JP3096831B2 - Semiconductor device - Google Patents

Semiconductor device

Info

Publication number
JP3096831B2
JP3096831B2 JP05060526A JP6052693A JP3096831B2 JP 3096831 B2 JP3096831 B2 JP 3096831B2 JP 05060526 A JP05060526 A JP 05060526A JP 6052693 A JP6052693 A JP 6052693A JP 3096831 B2 JP3096831 B2 JP 3096831B2
Authority
JP
Japan
Prior art keywords
transistor
single crystal
semiconductor device
mos
thin film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP05060526A
Other languages
Japanese (ja)
Other versions
JPH06275833A (en
Inventor
博昭 鷹巣
邦博 高橋
Original Assignee
セイコーインスツルメンツ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by セイコーインスツルメンツ株式会社 filed Critical セイコーインスツルメンツ株式会社
Priority to JP05060526A priority Critical patent/JP3096831B2/en
Publication of JPH06275833A publication Critical patent/JPH06275833A/en
Application granted granted Critical
Publication of JP3096831B2 publication Critical patent/JP3096831B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/77Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
    • H01L21/78Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
    • H01L21/82Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components
    • H01L21/84Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components the substrate being other than a semiconductor body, e.g. being an insulating body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier
    • H01L27/12Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being other than a semiconductor body, e.g. an insulating body
    • H01L27/1203Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being other than a semiconductor body, e.g. an insulating body the substrate comprising an insulating body on a semiconductor body, e.g. SOI

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は半導体装置、特に薄膜S
OI基板上のMOS型集積回路の素子分離方法に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a semiconductor device, in particular, a thin film S.
The present invention relates to a method for isolating a MOS integrated circuit on an OI substrate.

【0002】[0002]

【従来の技術】従来、SOI基板上のMOS型集積回路
の素子分離にはシリコン単結晶薄膜デバイス形成層を酸
化して行うLOCOS法や、シリコン単結晶薄膜デバイ
ス形成層をエッチング除去する方法が知られていた。
2. Description of the Related Art Conventionally, a LOCOS method in which a silicon single crystal thin film device formation layer is oxidized and a method of etching and removing a silicon single crystal thin film device formation layer are known for element isolation of a MOS type integrated circuit on an SOI substrate. Had been.

【0003】[0003]

【発明が解決しようとする課題】従来のSOI基板上の
MOS型集積回路の各MOS型トランジスタ間の素子分
離には、図3に示すように、シリコン単結晶薄膜デバイ
ス形成層を酸化してフィールド酸化膜を形成して素子分
離を行うLOCOS法や、図示しないがシリコン単結晶
薄膜デバイス形成層をエッチング除去する方法が用いら
れていた。
As shown in FIG. 3, a conventional method for isolating elements between MOS transistors of a MOS integrated circuit on an SOI substrate involves oxidizing a silicon single crystal thin film device forming layer to form a field. A LOCOS method in which an oxide film is formed to perform element isolation, and a method of etching and removing a silicon single crystal thin film device formation layer (not shown) have been used.

【0004】しかしながら上述のLOCOS法やシリコ
ン単結晶薄膜デバイス形成層をエッチング除去する方法
では製造工程が煩雑であり、また素子分離幅をサブミク
ロンレベルで正確に制御できないため素子分離領域のI
Cチップに占める面積が大きくなりICチップ全体を小
型化する障害となるという問題点があった。
However, the above-described LOCOS method and the method of etching and removing a silicon single crystal thin film device forming layer involve complicated manufacturing steps and the width of the element isolation region cannot be accurately controlled at the submicron level.
There is a problem that the area occupied by the C chip becomes large, which becomes an obstacle to downsizing the whole IC chip.

【0005】本発明は、上記課題を解消して簡便な製造
方法により、従来法に比べて素子分離幅を縮小できる素
子分離方法を有する半導体装置を提供することを目的と
する。
An object of the present invention is to provide a semiconductor device having an element isolation method capable of reducing the element isolation width as compared with the conventional method by a simple manufacturing method which solves the above problem.

【0006】[0006]

【課題を解決するための手段】本発明の半導体装置が上
記目的を達成するために採用した主な手段は、SOI基
板上のMOS型集積回路において、隣接するMOS型ト
ランジスタ間の素子分離は薄いシリコン酸化膜上にMO
S型トランジスタのソース領域及びドレイン領域と逆導
伝型の濃い濃度の不純物を含有した多結晶シリコンを配
置することにより、シリコン単結晶薄膜デバイス形成層
と不純物を含有した多結晶シリコンとの仕事関数差を利
用して電気的な素子分離を行うことを特徴とする。
The main means adopted by the semiconductor device of the present invention to achieve the above object is that, in a MOS integrated circuit on an SOI substrate, the element isolation between adjacent MOS transistors is thin. MO on silicon oxide film
By arranging the source region and the drain region of the S-type transistor and the polycrystalline silicon containing the impurity of the reverse conductivity type with a high concentration, the work function between the silicon single crystal thin film device forming layer and the polycrystalline silicon containing the impurity is formed. It is characterized in that electrical isolation is performed by utilizing the difference.

【0007】[0007]

【作用】本発明の半導体装置は、SOI基板上のMOS
型集積回路において、隣接するMOS型トランジスタ間
の素子分離は薄いシリコン酸化膜上にMOS型トランジ
スタのソース領域及びドレイン領域と逆導伝型の濃い濃
度の不純物を含有した多結晶シリコンを配置することに
より行う。
According to the semiconductor device of the present invention, a MOS on an SOI substrate is provided.
In the type integrated circuit, element isolation between adjacent MOS transistors is performed by disposing polycrystalline silicon containing a high concentration impurity of a reverse conductivity type with a source region and a drain region of the MOS transistor on a thin silicon oxide film. Performed by

【0008】シリコン単結晶薄膜デバイス形成層と濃い
濃度の不純物を含有した多結晶シリコンとの仕事関数差
により、MOS型トランジスタのソース領域及びドレイ
ン領域と逆導伝型の濃い濃度の不純物を含有した多結晶
シリコン下面の素子分離領域のシリコン単結晶薄膜デバ
イス形成層は、隣接するMOS型トランジスタのチャネ
ル領域に比べると、極めて反転層が形成されにくくな
り、素子分離領域上に配線等が形成され、様々な電位が
印加された場合にも、隣接するMOS型トランジスタ同
士の電気的な分離は保つことが出来る。また、素子分離
幅も従来法に比べて、制御性良く小さくすることが出来
る。
[0008] Due to the work function difference between the silicon single crystal thin film device forming layer and the polycrystalline silicon containing a high concentration of impurities, the source region and the drain region of the MOS transistor contain a high concentration of impurities of the reverse conduction type. In the silicon single crystal thin film device forming layer in the element isolation region on the lower surface of the polycrystalline silicon, it is extremely difficult to form an inversion layer as compared with the channel region of the adjacent MOS transistor, and wiring and the like are formed on the element isolation region. Even when various potentials are applied, electrical isolation between adjacent MOS transistors can be maintained. Further, the element isolation width can be reduced with better controllability as compared with the conventional method.

【0009】[0009]

【実施例】以下、図面を参照して本発明の好適な実施例
を説明する。図1は本発明の半導体装置の一実施例を示
す模式的断面図である。SOI基板上にNチャンネルM
OS型トランジスタを形成した場合について説明する。
Preferred embodiments of the present invention will be described below with reference to the accompanying drawings. FIG. 1 is a schematic sectional view showing one embodiment of the semiconductor device of the present invention. N channel M on SOI substrate
The case where an OS transistor is formed is described.

【0010】シリコン単結晶基板101上に埋め込み絶
縁膜112を介してシリコン単結晶薄膜デバイス形成層
102が形成されている。シリコン単結晶薄膜デバイス
形成層102内には、隣合う二つのNチャンネルMOS
型トランジスタ201および202が形成されており、
各々ソース領域104、106及びドレイン領域10
5、107を有し、ゲート酸化膜103上に多結晶シリ
コンより成るN型の不純物を含んだゲート電極301を
有している。
A silicon single crystal thin film device forming layer 102 is formed on a silicon single crystal substrate 101 via a buried insulating film 112. In the silicon single crystal thin film device formation layer 102, two adjacent N-channel MOS
Type transistors 201 and 202 are formed,
Source region 104, 106 and drain region 10 respectively
5 and 107, and a gate electrode 301 containing an N-type impurity made of polycrystalline silicon on the gate oxide film 103.

【0011】隣合う二つのNチャンネルMOS型トラン
ジスタ201および202の間のゲート酸化膜103上
には、濃い濃度のP型の不純物を含んだ多結晶シリコン
層302が形成されている。ここで、濃い濃度のP型の
不純物を含んだ多結晶シリコン層302下方にゲート酸
化膜103を介して存在するシリコン単結晶薄膜デバイ
ス形成層102は、本来、NチャンネルMOS型トラン
ジスタ201および202のチャネル領域と等しい濃度
のP型の不純物を含んでいるが、上方に、ゲート酸化膜
103を介して濃い濃度のP型の不純物を含んだ多結晶
シリコン層302が配置されているために、実質的に
は、P型の不純物濃度が高くなった状態と等しくなる。
On the gate oxide film 103 between two adjacent N-channel MOS transistors 201 and 202, a polycrystalline silicon layer 302 containing a high concentration of P-type impurities is formed. Here, the silicon single-crystal thin-film device forming layer 102 existing below the polycrystalline silicon layer 302 containing the P-type impurity at a high concentration via the gate oxide film 103 is originally formed by the N-channel MOS transistors 201 and 202. Although a P-type impurity having the same concentration as that of the channel region is included, a polycrystalline silicon layer 302 containing a P-type impurity having a high concentration via the gate oxide film 103 is disposed above, Specifically, this is equivalent to a state where the P-type impurity concentration is increased.

【0012】これについて、図4(a)、(b)を用い
て説明する。図4(a)、(b)は図1における素子分
離領域401の垂直方向に対する、エネルギーバンドの
模式図である。図4(a)は、ゲート酸化膜103上
に、まだP型の不純物を含んだ多結晶シリコン層302
を形成していない状態のエネルギーバンドを示してい
る。
This will be described with reference to FIGS. 4 (a) and 4 (b). FIGS. 4A and 4B are schematic diagrams of energy bands in the vertical direction of the element isolation region 401 in FIG. FIG. 4A shows a polycrystalline silicon layer 302 still containing P-type impurities on the gate oxide film 103.
Shows an energy band in a state where is not formed.

【0013】シリコン単結晶薄膜デバイス形成層102
内は、一定の不純物濃度を有する、薄い濃度のP型半導
体である。ここで、図1に示したように、ゲート酸化膜
103を介して濃い濃度のP型の不純物を含んだ多結晶
シリコン層302を配置すると、図4(b)に示すよう
に素子分離領域401のシリコン単結晶薄膜デバイス形
成層102内のエネルギーバンドは、押し上げられ、実
質的にP型の不純物濃度が高くなった状態に等しくな
る。
[0013] Silicon single crystal thin film device forming layer 102
The inside is a low-concentration P-type semiconductor having a certain impurity concentration. Here, as shown in FIG. 1, when the polycrystalline silicon layer 302 containing the P-type impurity at a high concentration is arranged via the gate oxide film 103, as shown in FIG. The energy band in the silicon single crystal thin film device forming layer 102 is pushed up and becomes substantially equal to a state in which the P-type impurity concentration is increased.

【0014】これにより、素子分離領域401のシリコ
ン単結晶薄膜デバイス形成層102内においては、容易
に反転層が形成されず、図1に示した隣接する二つのN
チャンネルMOS型トランジスタ201および202の
電気的な素子分離が可能となる。
As a result, an inversion layer is not easily formed in the silicon single crystal thin film device forming layer 102 in the element isolation region 401, and two adjacent N shown in FIG.
It becomes possible to electrically isolate the channel MOS transistors 201 and 202 from each other.

【0015】図2は、SOI基板上にPチャンネルMO
S型トランジスタを形成した場合についての本発明の半
導体装置の一実施例を示す模式的断面図である。図1に
示したSOI基板上にNチャンネルMOS型トランジス
タを形成した場合についての例と異なる点は、シリコン
単結晶薄膜デバイス形成層102内には、隣合う二つの
PチャンネルMOS型トランジスタ203および204
が形成されており、各々ソース領域104、106及び
ドレイン領域105、107を有し、ゲート酸化膜10
3上に多結晶シリコンよりなるP型の不純物を含んだゲ
ート電極303を有しており、隣合う二つのPチャンネ
ルMOS型トランジスタ203および204の間のゲー
ト酸化膜103上には、濃い濃度のN型の不純物を含ん
だ多結晶シリコン層304が形成されている点である。
その他の点については、図1と同一の符号を記載し説明
に替える。
FIG. 2 shows a P-channel MO on an SOI substrate.
FIG. 3 is a schematic cross-sectional view showing one embodiment of the semiconductor device of the present invention when an S-type transistor is formed. The difference from the example in which the N-channel MOS type transistor is formed on the SOI substrate shown in FIG. 1 is that two adjacent P-channel MOS type transistors 203 and 204 are formed in the silicon single crystal thin film device forming layer 102.
Are formed, each having source regions 104 and 106 and drain regions 105 and 107, and a gate oxide film 10
3 has a gate electrode 303 containing a P-type impurity made of polycrystalline silicon, and a gate oxide film 103 between two adjacent P-channel MOS transistors 203 and 204 has a high concentration. The point is that a polycrystalline silicon layer 304 containing N-type impurities is formed.
About the other point, the same code | symbol as FIG. 1 is described and it replaces with description.

【0016】図2に示したPチャネルMOS型トランジ
スタの場合には、図示しないが、素子分離領域401の
シリコン単結晶薄膜デバイス形成層102内のエネルギ
ーバンドは、押し下げられ、実質的にN型の不純物濃度
が高くなった状態に等しくなる。
In the case of the P-channel MOS transistor shown in FIG. 2, although not shown, the energy band in the silicon single crystal thin film device forming layer 102 in the element isolation region 401 is depressed, and is substantially N-type. This is equivalent to a state where the impurity concentration is high.

【0017】これにより、素子分離領域401のシリコ
ン単結晶薄膜デバイス形成層102内においては、容易
に反転層が形成されず、図2に示した隣接する二つのP
チャンネルMOS型トランジスタ203および204の
電気的な素子分離が可能となる。
As a result, an inversion layer is not easily formed in the silicon single crystal thin film device forming layer 102 in the element isolation region 401, and two adjacent P shown in FIG.
Electrical isolation of the channel MOS transistors 203 and 204 becomes possible.

【0018】なお、シリコン単結晶薄膜デバイス形成層
102内に、CMOS集積回路を形成する場合には、N
チャンネルMOS型トランジスタとPチャネルMOS型
トランジスタのゲート電極を、それぞれ逆導電型のトラ
ンジスタの素子分離用の濃い不純物濃度の多結晶シリコ
ンとして用いることができる。
When a CMOS integrated circuit is formed in the silicon single crystal thin film device forming layer 102, N
The gate electrodes of the channel MOS transistor and the P channel MOS transistor can be used as polycrystalline silicon having a high impurity concentration for element isolation of a transistor of the opposite conductivity type.

【0019】図1及び図2を用いて説明すれば、図1に
おけるN型の不純物を含んだゲート電極301と図2に
おける濃い濃度のN型の不純物を含んだ多結晶シリコン
層304とを同一材料で、また図1における濃い濃度の
P型の不純物を含んだ多結晶シリコン層302と図2に
おけるP型の不純物を含んだゲート電極303とを同一
材料で形成すればよい。
1 and 2, the gate electrode 301 containing an N-type impurity in FIG. 1 is the same as the polycrystalline silicon layer 304 containing a high concentration of N-type impurity in FIG. The polycrystalline silicon layer 302 containing a high concentration of P-type impurities in FIG. 1 and the gate electrode 303 containing P-type impurities in FIG. 2 may be formed of the same material.

【0020】[0020]

【発明の効果】上述したように本発明によれば、SOI
基板上のMOS型集積回路において、隣接するMOS型
トランジスタ間の素子分離は薄いシリコン酸化膜上にM
OS型トランジスタのソース領域及びドレイン領域と逆
導伝型の濃い濃度の不純物を含有した多結晶シリコンを
配置することにより行われる。
As described above, according to the present invention, the SOI
In a MOS integrated circuit on a substrate, element isolation between adjacent MOS transistors is performed on a thin silicon oxide film.
This is performed by arranging polycrystalline silicon containing a high impurity concentration of a reverse conductivity type with the source region and the drain region of the OS transistor.

【0021】シリコン単結晶薄膜デバイス形成層と濃い
濃度の不純物を含有した多結晶シリコンとの仕事関数差
により、MOS型トランジスタのソース領域及びドレイ
ン領域と逆導伝型の濃い濃度の不純物を含有した多結晶
シリコン下面の素子分離領域のシリコン単結晶薄膜デバ
イス形成層には、隣接するMOS型トランジスタのチャ
ネル領域に比べると、極めて反転層が形成されにくくな
り、素子分離領域上に配線等が形成され、様々な電位が
印加された場合にも、隣接するMOS型トランジスタ同
士の電気的な分離を保つことが出来る。
Due to the work function difference between the silicon single crystal thin film device forming layer and the polycrystalline silicon containing the high concentration impurity, the source region and the drain region of the MOS transistor contained the reverse conduction type high concentration impurity. In the silicon single crystal thin film device formation layer in the element isolation region on the lower surface of the polycrystalline silicon, it is extremely difficult to form an inversion layer as compared with the channel region of an adjacent MOS transistor, and wiring and the like are formed on the element isolation region. Even when various potentials are applied, it is possible to maintain the electrical isolation between adjacent MOS transistors.

【0022】また、従来のLOCOS法やシリコン単結
晶薄膜デバイス形成層をエッチング除去する方法による
素子分離法比べて製造工程が簡略化でき、さらに素子分
離幅も従来法に比べて、制御性良く小さくすることが出
来るため、サブミクロンレベルの素子分離幅を有する集
積回路を形成することができ、ICチップ全体を小型化
することができるため、生産性に優れ、低コストのIC
を生産することが出来る。
Further, the manufacturing process can be simplified as compared with the conventional LOCOS method or the element isolation method by etching and removing the silicon single crystal thin film device forming layer, and the element isolation width is smaller than the conventional method with better controllability. , An integrated circuit having a submicron level element isolation width can be formed, and the entire IC chip can be reduced in size.
Can be produced.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の半導体装置の一実施例を示す模式的断
面図である。
FIG. 1 is a schematic sectional view showing one embodiment of a semiconductor device of the present invention.

【図2】本発明の半導体装置の他の実施例を示す模式的
断面図である。
FIG. 2 is a schematic sectional view showing another embodiment of the semiconductor device of the present invention.

【図3】従来の半導体装置の模式的断面図である。FIG. 3 is a schematic cross-sectional view of a conventional semiconductor device.

【図4】(a)、(b)は図1に示した本発明の半導体
装置の一実施例にかかる素子分離領域の垂直方向に対す
る、エネルギーバンドの模式図である。
FIGS. 4A and 4B are schematic diagrams of energy bands in a vertical direction of an element isolation region according to one embodiment of the semiconductor device of the present invention shown in FIG.

【符号の説明】[Explanation of symbols]

101 シリコン単結晶基板 102 シリコン単結晶薄膜デバイス形成層 103 ゲート酸化膜 104 ソース領域 105 ドレイン領域 106 ソース領域 107 ドレイン領域 112 埋め込み絶縁膜 201 Nチャンネルトランジスタ 202 Nチャンネルトランジスタ 203 Pチャンネルトランジスタ 204 Pチャンネルトランジスタ 301 N型の不純物を含んだゲート電極 302 濃い濃度のP型の不純物を含んだ多結晶シリコ
ン層 303 P型の不純物を含んだゲート電極 304 濃い濃度のN型の不純物を含んだ多結晶シリコ
ン層 401 素子分離領域 501 フィールド酸化膜
Reference Signs List 101 silicon single crystal substrate 102 silicon single crystal thin film device forming layer 103 gate oxide film 104 source region 105 drain region 106 source region 107 drain region 112 buried insulating film 201 n-channel transistor 202 n-channel transistor 203 p-channel transistor 204 p-channel transistor 301 Gate electrode containing N-type impurity 302 Polycrystalline silicon layer containing P-type impurity with high concentration 303 Gate electrode containing P-type impurity 304 Polycrystalline silicon layer containing N-type impurity with high concentration 401 Element isolation region 501 Field oxide film

───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.7,DB名) H01L 29/786 H01L 21/76 H01L 27/08 331 H01L 27/12 ──────────────────────────────────────────────────続 き Continued on the front page (58) Field surveyed (Int.Cl. 7 , DB name) H01L 29/786 H01L 21/76 H01L 27/08 331 H01L 27/12

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 SOI基板上のMOS型集積回路からな
る半導体装置において、MOS型トランジスタのゲート
電極は、前記MOS型トランジスタのソース領域及びド
レイン領域と同一導電型の不純物を含む多結晶シリコン
から成り、 隣接するMOS型トランジスタの一方のMOS型トラン
ジスタのソース領域と他方のMOS型トランジスタのド
レイン領域間にシリコン単結晶薄膜を有し、 前記シリコン単結晶薄膜上のシリコン酸化膜上に濃度の
高い逆導電型の不純物を含有する多結晶シリコン層を有
する 半導体装置。
1. A MOS-type integrated circuit on SOI substrate Tona
In the semiconductor device, the gate electrode of the MOS transistor is made of polycrystalline silicon containing impurities of the same conductivity type as the source region and the drain region of the MOS transistor.
And one of the MOS transistors of the adjacent MOS transistor.
The source region of the transistor and the gate of the other MOS transistor
A silicon single crystal thin film between the rain regions , and a silicon oxide film on the silicon single crystal thin film;
Polycrystalline silicon layer containing high reverse conductivity type impurities
Semiconductor device.
【請求項2】 前記シリコン酸化膜が前記MOS型トラ2. The semiconductor device according to claim 1, wherein said silicon oxide film is formed of said MOS type transistor.
ンジスタのゲート酸化膜である請求項1記載の半導体装2. The semiconductor device according to claim 1, which is a gate oxide film of a transistor.
置。Place.
JP05060526A 1993-03-19 1993-03-19 Semiconductor device Expired - Lifetime JP3096831B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP05060526A JP3096831B2 (en) 1993-03-19 1993-03-19 Semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP05060526A JP3096831B2 (en) 1993-03-19 1993-03-19 Semiconductor device

Publications (2)

Publication Number Publication Date
JPH06275833A JPH06275833A (en) 1994-09-30
JP3096831B2 true JP3096831B2 (en) 2000-10-10

Family

ID=13144851

Family Applications (1)

Application Number Title Priority Date Filing Date
JP05060526A Expired - Lifetime JP3096831B2 (en) 1993-03-19 1993-03-19 Semiconductor device

Country Status (1)

Country Link
JP (1) JP3096831B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005094023A (en) * 2004-10-01 2005-04-07 Renesas Technology Corp Semiconductor device
JP5676945B2 (en) 2010-07-08 2015-02-25 キヤノン株式会社 Electronic device, element separation method for electronic device, method for manufacturing electronic device, and display device including electronic device

Also Published As

Publication number Publication date
JPH06275833A (en) 1994-09-30

Similar Documents

Publication Publication Date Title
KR0176202B1 (en) Soi transistor and its fabrication method
KR100253923B1 (en) Semiconductor device with thin-film transistor and manufacturing method of the same
US4110899A (en) Method for manufacturing complementary insulated gate field effect transistors
JP3437132B2 (en) Semiconductor device
US5137837A (en) Radiation-hard, high-voltage semiconductive device structure fabricated on SOI substrate
US4395726A (en) Semiconductor device of silicon on sapphire structure having FETs with different thickness polycrystalline silicon films
US4951113A (en) Simultaneously deposited thin film CMOS TFTs and their method of fabrication
JP3506694B1 (en) MOSFET device and manufacturing method thereof
JPH06334129A (en) Semiconductor integrated circuit
KR100296130B1 (en) Manufacturing Method of Metal-Oxide-Semiconductor Field Effect Transistor Using Double-Layer Silicon Wafer
US5418391A (en) Semiconductor-on-insulator integrated circuit with selectively thinned channel region
US4791464A (en) Semiconductor device that minimizes the leakage current associated with the parasitic edge transistors and a method of making the same
JP2845493B2 (en) Semiconductor device
JP2900870B2 (en) MOS type field effect transistor and method of manufacturing the same
JPH0778881A (en) Semiconductor device
GB2064866A (en) Field effect semiconductor device
JP3096831B2 (en) Semiconductor device
JP3188779B2 (en) Semiconductor device
KR100639979B1 (en) Semiconductor device and method of manufacturing the same
US20050127441A1 (en) Body contact layout for semiconductor-on-insulator devices
JP2672184B2 (en) Method for manufacturing semiconductor device
JPS621264B2 (en)
JP2001007219A (en) Semiconductor device and manufacture thereof
JPH07273340A (en) Soi type transistor
KR100298449B1 (en) Semiconductor device and method for forming the same

Legal Events

Date Code Title Description
S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080811

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080811

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090811

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090811

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100811

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100811

Year of fee payment: 10

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: R3D03

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100811

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110811

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120811

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120811

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130811

Year of fee payment: 13