of cmos transistors
US4035826A (en) Reduction of parasitic bipolar effects in integrated circuits employing insulated gate field effect transistors via the use of low resistance substrate contacts extending through source region
JP3163839B2 (en) Semiconductor integrated circuit
US6333541B1 (en) MOSFET gate insulating films with oxynitride and oxide
KR900004871B1 (en) A complementary semiconductor device having high switching speed and latch up-free capablity
JPH0855924A (en) Step of processing bicmos including surface channel pmos transistor
JPH0778881A (en) Semiconductor device
US4965216A (en) Method of fabricating a bi-CMOS device
US5184203A (en) Semiconductor device having a charge transfer device, MOSFETs, and bipolar transistors--all formed in a single semiconductor substrate
EP0220500B1 (en) Semiconductor device with reduced capacitive load and manufacturing process thereof
EP0144248A2 (en) Mis type semiconductor device element on a semiconductor substrate having a well region
US5260228A (en) Method of making a semiconductor device having a charge transfer device, MOSFETs, and bipolar transistors
JPH03214666A (en) Semiconductor device containing charge transfer device and manufacture thereof
JPH04241452A (en) Semiconductor integrated circuit device
JP3415401B2 (en) Semiconductor integrated circuit device and method of manufacturing the same
JP2002134752A (en) Semiconductor device
JP3188779B2 (en) Semiconductor device
JPH08195443A (en) Semiconductor device and its manufacture
JP3096831B2 (en) Semiconductor device
JP3419143B2 (en) Method for manufacturing semiconductor integrated circuit device