JPH10302696A - Electron beam projection lens - Google Patents

Electron beam projection lens

Info

Publication number
JPH10302696A
JPH10302696A JP9105790A JP10579097A JPH10302696A JP H10302696 A JPH10302696 A JP H10302696A JP 9105790 A JP9105790 A JP 9105790A JP 10579097 A JP10579097 A JP 10579097A JP H10302696 A JPH10302696 A JP H10302696A
Authority
JP
Japan
Prior art keywords
projection lens
mask
lens
electron beam
sample
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9105790A
Other languages
Japanese (ja)
Inventor
Mamoru Nakasuji
護 中筋
Hiroyasu Shimizu
弘泰 清水
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikon Corp
Original Assignee
Nikon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikon Corp filed Critical Nikon Corp
Priority to JP9105790A priority Critical patent/JPH10302696A/en
Publication of JPH10302696A publication Critical patent/JPH10302696A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To prevent the deterioration of the natural aberration characteristic of a projection lens by controlling a magnetic field on a mask and/or a sample surface to reduce the imaging aberration, and forming a crossover in a point where the electron beam incident on a first projection lens internally divides the distance between the mask and the sample in a prescribed ratio. SOLUTION: A magnetic field on a mask and/or a sample surface is controlled by a projection lens system for contracting and transferring the pattern of the mask to the sample surface in 1/N by use of two stages of projection lenses, or a first lens 3 and a second lens 4 to reduce the imaging aberration. A crossover is formed in a point where the distance between the mask and the sample is internally divided in N:1 by the electron beam incident on the first lens 3. Even when the main plane of the projection lens is moved by an additional magnetic field, for example, the magnetic field by the third lens 1 and the fourth lens 7, the crossover is formed in a prescribed position on the basis of the moving quantity, whereby the aberration can be reduced.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は光ステッパーで形成
できないような微細な線幅を持つ高密度パターンを高ス
ル−プットで形成するリソグラフィ装置に使われる電子
光学系に関するものである。特には、マスクと試料を投
影光学系の磁場内に浸漬する事により高性能結像特性、
ひいては高スル−プット特性を得ようとする電子線光学
系に関する物である。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an electron optical system used in a lithography apparatus for forming a high-density pattern having a fine line width which cannot be formed by an optical stepper with a high throughput. In particular, high performance imaging characteristics by immersing the mask and sample in the magnetic field of the projection optical system,
Further, the present invention relates to an electron beam optical system for obtaining high throughput characteristics.

【0002】尚、本明細書においては、電子光学系の要
素部品の位置関係の記述として、電子線源(例えば電子
銃)に近い方を前段、試料(例えばウェハ) に近い方を
後段という表現を用いている。また、これらを具体的に
表す為にZ座標軸をレンズの機械的な中心軸にとり、Z
=0の原点を試料面とし、電子線源方向を正の値にとっ
た。更に、後述の主視野方向をX軸に、これに垂直な方
向をY軸とした。
[0002] In this specification, as a description of a positional relationship between element parts of an electron optical system, a portion closer to an electron beam source (for example, an electron gun) is referred to as a front stage and a portion closer to a sample (for example, a wafer) is referred to as a rear stage. Is used. In order to specifically represent these, the Z coordinate axis is taken as the mechanical center axis of the lens, and
The origin of = 0 was taken as the sample surface, and the electron beam source direction was set to a positive value. Furthermore, the direction of the main field of view described later was defined as the X axis, and the direction perpendicular thereto was defined as the Y axis.

【0003】[0003]

【従来の技術】従来のこの種の高精細パタ−ンを高スル
−プットをもって形成する技術としては、対称磁気ダブ
レット方式のレンズ(例えば、M.B.Heritage "Electro
n-projection microfabrication system" J.Vac.Sci.T
echol. Vol.12, No.6; 1975 P.1135) 、PREVAIL
方式(H.C. Pfeiffer "Projection exposure with Vari
able Axis Immersion Lenses: A High-Throughput Elec
tron Beam Approach to“Suboptical" Lithography", J
pn.,J. Appl.Phys. Vol. 34, Pt.1, No.12B 1995; P.66
85-6662 )等のレンズが公知である。
2. Description of the Related Art As a conventional technique for forming a high-definition pattern of this kind with a high throughput, a symmetric magnetic doublet type lens (for example, MBHeritage "Electro
n-projection microfabrication system "J.Vac.Sci.T
echol. Vol. 12, No. 6; 1975 P. 1135), PREVAIL
Method (HC Pfeiffer "Projection exposure with Vari
able Axis Immersion Lenses: A High-Throughput Elec
tron Beam Approach to “Suboptical” Lithography ”, J
pn., J.Appl.Phys.Vol. 34, Pt.1, No.12B 1995; P.66
85-6662) are known.

【0004】対称磁気ダブレット方式では、マスクと試
料( 一般的にはウェハ−) の間に対をなす、特定条件
(対称磁気ダブレット条件として後述する)を満足する
2つのレンズ−前段のレンズと後段のレンズ−が配備さ
れ、系のクロスオ−バは縮小率1/Nにより定められる
位置に形成され、前段のレンズの主面はマスクとクロス
オ−バの中点に、後段のレンズの主面はクロスオ−バと
試料の中点に置かれている。この様に設計された対称磁
気ダブレット方式のレンズでは、光軸上の収差はかなり
広い像面視野にわたって小さくなっている。
In the symmetric magnetic doublet system, two lenses which form a pair between a mask and a sample (generally, a wafer) and satisfy specific conditions (described later as symmetric magnetic doublet conditions) -a front lens and a rear lens The crossover of the system is formed at a position determined by the reduction ratio 1 / N, the main surface of the front lens is located at the midpoint between the mask and the crossover, and the main surface of the rear lens is It is located at the midpoint of the crossover and the sample. In the symmetric magnetic doublet type lens designed in this way, the aberration on the optical axis is reduced over a considerably wide image field.

【0005】一方PREVAIL方式であるが、この方
式での考え方は以下の通りである。メモリの1チップ全
体を許容収差内で投影する事は電子光学結像系では非現
実的であるため、マスクのパタ−ンを結像系の許容収差
範囲の大きさのフィ−ルドに分割し(これを副視野とす
る)、この副視野の像をつなぎ合わせて全体像とするも
のである。そして、つなぎ合わせに関しては、副視野の
選択が電子線の主として1方向への偏向にて可能な領域
(これを主視野とする)は偏向器によりスキャニング
し、主視野間のつなぎ合わせをマクス、ウェハ−の機械
的なスキャニングにより行うものである。従ってより良
い装置特性を得る為には、出来るだけ広い副視野、出来
るだけ広い主視野を有する投影光学系が要求される。こ
の要求に対し、文献Aでは主視野を広くするする為に、
言い換えれば光軸より離れた軸外の結像特性を改善する
ために、軸外の結像に関与する磁場が近軸磁場条件を満
足するように補助的な磁場を発生させる偏向器を設けて
いる。即ち、特定条件を満たす補助的な磁場を加える事
により収差の少ない‘光軸’を本来の光軸(レンズの機
械的な中心軸)より軸外にシフトさせ、軸外の収差特性
を光軸上と同じ程度の収差になるようにしている。更
に、マスクと試料の双方とも磁場内にイマ−ジョン(浸
漬)する事により近軸結像特性の改善を図っている。こ
の電子光学系の実現例が文献AのFig.4 に記されてお
り、AXIS SHIFTING YOKEがこの補助的な偏向器である。
[0005] On the other hand, the PREVAIL system is based on the following concept. Since it is impractical to project an entire memory chip within an allowable aberration in an electron optical imaging system, the pattern of the mask is divided into fields having a size within the allowable aberration range of the imaging system. (This is referred to as a sub-field of view), and the images of the sub-field of view are joined to form an overall image. As for the connection, a region where the selection of the sub-field of view can be mainly performed by deflecting the electron beam in one direction (this is the main field of view) is scanned by the deflector, and the connection between the main fields of view is maximally performed. This is performed by mechanical scanning of the wafer. Therefore, in order to obtain better device characteristics, a projection optical system having a sub-field of view as wide as possible and a main field of view as wide as possible is required. In response to this request, in Document A, in order to broaden the main field of view,
In other words, in order to improve off-axis imaging characteristics far from the optical axis, a deflector that generates an auxiliary magnetic field so that the magnetic field involved in off-axis imaging satisfies the paraxial magnetic field condition is provided. I have. That is, by applying an auxiliary magnetic field satisfying specific conditions, the 'optical axis' having less aberration is shifted off-axis from the original optical axis (mechanical center axis of the lens), and the off-axis aberration characteristic is changed. The aberration is set to the same degree as above. Furthermore, both the mask and the sample are immersed in a magnetic field to improve the paraxial imaging characteristics. An implementation example of this electron optical system is described in FIG. 4 of Document A, and AXIS SHIFTING YOKE is this auxiliary deflector.

【0006】尚、本願発明でいう対称磁気ダブレット条
件(以下、SMD条件と略記する)とは、 前段のレンズの主平面はマスクとクロスオ−バ−の
中点にあり、後段のレンズの主平面は試料とクロスオ−
バ−の中点にある。 クロスオ−バ−を中心とした後段のレンズのN倍の
相似形は前段のレンズとクロスオ−バ−を中心として点
対称になる。 結像場励磁条件として、互いにAT数の絶対値が等
しく、電流の向きが互いに逆である、をいう。
The symmetric magnetic doublet condition (hereinafter abbreviated as SMD condition) referred to in the present invention means that the main plane of the front lens is located at the midpoint between the mask and the crossover, and the main plane of the rear lens is used. Is the sample and cross-over
It is at the midpoint of the bar. An N-fold similar shape of the subsequent lens centered on the crossover is point-symmetric with the lens of the previous stage centered on the crossover. The imaging field excitation condition means that the absolute values of the AT numbers are equal to each other and the current directions are opposite to each other.

【0007】また、主視野、副視野という用語を記載を
行っているが、この概念に関しては例えば、本発明人の
出願になる特願平07−338372を参照、ただし、
座標系は若干異なっている。
[0007] The terms "main field of view" and "sub-field of view" are described. For this concept, see, for example, Japanese Patent Application No. 07-338372 filed by the present inventor.
The coordinate system is slightly different.

【0008】[0008]

【発明が解決しようとする課題】しかし、上記対称磁気
ダブレット方式のレンズにPREVAIL方式−即ちレ
ンズの光軸シフト操作及びマスクと試料の磁場へのイマ
−ジョン−を適用すると以下の様な問題がある事が判っ
た。PREVAIL方式のレンズの軸上磁場分布Bzの
Z依存性軸上磁場分布を図1の右側に曲線30でもって
示した。Bzは所定のクロスオーバ12近傍の位置では
0になっているのに対して、収差を低減の為にマスク位
置2及び試料位置5では0でない有限の値−−前段のレ
ンズのマスク側あるいは後段のレンズの試料側ではレン
ズ主面とほとんど同じ位の値−−を持っている。従って
レンズの主面は点線10及び11で示したように、SM
D条件満足する主平面8及び9より、マスク側及び試料
側にずれる。このずれた主面のZ軸上の値HuとHd
は、Bzを所定のクロスオ−バの点からHuまで積分し
た値とHuからマスクまで積分した値が同じになるよう
にする事によりHuが、またBzを試料からHdまで積
分した値とHdから所定のクロスオ−バの点まで積分し
た値とが同じになるようにする事によりHdが求められ
る。そのズレはあまり大きくないとは言え、副視野の中
心が光軸上にある場合、マスクから光軸に平行に射出さ
れた電子線はクロスオーバ12を通らず、従って、所定
のSMD条件を満たさず、収差も大きいことがわかっ
た。次に光軸から離れた位置にある副視野を転写する場
合、主視野が10mm×0.5mmになると、主視野の
端での入射角が5mrad以上になり、試料面が上下し
た時のパターン誤差が無視できなくなってくる。即ち、
ランディング角が試料に対して垂直ではなく、試料面の
高さのズレにより像の面内の位置が変化する、と言った
問題である。
However, when the PREVAIL system--that is, the operation of shifting the optical axis of the lens and the immersion of the mask and the sample in the magnetic field--is applied to the symmetric magnetic doublet system lens, the following problems occur. I found something. The Z-dependent on-axis magnetic field distribution of the on-axis magnetic field distribution Bz of the PREVAIL type lens is shown by a curve 30 on the right side of FIG. Bz is 0 at a position near the predetermined crossover 12, whereas a finite value that is not 0 at the mask position 2 and the sample position 5 to reduce aberrations--the mask side of the lens at the front stage or the rear stage. Has almost the same value on the sample side as the lens main surface. Therefore, the main surface of the lens is SM as shown by dotted lines 10 and 11.
It is shifted from the principal planes 8 and 9 satisfying the condition D to the mask side and the sample side. Values Hu and Hd on the Z-axis of the shifted main surface
Hu is obtained by making the value obtained by integrating Bz from a predetermined crossover point to Hu equal to the value obtained by integrating Hu to the mask, and the value obtained by integrating Bz from the sample to Hd and Hd by Hd is determined by making the value integrated up to a predetermined crossover point the same. Although the deviation is not so large, when the center of the sub-field of view is on the optical axis, the electron beam emitted from the mask in parallel to the optical axis does not pass through the crossover 12, and therefore satisfies the predetermined SMD condition. It was also found that the aberration was large. Next, when transferring the sub-field of view away from the optical axis, when the main field of view becomes 10 mm x 0.5 mm, the incident angle at the end of the main field of view becomes 5 mrad or more, and the pattern when the sample surface moves up and down Errors can no longer be ignored. That is,
The problem is that the landing angle is not perpendicular to the sample, and the position in the image plane changes due to the deviation of the height of the sample surface.

【0009】本発明はこのような従来の問題点に鑑みて
なされたもので、マスク面や試料面での磁場を制御する
事により収差を低減しようとする時、本来の投影レンズ
の収差特性が劣化する事を防止する方法−−即ち、例え
ば上述のように、レンズ主面がクロスオーバとマスク面
あるいは試料面との中間に位置しなくなるような場合の
収差及びランディング角を最適にする方法−−を提供す
ることを目的とする。
The present invention has been made in view of such a conventional problem. When the aberration is to be reduced by controlling the magnetic field on the mask surface or the sample surface, the original aberration characteristic of the projection lens is reduced. A method for preventing deterioration--that is, a method for optimizing aberrations and landing angles when the main lens surface is not positioned between the crossover and the mask surface or the sample surface, for example, as described above. -To provide

【0010】[0010]

【課題を解決する為の手段】上記問題点の解決の為に本
発明では、以下に述べる手段を用いた。第1の手段とし
て、マスクのパタ−ンを2段の投影レンズ−−第1の投
影レンズと第2の投影レンズ−−を用いて試料面に1/
Nに縮小転写する投影レンズ系であって、マスク及び/
又は試料面での磁場を制御することにより結像収差を低
減し、且つ第1の投影レンズに入射する電子線が上記マ
スクと試料間をN:1に内分する点でクロスオーバを形
成するようにするようにした。
Means for Solving the Problems To solve the above problems, the present invention uses the following means. As a first means, the pattern of the mask is divided by a projection lens of two stages--a first projection lens and a second projection lens--to the surface of the sample.
N. A projection lens system for reducing transfer to N, comprising a mask and / or
Alternatively, the imaging aberration is reduced by controlling the magnetic field on the sample surface, and a crossover is formed at a point where the electron beam incident on the first projection lens internally divides the mask and the sample into N: 1. I tried to do it.

【0011】第2の手段として、第1の手段において、
第3のレンズをマスクの前段に配して第1の投影レンズ
と同一方向の軸上磁場を発生させ、第4のレンズを試料
面の後段に配して第2の投影レンズと同一方向で、且つ
第1、第3のレンズとは逆方向の軸上磁場分布を発生さ
せ、これによりマスク又は試料面での磁場を制御するよ
うにした。
As a second means, in the first means,
A third lens is disposed in front of the mask to generate an on-axis magnetic field in the same direction as the first projection lens, and a fourth lens is disposed downstream of the sample surface in the same direction as the second projection lens. An on-axis magnetic field distribution is generated in a direction opposite to that of the first and third lenses, thereby controlling the magnetic field on the mask or the sample surface.

【0012】第3の手段として、第2の手段において、
第4のレンズの代わりに、強磁性体の板を設けるように
した。第4の手段として、第1の手段乃至第3の手段に
おいて、ひとつの視野を複数の副視野に分割し、各副視
野毎に光学系の補正を行いながら転写を行うための電子
線投影レンズにおいて、光軸から離れた副視野を転写す
るために2段の少なくともX偏向器をマスクの後段に設
け、マスクから垂直方向に射出された主光線がクロスオ
ーバを通るよう補正し、且つ、2段の少なくともX偏向
器を試料の前段に設けて上記クロスオーバを通ってきた
主光線が試料に垂直入射するよう補正を行うこととし
た。
As a third means, in the second means,
Instead of the fourth lens, a ferromagnetic plate was provided. As a fourth means, in the first to third means, an electron beam projection lens for dividing one field of view into a plurality of sub-fields and performing transfer while correcting the optical system for each sub-field. In the above, two stages of at least an X deflector are provided at the subsequent stage of the mask in order to transfer a sub-field of view away from the optical axis, and the chief ray vertically emitted from the mask is corrected so as to pass through the crossover; At least the X deflector in the stage is provided in front of the sample, and correction is performed so that the principal ray passing through the crossover is perpendicularly incident on the sample.

【0013】第5の手段として、第4の手段において、
複数個の偏向器をマスクとクロスオーバ間に設け、更に
複数個の偏向器をクロスオーバと試料間に設け、主光線
がマスクから光軸に平行に出射された副視野の像が試料
面で最小の収差となるよう、上記それぞれ複数個の偏向
器の配置、偏向強度あるいは回転方向の偏向角を最適化
した。
As a fifth means, in the fourth means,
A plurality of deflectors are provided between the mask and the crossover, and a plurality of deflectors are further provided between the crossover and the sample. In order to minimize the aberration, the arrangement of the plurality of deflectors, the deflection intensity, and the deflection angle in the rotational direction were optimized.

【0014】第6の手段として、第1乃至第5の手段に
おいて、クロスオ−バ−を中心とした後段のレンズのN
倍の相似形は前段のレンズとクロスオ−バ−を中心とし
て点対称になっている事を特徴とする電子線投影レンズ
第7の手段として、第1の手段乃至第6の手段におい
て、マスクを発散性の電子線で照射するようにした。
As a sixth means, in the first to fifth means, the N of the subsequent lens centered on the crossover is used.
The electron beam projection lens is characterized in that the double-like shape is point-symmetric with respect to the preceding lens and the crossover as a center. Irradiation was performed with a divergent electron beam.

【0015】第8の手段として、第7の手段において、
マスクの前段に2段の少なくともX偏向器を設けて主光
線をマスクに垂直に入射するようにした事を特徴とする
電子線投影レンズ。第9の手段として、マスクのパタ−
ンを2段の投影レンズ−−第1の投影レンズと第2の投
影レンズ−−を用いて試料面に1/Nに縮小転写する投
影レンズ系であって、前記2段のレンズは対称磁気ダブ
レット条件を満足する対称磁気ダブッレット型レンズで
あり、マスク及び/又は試料面での磁場を制御すること
により結像収差を低減しする電子線投影レンズにおい
て、試料面を所定の位置より離すことで収差を低減する
ようにした。
As an eighth means, in the seventh means,
An electron beam projection lens, wherein at least two stages of X deflectors are provided in front of a mask so that a principal ray is perpendicularly incident on the mask. As a ninth means, a mask pattern
A two-stage projection lens--a first projection lens and a second projection lens--to transfer a 1 / N reduction image onto a sample surface, wherein the two-stage lens is a symmetric magnetic lens. A symmetric magnetic doublet-type lens that satisfies the doublet condition. In an electron beam projection lens that reduces imaging aberration by controlling a magnetic field on a mask and / or a sample surface, the sample surface is separated from a predetermined position. Aberration is reduced.

【0016】第10の手段として、第9の手段におい
て、光軸外の副視野像の試料上での垂直入射条件外れを
補正するため、クロスオーバから試料までの間に2段の
少なくともX偏向器を備えるようにした。
As a tenth means, in the ninth means, at least two stages of X-deflection between the crossover and the sample are performed in order to correct the vertical incident condition on the sample of the sub-field image outside the optical axis. The vessel was equipped.

【0017】[0017]

【発明実施の形態】本願発明は付加的な磁場−−例え
ば、第3のレンズ1と第4のレンズ7による磁場−−に
より投影レンズの主平面が移動しても、その移動量をも
とに所定の位置にクロスオ−バを形成させる事により収
差を低減出来ること、また、ランディング角についても
偏向器によりクロスオ−バ点を所定の位置に保ったまま
試料に主光線が垂直に入射するように出来る事を見いだ
した事に基づいている。図1は縮小率が1/2の場合
(N=2)についての実施例の光学系の断面図を示した
ものである。前述したように、右側は軸上磁場分布Bz
のZ依存性を示している。Bzはクロスオーバ12の位
置では0になっているのに対して、マスク位置2及び試
料位置5では0でない有限の値を持っている。従ってレ
ンズの主面は点線10及び11で示したように、SMD
条件での主面8及び9より、マスク側及び試料側にずれ
る。今、転写すべき副視野の中心が光軸上にある場合を
考える。もし、電子線がマスクから光軸に平行に射出さ
れると、電子線は所定のクロスオーバ12を通らず、S
MD条件を満たさず、収差も大きいが、しかし、副視野
を照明する条件を、平行ビームではなく、わずかに発散
性ビームにすることによって、クロスオーバ12を通す
ようにでき、かつ収差も小さくできた。この場合の副視
野の端での試料への入射角度は0.5mrad以下とな
った(副視野寸法が試料上で0.5mm角の場合)。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention is based on the fact that even if the main plane of the projection lens moves due to an additional magnetic field--for example, a magnetic field generated by the third lens 1 and the fourth lens 7--the amount of movement is determined. The aberration can be reduced by forming a crossover at a predetermined position, and the landing angle is adjusted so that the chief ray is perpendicularly incident on the sample while keeping the crossover point at the predetermined position by the deflector. It is based on finding out what can be done. FIG. 1 is a sectional view of the optical system of the embodiment when the reduction ratio is 1/2 (N = 2). As described above, the right side is the on-axis magnetic field distribution Bz
Shows the Z dependence of. Bz has a finite value other than 0 at the mask position 2 and the sample position 5 while it is 0 at the position of the crossover 12. Therefore, the main surface of the lens is SMD as shown by dotted lines 10 and 11.
From the principal surfaces 8 and 9 under the conditions, the surface is shifted to the mask side and the sample side. Now, consider the case where the center of the sub-field to be transferred is on the optical axis. If the electron beam is emitted from the mask in parallel with the optical axis, the electron beam does not pass through the predetermined crossover 12 and S
The MD condition is not satisfied, and the aberration is large. However, the condition for illuminating the sub-field is not a parallel beam but a slightly diverging beam, so that the beam can pass through the crossover 12 and the aberration can be reduced. Was. In this case, the angle of incidence on the sample at the end of the sub-field of view was 0.5 mrad or less (when the sub-field of view was 0.5 mm square on the sample).

【0018】次に光軸から離れた位置にある副視野を転
写する場合について述べる。この場合もやはり平行ビー
ムではなく、発散性ビームでマスクを照射するとクロス
オーバ位置でクロスオーバを形成し、収差は小さいこと
がわかった。しかし主視野を10mm×0.5mmとす
ると、主視野の端での入射角が5mrad以上になり、
試料面が上下した時のパターン誤差が無視できない。そ
こで、このランディング条件を改善するために、発散性
ビームをレンズ1で作り、偏向器13、14で主光線が
光軸に平行になるよう偏向し、偏向器15、16でクロ
スオーバを通るよう偏向する。さらに、クロスオーバを
通ってきた主光線が試料5に垂直に入射するよう偏向器
17、18で偏向した。従って試料への入射角は光軸上
の副視野の場合と同程度に小さくできた。
Next, a case where a sub-field of view located at a position distant from the optical axis is transferred will be described. Also in this case, it was found that when the mask was irradiated with a divergent beam instead of a parallel beam, a crossover was formed at the crossover position, and the aberration was small. However, if the main field of view is 10 mm x 0.5 mm, the incident angle at the end of the main field of view becomes 5 mrad or more,
The pattern error when the sample surface moves up and down cannot be ignored. Therefore, in order to improve the landing condition, a divergent beam is formed by the lens 1, the chief rays are deflected by the deflectors 13 and 14 so as to be parallel to the optical axis, and passed through the crossover by the deflectors 15 and 16. Deflect. Further, the principal rays having passed through the crossover were deflected by the deflectors 17 and 18 so as to be perpendicularly incident on the sample 5. Therefore, the angle of incidence on the sample could be made as small as in the case of the sub-field on the optical axis.

【0019】また、偏向器15、16に加えて19及び
17、18に加えて20の複数個の偏向器に対して、そ
の位置又は偏向強度比、又は偏向方向を最適化すること
によって試料面での収差を最小にすることもできた。更
に、主面のずれに対して、試料の位置をZ軸方向に調節
すると収差が低減される事を見出し、試料台の調整機構
を設けた。
Further, by optimizing the position or the deflection intensity ratio or the deflection direction of a plurality of deflectors 19 in addition to the deflectors 15 and 16 and in addition to the deflectors 19 and 17 and 18, the sample surface can be optimized. Was also able to minimize aberrations. Further, it has been found that, when the position of the sample is adjusted in the Z-axis direction with respect to the displacement of the main surface, the aberration is reduced, and an adjustment mechanism for the sample stage is provided.

【0020】[0020]

【実施例】図1は上述の本発明の解決手段の要素部品を
まとめて書いたものである。これと図2をもとに、以下
に動作を説明する。マスク2−試料5の間を600mm
にした場合、レンズ主面の点線の位置10、11とSM
D条件を満たす実線の位置8、9との差はマスク側レン
ズと試料側レンズでそれぞれ10mm及び5mmであっ
た。但し縮小率は1/2とした。従って、本来Z=40
0とZ=100の点に主平面、Z=200の点にクロス
オ−バが配されるはずであるが、Z=410、Z=95
に主平面がずれる。この場合の結像条件を図示したもの
を図2に示す。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 1 collectively shows the components of the above-mentioned solution of the present invention. The operation will be described below based on this and FIG. 600 mm between mask 2 and sample 5
, The positions of the dotted lines 10 and 11 on the main surface of the lens and SM
The difference between the positions 8 and 9 of the solid line satisfying the condition D was 10 mm and 5 mm for the mask-side lens and the sample-side lens, respectively. However, the reduction ratio was 1/2. Therefore, originally Z = 40
The main plane should be arranged at points 0 and Z = 100, and the crossover should be arranged at the point Z = 200, but Z = 410 and Z = 95.
The main plane is shifted. FIG. 2 shows the imaging conditions in this case.

【0021】レンズ3の焦点距離はf=190mmであ
り、レンズ4の焦点距離はf=95mmである。クロス
オーバを通ってきたビームの結像点は 1/105+1/b=1/95 1/b=1/95−1/105 b=997.5
mm 0.5mm角の副視野端での入射角は 0.25√2/997.5=0.35mrad であり、±5μmの試料面の上下変動は±1.75nm
の位置誤差しか生じない。一方、20mmの主視野端で
の入射角は 10/997.5=10.03mrad となり、±5μmの試料面の上下変動で±50nmの位
置誤差を生じる。
The focal length of the lens 3 is f = 190 mm, and the focal length of the lens 4 is f = 95 mm. The imaging point of the beam passing through the crossover is 1/105 + 1 / b = 1/95 1 / b = 1 / 95-1 / 105 b = 997.5
The incident angle at the sub field end of 0.5 mm square is 0.25√2 / 997.5 = 0.35 mrad, and the vertical fluctuation of the sample surface of ± 5 μm is ± 1.75 nm.
Only the position error of On the other hand, the incident angle at the end of the main visual field of 20 mm is 10 / 997.5 = 10.03 mrad, and a vertical error of ± 5 μm causes a positional error of ± 50 nm.

【0022】入射ビームについては次式が成立する。 1/a+1/210=1/190 ∴a=1995mm すなわち、Z=1995+410=2405mmの位置
にクロスオーバがあり、そこから発散してくる電子線で
マスクを照射すればよい事がわかる。上述の説明では、
簡単のため薄いレンズの公式を用いて説明したが、実際
には計算機シミュレーションによって収差が最小になる
aの値、bの値を求める。以上は第1、第2、第7の解
決手段を用いた例である。尚、第3の解決手段を用いる
ときは図1の第2のレンズ7に替えて、強磁性体の板6
をもちいる。又、レンズ系はSMD条件を満足するもの
を使用している。解決手段6を用いた例である。次に、
光軸から離れた副視野を転写する時は偏向器13、14
によってマスク2に主光線が垂直に入射するように(図
2の主光線21の22の部分)ビームを曲げ、マスクか
ら光軸に平行に射出されたビームを偏向器15、16に
よって、Z=2405mmから来た方向へ合わせる。試
料面近傍でも偏向器17、18によって主光線が垂直に
入射するように(図2の主光線21の23の部分)調整
する。ここで偏向器を2段にするのは、角度を変更して
もマスクや試料面でビーム位置変動を無くすためであ
る。当然θ方向にも同様の情況になっているので、偏向
器13〜18はx、yを持ち、θ方向もクロスオーバを
通る条件とマスク、試料面での垂直入射条件を満足させ
ている。第4、第8、第10の解決手段を用いた例であ
る。また、これらに加えて、偏向器19をマスクとクロ
スオ−バ間に、偏向器20を試料とクロスオ−バに設け
て、偏向器15、16、19、及び偏向器20、17、
18の位置又は強さ又は回転方向を計算機シミュレ−シ
ョンにより最適化して光軸から離れた副視野の像の収差
を最小になるようにした。第5の解決手段を用いた例で
ある。
The following equation holds for the incident beam. 1 / a + 1/210 = 1/190 ∴a = 1995 mm That is, there is a crossover at a position of Z = 1995 + 410 = 2405 mm, and it is understood that the mask should be irradiated with an electron beam diverging therefrom. In the above description,
For simplicity, the description has been made using the thin lens formula, but in practice, the values of a and b at which the aberration is minimized are obtained by computer simulation. The above is an example using the first, second, and seventh solving means. When the third solution is used, a ferromagnetic plate 6 is used instead of the second lens 7 in FIG.
With The lens system that satisfies the SMD condition is used. This is an example using the solution 6. next,
When transferring the sub-field of view away from the optical axis, the deflectors 13 and 14 are used.
The beam is bent so that the principal ray is incident on the mask 2 at a right angle (portion 22 of the principal ray 21 in FIG. 2), and the beams emitted from the mask in parallel to the optical axis are deflected by the deflectors 15 and 16 to Z = Adjust in the direction coming from 2405mm. Adjustment is also performed by the deflectors 17 and 18 so that the chief ray is perpendicularly incident near the sample surface (portion 23 of the chief ray 21 in FIG. 2). Here, the reason why the deflectors are provided in two stages is to eliminate beam position fluctuation on the mask and the sample surface even when the angle is changed. Naturally, the situation is the same in the θ direction. Therefore, the deflectors 13 to 18 have x and y, and the θ direction satisfies the condition of passing through the crossover and the condition of vertical incidence on the mask and the sample surface. This is an example using the fourth, eighth, and tenth solving means. In addition to these, a deflector 19 is provided between the mask and the crossover, and a deflector 20 is provided between the sample and the crossover, so that the deflectors 15, 16, 19, and 20, 17, 17,
The position, strength, or rotation direction of 18 was optimized by computer simulation to minimize the aberration of the image of the sub-field away from the optical axis. This is an example using the fifth solution.

【0023】更に、SMD条件を満足するレンズ系を用
いて、且つ試料面とマスク面を磁場内に置き、試料位置
を種々変化させて収差をシュミレ−ション計算した結
果、試料面をガウス面より30μクロスオ−バ側へ移動
させた時に最小の収差が得られた。第9の手段を用いた
例である。
Further, using a lens system that satisfies the SMD condition, placing the sample surface and the mask surface in a magnetic field, changing the position of the sample in various ways, and calculating the aberrations by simulation, the result is that the sample surface is shifted from the Gaussian surface. The minimum aberration was obtained when the lens was moved to the 30 μ crossover side. This is an example using the ninth means.

【0024】[0024]

【発明の効果】 以上説明したように、本発明を用いれ
ば、収差の少ない電子線の投影レンズ系を用い、更に試
料及び/又はマスク面の磁場を附加、制御して低収差性
を増す時にも附加した磁場の影響によりもとのレンズの
特性が収差的に低下するのを防ぎ良好な転写特性を有す
る電子線投影レンズ系が得られる。
As described above, according to the present invention, when the projection lens system of the electron beam with less aberration is used, and the magnetic field of the sample and / or the mask surface is added and controlled to increase the low aberration, Also, an electron beam projection lens system having good transfer characteristics can be obtained by preventing the characteristics of the original lens from being degraded by aberrations due to the influence of the added magnetic field.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施例の電子線投影レンズの断面図
(中央)と軸上磁場分布(右側)。
FIG. 1 is a sectional view (center) and an axial magnetic field distribution (right side) of an electron beam projection lens according to an embodiment of the present invention.

【図2】本発明の実施例の電子線投影レンズの結像図。FIG. 2 is an image diagram of an electron beam projection lens according to an embodiment of the present invention.

【主要部分の符号の説明】[Description of Signs of Main Parts]

1 ・・・ 第3のレンズ 2 ・・・
マスク 3 ・・・ 第1のレンズ 4 ・・・
第2のレンズ 5 ・・・ 試料 6 ・・・
強磁性体の板 7 ・・・ 第4のレンズ 8 ・・・
所定の主平面 9 ・・・ 所定の主平面 10 ・・・
ずれた主平面 11 ・・・ ずれた主平面 12 ・・・
所定のクロスオ−バ 13、14、15、16 ・・・ 偏向器 17、18 ・・・ 偏向器 19、20 ・・・ 偏向器 21 ・・・ 光軸から離れた位置にある副視野の主光
線の軌道 22 ・・・ 21をマスク面で垂直入射条件を満たす
よう偏向した軌道 23 ・・・ 21を試料面上で垂直入射条件を満たす
ようにした軌道。 30 ・・・ 軸上磁場分布
1 ... third lens 2 ...
Mask 3 ... first lens 4 ...
Second lens 5 ... Sample 6 ...
Ferromagnetic plate 7 Fourth lens 8
Predetermined main plane 9 ... predetermined main plane 10 ...
Shifted main plane 11 ... shifted main plane 12 ...
Predetermined crossover 13, 14, 15, 16 ... Deflector 17, 18 ... Deflector 19, 20 ... Deflector 21 ... Chief ray of the sub-field of view at a position away from the optical axis Orbits 22... 21 deflected to satisfy the vertical incidence condition on the mask surface 23... 21 orbits satisfying the vertical incidence condition on the sample surface. 30 ... axial magnetic field distribution

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 FI H01L 21/027 H01L 21/30 541B ──────────────────────────────────────────────────の Continued on the front page (51) Int.Cl. 6 Identification code FI H01L 21/027 H01L 21/30 541B

Claims (10)

【特許請求の範囲】[Claims] 【請求項1】 マスクのパタ−ンを2段の投影レンズ−
−第1の投影レンズと第2の投影レンズ−−を用いて試
料面に1/Nに縮小転写する投影レンズ系であって、マ
スク及び/又は試料面での磁場を制御することにより結
像収差を低減し、且つ、第1の投影レンズに入射する電
子線が上記マスクと試料間をN:1に内分する点でクロ
スオーバを形成するようにすることを特徴とする電子線
投影レンズ。
A mask pattern is formed by a two-stage projection lens.
A projection lens system for performing 1 / N reduction transfer to a sample surface using a first projection lens and a second projection lens, and forms an image by controlling a magnetic field on a mask and / or a sample surface. An electron beam projection lens, wherein aberration is reduced and a crossover is formed at a point where an electron beam incident on the first projection lens internally divides the mask and the sample into N: 1. .
【請求項2】 第3のレンズをマスクの前段に配して第
1の投影レンズと同一方向の軸上磁場を発生させ、第4
のレンズを試料面の後段に配して第2の投影レンズと同
一方向且つ第1、第3のレンズとは逆方向の軸上磁場分
布を発生させ、これによりマスク又は試料面での磁場を
制御することを特徴とする請求項1記載の電子線投影レ
ンズ
A third lens disposed in front of the mask to generate an on-axis magnetic field in the same direction as the first projection lens;
Is disposed downstream of the sample surface to generate an axial magnetic field distribution in the same direction as the second projection lens and in the opposite direction to the first and third lenses, thereby reducing the magnetic field on the mask or the sample surface. 2. The electron beam projection lens according to claim 1, wherein the lens is controlled.
【請求項3】 請求項2において、第4のレンズの代わ
りに、強磁性体の板を設けたことを特徴とする電子線投
影レンズ。
3. The electron beam projection lens according to claim 2, wherein a ferromagnetic plate is provided instead of the fourth lens.
【請求項4】 請求項1乃至3の電子線投影レンズであ
って、ひとつの視野を複数の副視野に分割し、各副視野
毎に光学系の補正を行いながら転写を行うための電子線
投影レンズにおいて、光軸から離れた副視野を転写する
ために2段の少なくともX偏向器をマスクの後段に設け
てマスクから垂直方向に射出された主光線がクロスオー
バを通るよう補正し、且つ、2段の少なくともX偏向器
を試料の前段に設けて上記クロスオーバを通ってきた主
光線が試料に垂直入射するよう補正を行うことを特徴と
する電子線投影レンズ。
4. An electron beam projection lens according to claim 1, wherein one field is divided into a plurality of sub-fields, and an electron beam is transferred while correcting an optical system for each sub-field. In the projection lens, at least two stages of X deflectors are provided at the subsequent stage of the mask to transfer the sub-field of view away from the optical axis, so that the principal ray emitted vertically from the mask passes through the crossover, and 2. An electron beam projection lens, wherein at least two stages of X deflectors are provided in front of a sample, and correction is performed so that a chief ray passing through the crossover is perpendicularly incident on the sample.
【請求項5】 請求項4において、複数個の偏向器をマ
スクとクロスオーバ間に設け、更に複数個の偏向器をク
ロスオーバと試料間に設け、主光線がマスクから光軸に
平行に出射された副視野の像が試料面で最小の収差とな
るよう、上記それぞれ複数個の偏向器の配置、偏向強度
あるいは回転方向の偏向角を最適化することを特徴とす
る電子線投影レンズ。
5. The apparatus according to claim 4, wherein a plurality of deflectors are provided between the mask and the crossover, and a plurality of deflectors are provided between the crossover and the sample. An electron beam projection lens, characterized by optimizing the arrangement of the plurality of deflectors, the deflection intensity, or the deflection angle in the rotational direction so that the image of the sub-field thus obtained has the minimum aberration on the sample surface.
【請求項6】 請求項1乃至5において、クロスオ−バ
−を中心とした後段のレンズのN倍の相似形は前段のレ
ンズとクロスオ−バ−を中心として点対称になっている
事を特徴とする電子線投影レンズ
6. A lens according to claim 1, wherein the similar shape of N times of the subsequent lens centered on the crossover is point-symmetric with the lens of the previous stage centered on the crossover. Electron beam projection lens
【請求項7】 請求項1乃至6において、マスクを発散
性の電子線で照射することを特徴とする電子線投影レン
ズ。
7. The electron beam projection lens according to claim 1, wherein the mask is irradiated with a divergent electron beam.
【請求項8】 請求項7において、マスクの前段に2段
の少なくともX偏向器を設けて主光線をマスクに垂直に
入射するようにした事を特徴とする電子線投影レンズ。
8. The electron beam projection lens according to claim 7, wherein at least two stages of X deflectors are provided in front of the mask so that the chief ray is perpendicularly incident on the mask.
【請求項9】 マスクのパタ−ンを2段の投影レンズ−
−第1の投影レンズと第2の投影レンズ−−を用いて試
料面に1/Nに縮小転写する投影レンズ系であって、前
記2段のレンズは対称磁気ダブレット条件を満足する対
称磁気ダブッレット型レンズであり、マスク及び/又は
試料面での磁場を制御することにより結像収差を低減す
る電子線投影レンズにおいて、試料面を所定の位置より
離すことで収差を低減する電子線投影レンズ。
9. The pattern of a mask is formed by a two-stage projection lens.
A projection lens system for performing a 1 / N reduction transfer onto a sample surface using a first projection lens and a second projection lens, wherein the two-stage lens is a symmetric magnetic doublet satisfying a symmetric magnetic doublet condition. An electron beam projection lens that reduces imaging aberration by controlling a magnetic field on a mask and / or a sample surface, wherein the electron beam projection lens reduces the aberration by moving the sample surface away from a predetermined position.
【請求項10】 請求項9において、光軸外の副視野像
の試料上での垂直入射条件外れを補正するため、クロス
オーバから試料までの間に2段の少なくともX偏向器を
備える電子線投影レンズ。
10. The electron beam according to claim 9, further comprising at least two stages of X deflectors between the crossover and the sample in order to correct the vertical field condition of the subfield image outside the optical axis on the sample. Projection lens.
JP9105790A 1997-04-23 1997-04-23 Electron beam projection lens Pending JPH10302696A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9105790A JPH10302696A (en) 1997-04-23 1997-04-23 Electron beam projection lens

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9105790A JPH10302696A (en) 1997-04-23 1997-04-23 Electron beam projection lens

Publications (1)

Publication Number Publication Date
JPH10302696A true JPH10302696A (en) 1998-11-13

Family

ID=14416938

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9105790A Pending JPH10302696A (en) 1997-04-23 1997-04-23 Electron beam projection lens

Country Status (1)

Country Link
JP (1) JPH10302696A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100418231B1 (en) * 1999-10-07 2004-02-11 루센트 테크놀러지스 인크 Electron beam imaging apparatus
US6730916B1 (en) 1999-10-22 2004-05-04 Canon Kabushiki Kaisha Electron beam lithography apparatus
US6838682B2 (en) 2002-12-20 2005-01-04 Hitachi High-Technologies Corporation Electron beam exposure equipment and electron beam exposure method
KR100941833B1 (en) 2007-04-26 2010-02-11 가부시키가이샤 뉴플레어 테크놀로지 Charged particle beam writing apparatus and method

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100418231B1 (en) * 1999-10-07 2004-02-11 루센트 테크놀러지스 인크 Electron beam imaging apparatus
US6730916B1 (en) 1999-10-22 2004-05-04 Canon Kabushiki Kaisha Electron beam lithography apparatus
US6838682B2 (en) 2002-12-20 2005-01-04 Hitachi High-Technologies Corporation Electron beam exposure equipment and electron beam exposure method
KR100941833B1 (en) 2007-04-26 2010-02-11 가부시키가이샤 뉴플레어 테크놀로지 Charged particle beam writing apparatus and method

Similar Documents

Publication Publication Date Title
US6323499B1 (en) Electron beam exposure apparatus and method, and device manufacturing method
US5831270A (en) Magnetic deflectors and charged-particle-beam lithography systems incorporating same
US6552353B1 (en) Multi-electron beam exposure method and apparatus and device manufacturing method
US4198569A (en) Electron beam exposure system
US20020125444A1 (en) Illumination-beam scanning configurations and methods for charged-particle-beam microlithography
US6657210B1 (en) Electron beam exposure method, a method of constructing exposure control data, and a computer-readable medium
JP2000058450A (en) Method of optimizing corrector of charged particle beam and charged particle beam exposure system
US7041988B2 (en) Electron beam exposure apparatus and electron beam processing apparatus
US5674413A (en) Scattering reticle for electron beam systems
JP4207232B2 (en) Charged beam exposure system
US6777166B2 (en) Particle-optical lens arrangement and method employing such a lens arrangement
US6455863B1 (en) Apparatus and method for forming a charged particle beam of arbitrary shape
US6066853A (en) Electron-optical system exhibiting reduced aberration
JPS6042825A (en) Exposure device by charged beam
JPH10302696A (en) Electron beam projection lens
US6066855A (en) Charged-particle-beam optical system exhibiting aberration correction
US6388261B1 (en) Charged-particle-beam microlithography apparatus and methods exhibiting reduced astigmatisms and linear distortion
JP3247700B2 (en) Scanning projection electron beam drawing apparatus and method
JP3080006B2 (en) Electron beam exposure correction method
US6326629B1 (en) Projection lithography device utilizing charged particles
JPS5983336A (en) Device for focusing and deflecting charged particle ray
JPH10308341A (en) Exposing method and aligner by means of electron beam
JPH06338445A (en) Electron-beam lithography apparatus
JP2000243337A (en) Charged particle beam exposure device, and manufacture of device using this device
JP3163885B2 (en) Charged particle beam exposure apparatus and exposure method