JPH0778742A - Charged particle beam transfer device - Google Patents

Charged particle beam transfer device

Info

Publication number
JPH0778742A
JPH0778742A JP5221210A JP22121093A JPH0778742A JP H0778742 A JPH0778742 A JP H0778742A JP 5221210 A JP5221210 A JP 5221210A JP 22121093 A JP22121093 A JP 22121093A JP H0778742 A JPH0778742 A JP H0778742A
Authority
JP
Japan
Prior art keywords
mask
charged particle
particle beam
electron beam
sub
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5221210A
Other languages
Japanese (ja)
Inventor
Mamoru Nakasuji
護 中筋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikon Corp
Original Assignee
Nikon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikon Corp filed Critical Nikon Corp
Priority to JP5221210A priority Critical patent/JPH0778742A/en
Publication of JPH0778742A publication Critical patent/JPH0778742A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To eliminate the necessity for correcting the conditions of capacitor lenses when small areas on a mask are selected. CONSTITUTION:An electron beam from an electron gun 1 is formed into parallel beams by capacitor lenses 2 and 3 and thereafter, the electron beam indicates one of small regions on a mask 7 by two-stage deflectors 4 and 5. The electron beam transmitted through the small region on the mask 7 forms a pattern of the small region on a photosensitive substrate 10 conjugated with the mask 7 by projection lenses 8 and 9.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は荷電粒子線によりマスク
上に形成したパターンを半導体用のウエハ等の感光基板
に転写する装置に関し、特に、1ギガビットDRAM以
降のリソグラフィに適用して好適なものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an apparatus for transferring a pattern formed on a mask by a charged particle beam onto a photosensitive substrate such as a semiconductor wafer, and particularly suitable for application to lithography after 1 Gbit DRAM. Is.

【0002】[0002]

【従来の技術】従来、1枚のマスクのパターン面を複数
の小領域に分割し、この小領域を一括露光しうる大きさ
の荷電粒子線の位置を偏向器により偏向することによ
り、小領域を順次露光して、小領域のパターンを感光基
板に転写する荷電粒子線転写装置が提案されている。
2. Description of the Related Art Conventionally, a pattern surface of one mask is divided into a plurality of small areas, and the positions of charged particle beams of such a size that the small areas can be collectively exposed are deflected by a deflector. There has been proposed a charged particle beam transfer apparatus which sequentially exposes a plurality of areas to transfer a pattern of a small area onto a photosensitive substrate.

【0003】従来この種の装置では、コンデンサレンズ
が作るクロスオーバの位置に副視野選択用の偏向器を設
け、偏向器の後に設けた別のコンデンサレンズにより平
行な荷電粒子線を形成してマスクの領域を照射し、マス
クを透過した荷電粒子線を2つの投影レンズによって感
光基板上に集束し、感光基板上にマスクのパターンを転
写していた。
Conventionally, in this type of apparatus, a deflector for selecting a sub-field of view is provided at a crossover position formed by a condenser lens, and a parallel charged particle beam is formed by another condenser lens provided after the deflector to form a mask. The charged particle beam transmitted through the mask was focused on the photosensitive substrate by the two projection lenses, and the mask pattern was transferred onto the photosensitive substrate.

【0004】[0004]

【発明が解決しようとする課題】上記の如き従来の技術
に於いては光軸近くの小領域を選択した時と光軸から離
れた小領域を選択した時で、最終コンデンサレンズ(荷
電粒子線を平行にしてマスクを照射させるレンズ)を通
る位置が異なるため、このレンズでは球面収差が発生す
る。従って、2つの投影レンズの中間に形成されるクロ
スオーバのZ方向位置が移動する。これを補正するた
め、最終コンデンサレンズの励磁を変える等の補正を行
う必要があった。
In the prior art as described above, the final condenser lens (charged particle beam) is selected depending on whether a small area near the optical axis is selected or a small area away from the optical axis is selected. Since the position where the light passes through the mask and the mask is made parallel to each other is different, spherical aberration occurs in this lens. Therefore, the Z-direction position of the crossover formed in the middle of the two projection lenses moves. In order to correct this, it was necessary to make a correction such as changing the excitation of the final condenser lens.

【0005】本発明はこの従来の問題点に鑑みてなされ
たもので小領域を選択する時コンデンサレンズの条件を
補正する必要のない荷電粒子線転写装置を提供すること
を目的とする。
The present invention has been made in view of the conventional problems, and an object of the present invention is to provide a charged particle beam transfer apparatus which does not need to correct the conditions of the condenser lens when selecting a small area.

【0006】[0006]

【課題を解決するための手段】上記問題点の解決の為に
本発明では、1枚のマスクのパターン面を1つ以上の小
領域(副視野)に分割し、この小領域を一括露光する荷
電粒子線転写装置において、最終コンデンサレンズとマ
スクとの間に設けた2段の偏向器で小領域の選択を行う
ようにした。
In order to solve the above problems, according to the present invention, the pattern surface of one mask is divided into one or more small areas (sub-fields of view), and these small areas are collectively exposed. In the charged particle beam transfer apparatus, a small area is selected by a two-stage deflector provided between the final condenser lens and the mask.

【0007】また、投影レンズ系を少くとも2段の投影
レンズで構成し、この投影レンズの間に形成された最終
クロスオーバの位置に非点補正装置を設けることによっ
て各小領域毎の非点補正を行うようにした。
Further, the projection lens system is composed of at least two stages of projection lenses, and an astigmatism correction device is provided at the position of the final crossover formed between the projection lenses, whereby the astigmatism of each small area is corrected. I made a correction.

【0008】[0008]

【作用】本発明では小領域(副視野)を選択する偏向器
とマスクとの間にはコンデンサレンズは無いので、コン
デンサレンズの球面収差は発生しない。言いかえれば、
どの小領域を選択しても、コンデンサレンズ部では荷電
粒子線は同じ軌道を通るため、余分な補正は必要がな
い。
In the present invention, since there is no condenser lens between the mask and the deflector for selecting a small area (subfield of view), spherical aberration of the condenser lens does not occur. In other words,
No matter which small region is selected, the charged particle beam passes through the same orbit in the condenser lens unit, and therefore no extra correction is necessary.

【0009】[0009]

【実施例】図1は本発明の荷電粒子線転写装置の実施例
である電子線縮小転写装置の光学系の断面を片側のみ示
したものである。電子銃1から放出された電子線は、コ
ンデンサレンズ2で位置11にクロスオーバを形成す
る。このクロスオーバを通過した電子線は最終コンデン
サレンズ3によって平行ビーム12にされ、コア6を有
する偏向器4、5に入射する。偏向器4、5は偏向量が
同じで偏向方向が反対であるから、電子線を平行移動さ
せる働きをする。マスク7のパターン面は1つ以上の主
視野に分割され、この主視野はさらに複数の副視野に分
割されている。このようなマスク7の主視野と副視野と
の関係を図2に示し、その機能についての詳細は後述す
る。最終コンデンサレンズ3により平行ビーム12にさ
れた電子線は偏向された副視野の一つを照射する。すな
わち、平行ビーム12の横断面形状は、副視野の外形状
にほぼ一致している。一つの副視野を通過した電子線は
軌道13で示されているように、投影レンズ8によっ
て、2つの投影レンズ8、9の間にクロスオーバを作
る。このクロスオーバ位置には非点補正コイル14が設
けられており、各副視野の非点補正が行われる。その
後、投影レンズ9によりマスクの副視野のパターンが感
光基板10上に縮小投影され、露光が行なわれる。
1 is a sectional view of only one side of an optical system of an electron beam reduction transfer apparatus which is an embodiment of a charged particle beam transfer apparatus of the present invention. The electron beam emitted from the electron gun 1 forms a crossover at the position 11 by the condenser lens 2. The electron beam that has passed through this crossover is made into a parallel beam 12 by the final condenser lens 3 and enters the deflectors 4 and 5 having the core 6. Since the deflectors 4 and 5 have the same amount of deflection but opposite deflection directions, they function to translate the electron beam. The pattern surface of the mask 7 is divided into one or more main visual fields, and the main visual field is further divided into a plurality of sub visual fields. The relationship between the main visual field and the sub visual field of the mask 7 is shown in FIG. 2, and the function thereof will be described in detail later. The electron beam made into the parallel beam 12 by the final condenser lens 3 illuminates one of the deflected sub-fields of view. That is, the cross-sectional shape of the parallel beam 12 substantially matches the outer shape of the sub-field of view. The electron beam passing through one sub-field of view makes a crossover between the two projection lenses 8 and 9 by the projection lens 8 as shown by the trajectory 13. An astigmatism correction coil 14 is provided at this crossover position to perform astigmatism correction on each sub-field of view. After that, the pattern of the sub-field of the mask is reduced and projected on the photosensitive substrate 10 by the projection lens 9, and exposure is performed.

【0010】図2に示したように、マスク7は主視野M
Fと呼ばれる1以上の四角形領域に分割され、この主視
野MFはさらに副視野SFと呼ばれる複数の四角形領域
に分割されており、副視野SFが一括露光される。上述
した転写装置では、感光基板7の大型化や回路パターン
の微細化に対応して各副視野SF毎に露光条件を調整し
つつ感光基板7へ露光を繰り返すものである。
As shown in FIG. 2, the mask 7 has a main field of view M.
The main visual field MF is further divided into a plurality of rectangular regions called F, and the main visual field MF is further divided into a plurality of rectangular regions called sub visual field SF, and the sub visual field SF is collectively exposed. In the above-described transfer device, the exposure of the photosensitive substrate 7 is repeated while adjusting the exposure condition for each sub-field of view SF in response to the enlargement of the photosensitive substrate 7 and the miniaturization of the circuit pattern.

【0011】すなわち、露光時には、図3に矢印Fm、
Fwで示すようにマスク7と感光基板10とが、不図示
のマスク駆動装置、感光基板駆動装置により互いに逆方
向へ連続的に同期移動せしめられる(実際には2つの駆
動装置を制御する制御装置がある)。この際、マスク7
に対する荷電粒子線の照射位置は、偏向器5、6によ
り、マスク7と感光基板10との相対移動方向と直交す
る方向へ副視野SFの1個分ずつステップ状に変更され
る。したがって、図2のマスク7が不図示のマスク駆動
装置により同図の矢印Fm方向に移動するならば、同図
に矢印Eで示す順序で各副視野SFに荷電粒子線が照射
されてそれぞれのパターンが感光基板10上に転写され
る。
That is, at the time of exposure, the arrow Fm,
As shown by Fw, the mask 7 and the photosensitive substrate 10 are continuously and synchronously moved in opposite directions by a mask driving device and a photosensitive substrate driving device (not shown) (actually, a control device for controlling the two driving devices). There is). At this time, the mask 7
The irradiation position of the charged particle beam with respect to (1) is stepwise changed by the deflectors 5 and 6 in the direction perpendicular to the relative movement direction of the mask 7 and the photosensitive substrate 10 by one sub-field SF. Therefore, if the mask 7 in FIG. 2 is moved in the direction of arrow Fm in the figure by a mask driving device (not shown), each sub-field of view SF is irradiated with the charged particle beam in the order shown by arrow E in the figure. The pattern is transferred onto the photosensitive substrate 10.

【0012】このような構成であるから、電子銃1から
放出された電子線は2つのコンデンサレンズ2、3によ
り平行ビーム12とされた後、2つの偏向器4、5によ
って、マスク7の選択した副視野の位置に応じて平行移
動させられることになる。従って、コンデンサレンズ
2、3を通る電子線は、2つの偏向器4、5の励磁条件
が変化してもその経路を偏向することがないから、コン
デンサレンズ2、3の球面収差が発生することはない。
マスク7の副視野の一つを照射した電子線は、例えばパ
ターンの形成された部分を透過し、投影レンズ8で集光
されてクロスオーバを形成した後、投影レンズ8、9で
マスク7と共役な位置に配設された感光基板10上に、
マスク7のパターンの縮小像を形成する。
With this structure, the electron beam emitted from the electron gun 1 is made into a parallel beam 12 by the two condenser lenses 2 and 3, and then the mask 7 is selected by the two deflectors 4 and 5. It is translated in accordance with the position of the subfield of view. Therefore, the electron beam passing through the condenser lenses 2 and 3 does not deflect its path even if the excitation conditions of the two deflectors 4 and 5 change, so that spherical aberration of the condenser lenses 2 and 3 occurs. There is no.
The electron beam irradiating one of the sub-fields of the mask 7 is transmitted through, for example, a portion where a pattern is formed, is condensed by the projection lens 8 to form a crossover, and then is projected onto the mask 7 by the projection lenses 8 and 9. On the photosensitive substrate 10 arranged at a conjugate position,
A reduced image of the pattern of the mask 7 is formed.

【0013】なお、以上述べた実施例では荷電粒子線の
一つである電子線を用いた電子線縮小転写装置を例に上
げたが、イオンビーム等他の荷電粒子線を用いた縮小転
写装置に本発明を適用することができることは当然であ
る。また、以上の実施例では、マスク7と露光基板10
とを逆方向に移動させながら、マスク7の移動方向に直
交する方向へ電子線(荷電粒子線)を偏向していたので
小さなレンズ径で大きな領域の露光が可能であるが、マ
スク7と露光基板10とを移動させることなしに、偏向
器によって電子線(荷電粒子線)を2次元的に偏向よる
ことにより、副視野を選択するようにレンズ径を大きく
構成した転写装置にも本発明を適用できることは言うま
でもない。
In the embodiment described above, the electron beam reduction transfer device using an electron beam which is one of the charged particle beams has been taken as an example, but the reduction transfer device using another charged particle beam such as an ion beam. It goes without saying that the present invention can be applied to. Further, in the above embodiments, the mask 7 and the exposure substrate 10
Since the electron beam (charged particle beam) was deflected in the direction orthogonal to the moving direction of the mask 7 while moving and in the opposite direction, it is possible to expose a large area with a small lens diameter. The present invention is also applied to a transfer device having a large lens diameter so as to select a sub-field of view by deflecting an electron beam (charged particle beam) two-dimensionally by a deflector without moving the substrate 10. It goes without saying that it can be applied.

【0014】[0014]

【発明の効果】以上の様に本発明によれば小領域(副視
野)を選択した時にコンデンサレンズを補正する必要が
ないため次の効果がある。(1) コンデンサレンズをフ
ェライトではなく鉄やパーマロイのような金属で作れる
ので安価にできる。(2) 小領域(副視野)を照射する
アパーチャ像が回転することがないので、最小限の大き
さの照射領域にできるのでマスクを必要以上に加熱する
ことがない。(3) 小領域(副視野)間のダミー領域照
射ビームが隣接する小領域にはみ出すことを防ぐための
つなぎの領域を小さい幅にできるため、ビーム位置を補
正する偏向器は小さい能力でよく、その精度も甘くても
高精度の描画ができる。(4) どの小領域(副視野)を
選択してもクロスオーバ位置が同じになるので非点補正
装置によって非点補正を行った時に、ビーム位置移動等
が無く、高精度の描画ができる。
As described above, according to the present invention, since it is not necessary to correct the condenser lens when a small area (subfield of view) is selected, the following effects can be obtained. (1) Since the condenser lens can be made of metal such as iron or permalloy instead of ferrite, the cost can be reduced. (2) Since the aperture image that irradiates a small area (sub-field of view) does not rotate, the irradiation area can be a minimum size, and the mask is not heated more than necessary. (3) Dummy area between small areas (sub-fields of view) Since the joint area for preventing the irradiation beam from protruding to the adjacent small area can be made small in width, the deflector that corrects the beam position can have a small ability. High-precision drawing can be performed even if the accuracy is low. (4) Since the crossover position is the same regardless of which small area (sub-field of view) is selected, when the astigmatism correction is performed by the astigmatism correction device, there is no beam position movement and the like, and highly accurate drawing is possible.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の荷電粒子線縮小転写装置の一実施例の
電子線縮小転写装置の電子光学系の半断面図である。
FIG. 1 is a half cross-sectional view of an electron optical system of an electron beam reduction transfer apparatus of an embodiment of a charged particle beam reduction transfer apparatus of the present invention.

【図2】マスクの視野分割の例を示す図である。FIG. 2 is a diagram showing an example of field division of a mask.

【図3】マスクと感光基板の露光時の移動を説明する図
である。
FIG. 3 is a diagram illustrating movement of a mask and a photosensitive substrate during exposure.

【符号の説明】[Explanation of symbols]

1 電子銃 2、3 コンデンサレンズ 4、5 偏向器 7 マスク 8、9 投影レンズ 10 感光基板 1 Electron Gun 2, 3 Condenser Lens 4, 5 Deflector 7 Mask 8, 9 Projection Lens 10 Photosensitive Substrate

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 パターン面を複数の小領域に分割したマ
スクを用いる荷電粒子線転写装置であって、荷電粒子線
源からの荷電粒子線を前記小領域の一つを照射する断面
形状の平行ビームにするコンデンサレンズ系と、前記平
行ビームの前記マスク上での照射位置を選択するための
2段の偏向器と、前記マスクと感光基板とを共役になす
投影レンズ系とを少くとも備えた荷電粒子線転写装置に
おいて、前記偏向器を2段の偏向器で構成すると共に、
該2段の偏向器を前記コンデンサレンズ系と前記マスク
との間に設けたことを特徴とする荷電粒子線転写装置。
1. A charged particle beam transfer apparatus using a mask in which a pattern surface is divided into a plurality of small areas, wherein the charged particle beam from a charged particle beam source irradiates one of the small areas in parallel. A condenser lens system for forming a beam, a two-stage deflector for selecting an irradiation position of the parallel beam on the mask, and a projection lens system for conjugating the mask and a photosensitive substrate are provided at least. In the charged particle beam transfer apparatus, the deflector is composed of two-stage deflector, and
A charged particle beam transfer apparatus, wherein the two-stage deflector is provided between the condenser lens system and the mask.
【請求項2】 請求項1に記載の荷電粒子線転写装置に
おいて、前記投影レンズ系を少くとも2段の投影レンズ
で構成し、この投影レンズの間に最終クロスオーバを形
成するようになし、前記最終クロスオーバの位置に非点
補正装置を設けて、前記小領域毎に非点補正を行うこと
を特徴とする荷電粒子線縮小転写装置。
2. The charged particle beam transfer apparatus according to claim 1, wherein the projection lens system is composed of at least two stages of projection lenses, and a final crossover is formed between the projection lenses. An astigmatism correction device is provided at the position of the final crossover, and astigmatism correction is performed for each of the small areas.
JP5221210A 1993-09-06 1993-09-06 Charged particle beam transfer device Pending JPH0778742A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5221210A JPH0778742A (en) 1993-09-06 1993-09-06 Charged particle beam transfer device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5221210A JPH0778742A (en) 1993-09-06 1993-09-06 Charged particle beam transfer device

Publications (1)

Publication Number Publication Date
JPH0778742A true JPH0778742A (en) 1995-03-20

Family

ID=16763194

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5221210A Pending JPH0778742A (en) 1993-09-06 1993-09-06 Charged particle beam transfer device

Country Status (1)

Country Link
JP (1) JPH0778742A (en)

Similar Documents

Publication Publication Date Title
JP3647128B2 (en) Electron beam exposure apparatus and exposure method thereof
KR0160167B1 (en) Electron beam lithography system for writing pattern on the wafer
US7005658B2 (en) Charged particle beam exposure apparatus and method
JPH1064812A (en) Electronic beam exposure method and device manufacturing method using it
JPH09223475A (en) Electromagnetic deflector and charge particle beam transfer apparatus using thereof
JP3993334B2 (en) Charged beam lithography system
JP3647136B2 (en) Electron beam exposure system
JP2002093698A (en) Method and system for electron-beam lithography
US6777166B2 (en) Particle-optical lens arrangement and method employing such a lens arrangement
JP3913250B2 (en) Electron beam exposure apparatus and exposure method therefor
JP3455006B2 (en) Charged particle beam equipment
JPH11195589A (en) Multiple electron beam exposure method and its apparatus, and manufacture of device
JPH0778742A (en) Charged particle beam transfer device
US6573514B2 (en) Method for aligning electron beam projection lithography tool
JPH11297610A (en) Charged particle beam aligner
US6388261B1 (en) Charged-particle-beam microlithography apparatus and methods exhibiting reduced astigmatisms and linear distortion
JP2001332473A (en) Charged particle beam aligner and device-manufacturing method using it
JP3728315B2 (en) Electron beam exposure apparatus, electron beam exposure method, and device manufacturing method
JP4143204B2 (en) Charged particle beam exposure apparatus and device manufacturing method using the apparatus
JP2007019061A (en) Electron beam exposure system, electronic beam defocus correction method, and measuring method of electron beam defocus
JPH10303117A (en) Electron beam optical system
JPH10308341A (en) Exposing method and aligner by means of electron beam
JP3163885B2 (en) Charged particle beam exposure apparatus and exposure method
JPH10302696A (en) Electron beam projection lens
JPH1079346A (en) Charged particle beam transfer apparatus