JPH0778515B2 - Accident location method of underground railway - Google Patents

Accident location method of underground railway

Info

Publication number
JPH0778515B2
JPH0778515B2 JP1108439A JP10843989A JPH0778515B2 JP H0778515 B2 JPH0778515 B2 JP H0778515B2 JP 1108439 A JP1108439 A JP 1108439A JP 10843989 A JP10843989 A JP 10843989A JP H0778515 B2 JPH0778515 B2 JP H0778515B2
Authority
JP
Japan
Prior art keywords
conductor
cable
current
magnetic field
fault
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP1108439A
Other languages
Japanese (ja)
Other versions
JPH02287168A (en
Inventor
英男 佐藤
信 原
啓一 大内
宏資 斉藤
忠禧 池田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Cable Ltd
Original Assignee
Hitachi Cable Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Cable Ltd filed Critical Hitachi Cable Ltd
Priority to JP1108439A priority Critical patent/JPH0778515B2/en
Publication of JPH02287168A publication Critical patent/JPH02287168A/en
Publication of JPH0778515B2 publication Critical patent/JPH0778515B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Locating Faults (AREA)
  • Laying Of Electric Cables Or Lines Outside (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、地中線路の事故点標定方法に関するもので、
より具体的には地中線路を構成するケーブルの地絡事故
点を標定するのに有用なこの種方法の提供に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial field of use] The present invention relates to a method for locating an accident on an underground track,
More specifically, it relates to the provision of such a method that is useful for locating the ground fault point of a cable that constitutes an underground line.

〔従来の技術〕[Conventional technology]

地中線路を構成するケーブルでは、ケーブルコア上のア
ルミシース等の金属シースを有し、ケーブルコアの導体
に流れる電流つまり導体電流と金属シースに流れる電流
つまりシース電流とを分離して測定する技術は、特に地
絡事故時の地絡電流分布から地絡事故区間の標定を行う
手法において重要となる。
A cable that constitutes an underground line has a metal sheath such as an aluminum sheath on the cable core, and measures the current flowing in the conductor of the cable core, that is, the conductor current, and the current flowing in the metal sheath, that is, the sheath current, separately Is particularly important in the method of locating the ground fault section from the ground fault current distribution at the time of the ground fault.

即ち、地絡事故点は、ケーブルコアの導体または金属シ
ースを流れる零相電流の分布から推定が可能であるが、
現実には、導体に流れる地絡電流はその大部分が金属シ
ースを帰路として流れるため、ケーブル外周から変流器
(CT)や磁界センサー等で測定しても、導体電流とシー
ス電流とが合成され相殺された電流成分を検出すること
となって、有効な測定が不可能であると考えられてい
た。
That is, the ground fault accident point can be estimated from the distribution of the zero-phase current flowing through the conductor of the cable core or the metal sheath,
In reality, most of the ground fault current flowing in the conductor flows through the metal sheath as a return path, so the conductor current and sheath current are combined even when measured from the outer circumference of the cable with a current transformer (CT) or magnetic field sensor. It has been considered that effective measurement is impossible because the detected and canceled current components are detected.

そのため、一般には、金属シースがケーブルの長さ方向
で遮断される絶縁接続部(IJ)において、シース回路の
撚架のために接続されたクロスボンド線に流れる電流を
変流器(CT)等で測定することにより、シース回路の零
相電流を求め、事故区間の判定を行う手法が取り入れら
れていた。
Therefore, in general, at the insulation connection (IJ) where the metal sheath is cut off in the length direction of the cable, the current flowing through the cross-bond wire connected for the twisting of the sheath circuit is changed by a current transformer (CT), etc. The method of obtaining the zero-phase current of the sheath circuit and determining the fault zone was adopted by measuring with.

〔発明が解決しようとする課題〕[Problems to be Solved by the Invention]

しかし、かかる方法においては、測定点が絶縁接続部に
限定されてしまい、事故点の標定は絶縁接続部−絶縁接
続部の区間に限られていた。
However, in such a method, the measurement point is limited to the insulation connection portion, and the location of the accident point is limited to the section of insulation connection portion-insulation connection portion.

換言すれば、絶縁接続部においてのみ導体電流とシース
電流の分離が可能となることから、地絡事故区間の標定
は、絶縁接続部と絶縁接続部のスパンに限定され、普通
接続部(NJ)を含む区間では、接地された普通接続部を
境としてどちら側のスパンで事故が起きているかを判別
するのが困難であった。
In other words, since the conductor current and the sheath current can be separated only at the insulated connection, the ground fault fault location is limited to the insulated connection and the span of the insulated connection, and the normal connection (NJ) In the section including, it was difficult to determine which side of the span the accident was occurring with the grounded ordinary connection as the boundary.

このため、上記の手法では、普通接続部を含む線路にお
いて事故区間を標定したい場合には、普通接続部を絶縁
接続部に置き換えることが必要となり、広汎に利用でき
るものとは言い難かった。
Therefore, in the above method, when it is desired to locate the faulty section in the line including the ordinary connecting portion, it is necessary to replace the ordinary connecting portion with the insulating connecting portion, and it cannot be said to be widely applicable.

本発明は、以上の実情に鑑みてなされたものであり、普
通接続部を含む線路において普通接続部前後の事後点の
標定を可能にする全く新しい方法の提供を目的とするも
のである。
The present invention has been made in view of the above circumstances, and it is an object of the present invention to provide a completely new method that enables to locate posterior points before and after a normal connecting portion in a line including the normal connecting portion.

〔課題を解決するための手段・作用〕[Means and actions for solving the problem]

本発明によれば、地中線路を構成するケーブルのセグメ
ント導体のセグメント撚りによっって生ずる導体軸方向
の磁界をケーブル上に巻回されたセンサーコイルにピッ
クアップさせ、それにより導体に流れる事故電流の向き
と大きさを検出して、ケーブルの事故点を標定すること
としたものである。
According to the present invention, the magnetic field in the conductor axial direction generated by the segment twist of the segment conductor of the cable forming the underground line is picked up by the sensor coil wound on the cable, and the fault current flowing in the conductor is thereby caused. The orientation and size of the cable are detected and the fault point of the cable is located.

本発明における上記手段は、次の知見に基づいてなされ
ている。
The above means in the present invention is based on the following findings.

即ち、地中線路を構成する超高圧ケーブルでは導体とし
てセグメントを撚合せたものであるので該セグメント撚
りによる導体軸方向の磁界が発生している。その一方で
は、ケーブルコア上に施されるアルミシース等の金属シ
ースにおいて、導体によってつくられた当該磁界を打ち
消すような電流が流れる。
That is, since the segments are twisted as conductors in the ultra high voltage cable constituting the underground line, a magnetic field is generated in the conductor axial direction due to the twisting of the segments. On the other hand, in a metal sheath such as an aluminum sheath provided on the cable core, an electric current that cancels the magnetic field created by the conductor flows.

ところが、実際には、金属シース例えばアルミシースに
抵抗があるため、該シースでの当該磁界の打ち消しが完
全にはなされておらず、ケーブル表面上からでも、アル
ミシースが無い場合の数割程度の微弱な導体の磁界を検
出することができることが見出された。
However, in reality, since the metal sheath, such as an aluminum sheath, has a resistance, the magnetic field is not completely canceled by the sheath. It has been found that the magnetic field of a weak conductor can be detected.

本発明は、そのようにしてケーブル表面に表れる微弱な
導体軸方向の磁界を検出することにより事故時の導体電
流の分布を知ることにより、事故点の標定を可能にして
いる。さらに、回線毎の導体電流を合成し、零相電流分
布とすることで、事故点の標定がさらに容易に行える。
The present invention enables the location of the fault point by knowing the distribution of the conductor current at the time of the fault by thus detecting the weak magnetic field in the axial direction of the conductor appearing on the cable surface. Furthermore, the fault currents can be located more easily by combining the conductor currents for each line and creating a zero-phase current distribution.

〔実施例〕〔Example〕

添付図面は本発明にかかる地中線路の事故点標定方法の
一実施例を、センサーコイル取り付け部分で示したもの
である。
The attached drawings show an embodiment of a method for locating an accident on an underground track according to the present invention at a sensor coil mounting portion.

ケーブル1は、導体2、絶縁体3を主要素とするケーブ
ルコア4の上にアルミシース等の金属シース5が施さ
れ、その上にプラスチック防食層6を形成して構成され
ており、そのプラスチック防食層6の表面にセンサーコ
イル7が直接的に巻回配置されている。
The cable 1 is configured by forming a metal sheath 5 such as an aluminum sheath on a cable core 4 mainly composed of a conductor 2 and an insulator 3, and forming a plastic anticorrosion layer 6 on the metal sheath 5. The sensor coil 7 is directly wound around the surface of the anticorrosion layer 6.

ケーブルコア1の導体2は、セグメント2aの複数を撚合
せて構成されているのが通常であり、そのセグメント撚
りによって導体に流れる電流に基づいて、基体と直交す
る面の磁界だけではなく導体の軸方向の磁界が発生す
る。その軸方向成分の磁界を防食層6の表面に巻き付け
たセンサーコイル7と鎖交させるものである。
The conductor 2 of the cable core 1 is usually formed by twisting a plurality of segments 2a. Based on the current flowing in the conductor due to the segment twist, not only the magnetic field in the plane orthogonal to the base but also the conductor An axial magnetic field is generated. The magnetic field of the axial component is linked with the sensor coil 7 wound around the surface of the anticorrosion layer 6.

センサーコイル7は、かかる導体軸方向成分の磁界と鎖
交させるため、導体軸方向とは直角に交差する状態で防
食層6上に巻回するものとし、また、導体軸方向成分の
磁界は金属シース5において相当分打ち消され、防食層
6表面では微弱なものとなるので、その微弱な磁界をピ
ックアップできるだけのターン数で数多く巻回配置す
る。
The sensor coil 7 is wound on the anticorrosion layer 6 in a state of intersecting at right angles with the conductor axial direction in order to interlink with the magnetic field of the conductor axial direction component, and the magnetic field of the conductor axial direction component is metallic. Since the sheath 5 is canceled by a considerable amount and becomes weak on the surface of the anticorrosion layer 6, many turns are arranged by the number of turns sufficient to pick up the weak magnetic field.

ここで、センサーコイル7に鎖交する磁束をφとする
と、該コイルには、n×δφ/δtなる電圧が誘起され
る。なお、nはコイルの巻数である。
Here, when the magnetic flux interlinking with the sensor coil 7 is φ, a voltage of n × δφ / δt is induced in the coil. Note that n is the number of turns of the coil.

従って、当該センサーコイル7に誘起された電圧による
電流に基づいて、導体の電流の大きさと位相の情報を知
ることができる。
Therefore, information on the magnitude and phase of the current in the conductor can be known based on the current due to the voltage induced in the sensor coil 7.

〔発明の効果〕〔The invention's effect〕

以上説明してきた本発明の地中線路の標定方法によれ
ば、導体軸方向の磁界をピックアップするセンサーコイ
ルをケーブルの表面に設けたことから、ケーブルの任意
の位置で導体電流の検出を行え、従って、普通接続部で
あろうも任意の区間標定が可能となる効果を有する。
According to the underground line locating method of the present invention described above, since the sensor coil for picking up the magnetic field in the conductor axial direction is provided on the surface of the cable, the conductor current can be detected at any position of the cable, Therefore, there is an effect that an arbitrary section can be located even if it is a normal connection part.

【図面の簡単な説明】[Brief description of drawings]

添付図面は本発明にかかる地中線路の事故点標定方法の
一実施例を示す部分欠截された正面的説明図である。 図中、1はケーブル、2は導体、2aはセグメント、3は
絶縁体、4はケーブルコア、5は金属シース、6はプラ
スチック防食層、7はセンサーコイルである。
BRIEF DESCRIPTION OF THE DRAWINGS The accompanying drawings are partially cutaway front elevational views showing an embodiment of a method of locating an accident on an underground track according to the present invention. In the figure, 1 is a cable, 2 is a conductor, 2a is a segment, 3 is an insulator, 4 is a cable core, 5 is a metal sheath, 6 is a plastic anticorrosion layer, and 7 is a sensor coil.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 斉藤 宏資 茨城県日立市日高町5丁目1番1号 日立 電線株式会社日高工場内 (72)発明者 池田 忠禧 茨城県日立市日高町5丁目1番1号 日立 電線株式会社日高工場内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Hirosuke Saito 5-1-1 Hidakacho, Hitachi City, Ibaraki Prefecture Hitachi Cable Co., Ltd. Hidaka Plant (72) Inventor Tadashi Ikeda Hitachi City, Hidaka, Ibaraki Prefecture 5-1-1, Machi, Hitachi Cable Co., Ltd. Hidaka Factory

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】地中線路を構成するケーブルのセグメント
導体のセグメント撚りによって生ずる導体軸方向の磁界
をケーブル上に巻回されたセンサーコイルにピックアッ
プさせ、それにより導体に流れる事故電流の向きと大き
さを検出して、ケーブルの事故点を標定することを特徴
とする地中線路の事故点標定方法。
Claim: What is claimed is: 1. A sensor coil wound around a cable picks up a magnetic field in the conductor axial direction generated by segment twisting of a segment conductor of a cable that constitutes an underground line, whereby the direction and magnitude of a fault current flowing through the conductor. Method for locating the fault point of the cable by detecting the height of the fault and locating the fault point of the cable.
JP1108439A 1989-04-27 1989-04-27 Accident location method of underground railway Expired - Lifetime JPH0778515B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1108439A JPH0778515B2 (en) 1989-04-27 1989-04-27 Accident location method of underground railway

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1108439A JPH0778515B2 (en) 1989-04-27 1989-04-27 Accident location method of underground railway

Publications (2)

Publication Number Publication Date
JPH02287168A JPH02287168A (en) 1990-11-27
JPH0778515B2 true JPH0778515B2 (en) 1995-08-23

Family

ID=14484802

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1108439A Expired - Lifetime JPH0778515B2 (en) 1989-04-27 1989-04-27 Accident location method of underground railway

Country Status (1)

Country Link
JP (1) JPH0778515B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4289929B2 (en) * 2003-05-29 2009-07-01 旭電機株式会社 Conductive line judgment method
JP4520188B2 (en) * 2004-03-15 2010-08-04 内橋エステック株式会社 Method for detecting conductor defects in electric wires
CN101907678B (en) * 2010-07-12 2012-09-05 西安西电科大电力科技有限公司 Cable fault test system and determining method of fault point

Also Published As

Publication number Publication date
JPH02287168A (en) 1990-11-27

Similar Documents

Publication Publication Date Title
US20110043190A1 (en) Rogowski coil, medium voltage electrical apparatus including the same, and method of providing electrostatic shielding for a rogowski coil
CN106463901A (en) Sensored electrical jumper
JP3691692B2 (en) Superconducting cable
JPH0778515B2 (en) Accident location method of underground railway
CA1191903A (en) Leakage current detecting structure
JP2638231B2 (en) Underground track accident point location method
JP2018156824A (en) Cable, cable trouble orientation method and connection method of cable
JP2534342Y2 (en) Electromagnetic shield cable line
JPH0778517B2 (en) Cable current detector
EP1522825A2 (en) Probe with transformator coupling
US5097202A (en) Faulted current indicators with improved signal to noise ratios
JPH03170882A (en) Method for separating and measuring cable conductor current and shield current from outer periphery of cable
US6278599B1 (en) Lightning retardant cable and conduit systems
CN109839605A (en) A kind of construction of cable of high-precision magnetic-field measurement induction coil
JPH0789137B2 (en) Method for measuring current separation in wire shielded cables
JPH03170880A (en) Locating method for accident point of underground line
JPH0797125B2 (en) Positioning method of fault location coil in underground power transmission line
JP2684925B2 (en) A method for obtaining voltage phase information of power cable lines
JPH0778516B2 (en) Ground fault fault location method for wire shielded power cables
JPS6116746Y2 (en)
JP4136101B2 (en) Grounding method for measurement of buried position of submarine cable
JPH109806A (en) Detecting method of abrasion of contact wire
JPS6319914Y2 (en)
JP3528544B2 (en) Method of locating insulation breakdown of power cable line
JPS59188327A (en) Zero phase current detecting method