JPH0778364A - Magneto-optical recording medium - Google Patents

Magneto-optical recording medium

Info

Publication number
JPH0778364A
JPH0778364A JP24589493A JP24589493A JPH0778364A JP H0778364 A JPH0778364 A JP H0778364A JP 24589493 A JP24589493 A JP 24589493A JP 24589493 A JP24589493 A JP 24589493A JP H0778364 A JPH0778364 A JP H0778364A
Authority
JP
Japan
Prior art keywords
film
protective film
laminated
layer
magneto
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP24589493A
Other languages
Japanese (ja)
Inventor
Hitoshi Nakamura
均 中村
Masashi Nakazawa
政志 中沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Co Ltd
Original Assignee
Ricoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Co Ltd filed Critical Ricoh Co Ltd
Priority to JP24589493A priority Critical patent/JPH0778364A/en
Publication of JPH0778364A publication Critical patent/JPH0778364A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To inhibit the occurrence of uneveness in quality between the layers of a laminated film, to suppress a variation in reflectance and to prevent the deterioration of C/N value in reproduction in a magneto-optical recording medium using a protective film as a film having a laminated structure so as to allow the time required to form the protective film disposed in contact with the substrate and requiring a relatively long film formation time as compared with other constituent layers of the medium to accord with processing cycle time on and after the ensuing stage. CONSTITUTION:A protective film interposed between a substrate and a magnetic recording film has a laminated structure consisting of plural layers of the same material and the difference in refractive index between the constituent layers of the protective film is <=+ or -3.0% or the difference in compositional ratio between the layers is <=+ or -3.0%. The protective film preferably has an interfacial oxidized film having <=10Angstrom thickness between the layers. The surface roughness Rmax of each of the layers is preferably <=20Angstrom .

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、レーザー光を用いて情
報の記録・再生と消去を行い、静止画像ファイル、医療
その他の個人情報管理ファイルなどに利用される光磁気
ディスク等の光磁気記録媒体に関するものであり、特に
その生産性を高めるための基板に接して設けられる保護
膜の層構成に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a magneto-optical recording such as a magneto-optical disk for recording / reproducing and erasing information by using a laser beam, which is used for still image files, medical files and other personal information management files. The present invention relates to a medium, and more particularly, to a layer structure of a protective film provided in contact with a substrate for improving its productivity.

【0002】[0002]

【従来の技術】近年パソコンやワークステーションのア
プリケーションソフトやファイルの記録容量の増加に伴
い、従来のフロッピーディスク(FD)に代って約10
0倍の記録容量をもつ光磁気ディスク(MO)が普及し
利用されるようになってきたが、その価格がまだ高く今
後のコストダウンが望まれているのが実状である。
2. Description of the Related Art With the recent increase in the recording capacity of application software and files for personal computers and workstations, the conventional floppy disk (FD) has been replaced by about 10
Although a magneto-optical disk (MO) having a recording capacity of 0 times has been widely used and used, the price is still high and the cost reduction in the future is desired.

【0003】ここで、まず光磁気ディスクの一般的構成
と作製プロセスを説明し、従来技術の問題点を明らかに
する。
Here, the general structure and manufacturing process of a magneto-optical disk will be described first, and problems of the prior art will be clarified.

【0004】光磁気ディスクは円板のプラスチック基板
上に凹凸のガイドトラックと呼ばれる溝を有する基板を
用い、通常、その上に4層膜が積層されている。この場
合、基板側から第1層保護膜、第2層磁性記録膜、第3
層保護膜そして最後に第4層反射膜からなるのが一般的
であるが、第4層反射膜がない構成もある。4層膜のそ
れぞれの作製は通常、スパッタリング法で行う。
A magneto-optical disk uses a disk-shaped plastic substrate having a groove called an uneven guide track on which a four-layer film is usually laminated. In this case, from the substrate side, the first layer protective film, the second layer magnetic recording film, the third layer
It is generally composed of a layer protective film and finally a fourth layer reflective film, but there is also a configuration without the fourth layer reflective film. Each of the four-layer films is usually produced by a sputtering method.

【0005】スパッタリング法とは、真空容器を所定の
圧力に減圧しアルゴンなどの希ガスを容器に導入し同時
にターゲットに電圧を印加することにより希ガスがイオ
ン化し電界に誘導されてターゲットに衝突する際、ター
ゲット材料から原子が飛び出し、基板に付着して薄膜が
形成されるという方法である。
In the sputtering method, the vacuum container is depressurized to a predetermined pressure, a rare gas such as argon is introduced into the container, and at the same time, a voltage is applied to the target so that the rare gas is ionized and induced by an electric field to collide with the target. At this time, atoms are ejected from the target material and adhere to the substrate to form a thin film.

【0006】即ち実際には、プラスチック基板を第1番
目の真空チャンバに入れ、まず第1層保護膜を作製す
る。第1番目の真空チャンバには予めSiなどの原材料
ターゲットが備え付けられており、アルゴンガスと窒素
ガスを流し電圧をかけて成膜する。膜厚としては100
0Å程度が必要であり、これに要する時間は約6分程度
である。この工程が終了すると、第2番目のチャンバで
第2層磁性記録膜を約200Å成膜する。このように、
前工程で処理した基板を次工程に送り、順次第4層まで
を繰り返し連続的に製造していく。
That is, actually, the plastic substrate is put into the first vacuum chamber, and first the first-layer protective film is formed. A raw material target such as Si is preliminarily provided in the first vacuum chamber, and argon gas and nitrogen gas are flown to apply a voltage to form a film. The film thickness is 100
About 0Å is required, and the time required for this is about 6 minutes. When this step is completed, the second-layer magnetic recording film is formed in the second chamber to a thickness of about 200Å. in this way,
The substrate processed in the previous step is sent to the next step, and the fourth layer is sequentially and repeatedly manufactured continuously.

【0007】ここで、製造に時間の要する工程は基板に
接して設けられる第1層保護膜の成膜であり、一般には
第2層以降の各成膜工程に要する時間の数倍の時間を要
し、直列に並んだスパッタ装置においては、第1層保護
膜を成膜するプロセスが律速となって生産のタクトを早
くすることができなかった。そこで、最近では第1保護
膜チャンバと第2層磁性記録膜チャンバの間に真空チャ
ンバを2つ以上を直列的に追加して、全体のタクトを2
分間に合わせ、生産性を数倍に増すことが検討されてい
る。
Here, the process that requires time for manufacturing is film formation of the first-layer protective film provided in contact with the substrate, and generally, the time required for each film-forming process for the second and subsequent layers is several times as long. In short, in the sputtering devices arranged in series, the process of forming the first-layer protective film is rate-determining, and the production cycle cannot be shortened. Therefore, recently, two or more vacuum chambers are serially added between the first protective film chamber and the second magnetic recording film chamber to increase the total takt time to 2.
It is being considered to increase productivity several times depending on the minutes.

【0008】例えば、トータルで膜厚1000Åの第1
層保護膜を形成するのに、第1層保護膜の成膜を第1層
保護膜に続く第2層磁性記録膜以降の工程に対して直列
的な2基以上の真空チャンバを設け、各チャンバでの成
膜膜厚を333Åと1000Åの1/3に時間分割積層
し、第1層保護膜の成膜時間を第2層磁性記録膜以降の
工程のタクトに合致させて効率アップを図るものであ
る。この時に問題となるのが、第1層保護膜を積層構造
で形成した場合の各積層膜の品質のバラツキがディスク
の信号特性に影響し、品質上重要な問題を引き起こすこ
とである。
For example, the first film having a total film thickness of 1000Å
In order to form the layer protective film, two or more vacuum chambers are provided in series with respect to the process of forming the first layer protective film and the second layer magnetic recording film subsequent to the first layer protective film. The film thickness in the chamber is 333Å and 1/3 of 1000Å divided by time, and the film formation time of the first layer protective film is matched with the tact of the process after the second layer magnetic recording film to improve efficiency. It is a thing. A problem at this time is that when the first-layer protective film is formed in a laminated structure, variations in the quality of each laminated film affect the signal characteristics of the disc, causing a significant quality problem.

【0009】[0009]

【発明が解決しようとする課題】本発明の目的は、媒体
構成の他の層に比し比較的長い成膜時間を要する、基板
に接して設けられる保護膜の成膜時間を次工程以降の生
産タクトと合致させるために保護膜を積層構造とする光
磁気記録媒体において、積層膜各層の品質のバラツキを
抑えて反射率変動を小さくし、再生C/N値の劣化を防
止することにある。
SUMMARY OF THE INVENTION An object of the present invention is to reduce the film formation time of a protective film provided in contact with a substrate, which requires a relatively long film formation time as compared with the other layers of the medium structure, in the subsequent steps. In a magneto-optical recording medium having a laminated structure of a protective film in order to match the production tact, it is to suppress the variation in the quality of each layer of the laminated film to reduce the reflectance fluctuation and prevent the reproduction C / N value from deteriorating. .

【0010】[0010]

【課題を解決するための手段】上記目的を達成するた
め、本発明によれば、基板と磁性記録膜との間に設けら
れる保護膜が、同一材料からなる複数の層を積層した構
造を有し、かつ該保護膜を構成する積層膜の屈折率差が
±3.0%以内であるか、又は各積層膜の組成比差が±
3.0%以内であることを特徴とする光磁気記録媒体が
提供される。また、本発明によれば、上記構成におい
て、各積層膜間に膜厚が10Å以下の界面酸化膜を有す
ることを特徴とする光磁気記録媒体が提供される。さら
に、本発明によれば、上記構成において、各積層膜の表
面粗さRmaxが20Å以下であることを特徴とする光磁
気記録媒体が提供される。
In order to achieve the above object, according to the present invention, a protective film provided between a substrate and a magnetic recording film has a structure in which a plurality of layers made of the same material are laminated. And the difference in the refractive index of the laminated films constituting the protective film is within ± 3.0%, or the difference in the composition ratio of the laminated films is ±.
There is provided a magneto-optical recording medium characterized by being within 3.0%. Further, according to the present invention, there is provided a magneto-optical recording medium having the above-mentioned structure, which has an interfacial oxide film having a film thickness of 10 Å or less between each laminated film. Further, according to the present invention, there is provided a magneto-optical recording medium having the above-mentioned structure, wherein the surface roughness Rmax of each laminated film is 20 Å or less.

【0011】本発明は、基板に接する第1層保護膜を時
間をかえて単層でスパッタリング成膜し、第2層磁性記
録膜以降を直列的にスパッタリングして作製した従来タ
イプの光磁気ディスク(以下単層型保護膜ディスクと略
記する)に対し、第1層保護膜を多数層に分割し、第1
層保護膜に続く第2層磁性記録膜以降の工程のタクト時
間に合わせるようにしてスパッタリング装置の稼働率を
高め、かつ、従来の単層型保護膜ディスクと同性能の光
磁気ディスク(以下積層型保護膜ディスクと略記する)
を提供するものである。即ち、第1層保護膜の各積層膜
の特性を前記のように規定することによって、第1層保
護膜を積層構造にすることによる光磁気ディスクとして
の特性劣化を抑え、しかも製造コストを大幅に低下させ
ることができるものである。
The present invention is a conventional type magneto-optical disk produced by sputtering a first layer protective film in contact with a substrate to form a single layer by changing the time, and sputtering the second layer magnetic recording film and the subsequent layers in series. (Hereinafter referred to as a single layer type protective film disk), the first layer protective film is divided into a plurality of layers,
The magneto-optical disk having the same performance as that of the conventional single-layer type protective film disk (hereinafter referred to as a laminated layer), in which the operating rate of the sputtering apparatus is increased by adjusting to the takt time of the process after the second layer magnetic recording film following the layer protective film. Type protective film disk)
Is provided. That is, by defining the characteristics of each laminated film of the first layer protective film as described above, it is possible to suppress the characteristic deterioration as a magneto-optical disk due to the laminated structure of the first layer protective film, and to significantly reduce the manufacturing cost. Can be reduced to.

【0012】本発明においては、同一材料からなる保護
膜の所定厚みを成膜するのに多数回に分けて積層成膜し
た各層の屈折率差が±3.0%以内であるか、または各
積層膜の組成比差が±3.0%以内である積層保護膜を
設ける。従来の単層型保護膜ディスクの第1層保護膜の
屈折率が均一であるのに比べ、積層型保護膜ディスクで
は各積層保護膜間の屈折率に差が生じ易く、差があると
光磁気ディスクとしての反射率とC/Nが変動する。従
来の単層型保護膜ディスクに対する積層型保護膜ディス
クの反射率の許容幅を±1%にするには、積層保護膜の
屈折率差を±3%以内に押えなければならない。本発明
において、第1層積層保護膜各層の屈折率はスパッタリ
ング時に、希ガスとともに流入させる反応ガス流量を変
えることにより変化するので、各層の屈折率差を±3%
以内に押えるには、スパッタリング時の反応ガス流量の
変化を適切に制御すればよい。
In the present invention, the difference in the refractive index between the layers formed by stacking the protective film made of the same material in a plurality of times is ± 3.0% or less. A laminated protective film having a composition ratio difference of ± 3.0% or less is provided. In comparison with the conventional first layer protective film of the single-layer type protective film disc having a uniform refractive index, in the laminated type protective film disc, a difference easily occurs in the refractive index between the respective laminated protective films. The reflectance and C / N as a magnetic disk fluctuates. In order to set the allowable range of the reflectance of the laminated protective film disc to ± 1% with respect to the conventional single-layer protective film disc, the refractive index difference of the laminated protective film must be suppressed within ± 3%. In the present invention, the refractive index of each layer of the first layer laminated protective film is changed by changing the flow rate of the reaction gas to be introduced together with the rare gas at the time of sputtering. Therefore, the refractive index difference of each layer is ± 3%.
In order to suppress the change within the range, the change in the flow rate of the reaction gas during sputtering may be appropriately controlled.

【0013】本発明では、少なくとも2種の元素からな
る保護膜が使われるが、その具体例としてはSiNのほ
か、TaO、SiAIN、SiON、SiAINなども
利用でき、これらの成膜においては窒素ガス、酸素ガス
が反応ガスに相当する。
In the present invention, a protective film composed of at least two kinds of elements is used. Specific examples thereof include SiN, TaO, SiAIN, SiON, SiAIN, etc., and nitrogen gas can be used in forming these films. , Oxygen gas corresponds to the reaction gas.

【0014】ここで、スパッタリング時の反応ガス流入
の変化を適切に制御して積層保護膜各層の組成比差を±
3%以内に抑えることにより積層保護膜の各層の屈折率
差を±3.0%以内とすることができるので、従来の単
層型保護膜ディスクに対する積層型保護膜ディスクの反
射率の許容幅を±1%に保つことができる。ここでいう
組成比とは保護膜を構成する全ての組成について適用さ
れ、積層保護膜の各層を構成する組成のそれぞれの一つ
とその他の組成との比で、2元系では対象となる成分比
は1組であるが、3元系では3組、4元系では6組が対
象となる。
Here, by appropriately controlling the change of the reaction gas inflow at the time of sputtering, the composition ratio difference of each layer of the laminated protective film is ±.
Since the difference in the refractive index of each layer of the laminated protective film can be kept within ± 3.0% by suppressing it within 3%, the allowable range of the reflectance of the laminated protective film disc with respect to the conventional single-layer protective film disc. Can be maintained at ± 1%. The composition ratio mentioned here is applied to all the constituents of the protective film, and is the ratio of one of the constituents of each layer of the laminated protective film to the other composition, and the ratio of the target components in the binary system. Is one set, but three sets in the ternary system are six sets in the quaternary system.

【0015】本発明では、積層保護膜の各積層膜間に存
在する界面酸化膜層の膜厚が10Å以下であることが必
要である。界面酸化膜層の膜厚が増えるに従って反射率
とC/Nがともに低下し、酸化層厚みが10Å程度が限
界である。
In the present invention, it is necessary that the film thickness of the interfacial oxide film layer existing between the laminated films of the laminated protective film is 10 Å or less. As the thickness of the interfacial oxide film layer increases, both reflectance and C / N decrease, and the oxide layer thickness is limited to about 10Å.

【0016】また本発明では、積層保護膜の各積層膜間
に存在する界面酸化膜層の表面粗さRmaxは20Å以下
であるのが望ましい。界面酸化膜層の表面粗さがRmax
が20Åを超えると、ノイズレベルが上昇してC/Nが
低下する。
Further, in the present invention, it is desirable that the surface roughness Rmax of the interfacial oxide film layer existing between the respective laminated films of the laminated protective film is 20 Å or less. The surface roughness of the interfacial oxide film layer is Rmax
When exceeds 20Å, the noise level rises and C / N decreases.

【0017】[0017]

【実施例】以下、本発明の実施例について従来の単層型
保護膜ディスク及び比較例と較べながら具体的に説明す
るが、本発明はこれらに限定されるものではない。
EXAMPLES Examples of the present invention will be specifically described below in comparison with conventional single-layer type protective film disks and comparative examples, but the present invention is not limited to these.

【0018】図1に従来の単層型保護膜ディスクの第1
層保護膜から第4層反射膜までを作製するスパッタプロ
セスのチャンバ構成を示す。図1において、第1層保護
膜、第2層磁性記録膜、第3層保護膜そして最後に第4
層反射膜のチャンバは直列である。
FIG. 1 shows a first conventional single layer type protective film disk.
The chamber structure of the sputtering process which produces from a layer protective film to a 4th layer reflective film is shown. In FIG. 1, the first layer protective film, the second layer magnetic recording film, the third layer protective film and finally the fourth layer
The chambers of the layer reflective film are in series.

【0019】図2は本発明のディスクを作製するための
チャンバ構成で、従来型が第1層保護膜〜第4層反射膜
のチャンバが直列であるに対し、第1層保護膜の真空チ
ャンバを次工程に対し直列的に3基(積層1st膜チャ
ンバ、積層2nd膜チャンバ及び積層3rd膜チャン
バ)を設置した構成になっている。
FIG. 2 shows a chamber structure for manufacturing the disk of the present invention. In the conventional type, the chambers of the first layer protective film to the fourth layer reflective film are in series, whereas in the vacuum chamber of the first layer protective film. Is arranged in series with respect to the next step (a laminated 1st film chamber, a laminated 2nd film chamber and a laminated 3rd film chamber).

【0020】従来例 実施例の光磁気ディスクと比較するために、従来の単層
型保護膜ディスクを次のようにして作製した。まず、図
1のチャンバ構成の装置にターゲットとして直径8cm
のSiターゲットを用い、ガイドトラックを有するポリ
カーボネート基板上にガス圧2mtorrの条件でアルゴン
ガスと窒素ガスを流しながら(この時のアルゴン及び窒
素ガスの流量を標準ガス流量とする)、総厚約1000
Åの積層保護膜を6分間で成膜した。次に第2層磁性記
録膜としてTbDyFeCoを500Å、第3層保護膜
としてSiNを300Å、第4層反射膜としてAlTi
を500Åを、それぞれ約2分間スパッタリングして光
磁気ディスクを作製した。
Conventional Example In order to compare with the magneto-optical disk of the example, a conventional single layer type protective film disk was manufactured as follows. First, a diameter of 8 cm was used as a target in the apparatus having the chamber configuration in FIG.
Using a Si target of No. 1 and flowing argon gas and nitrogen gas on a polycarbonate substrate having a guide track under a gas pressure of 2 mtorr (the flow rates of argon and nitrogen gas at this time are standard gas flow rates), a total thickness of about 1000
The laminated protective film of Å was formed in 6 minutes. Next, TbDyFeCo is 500 Å as the second magnetic recording film, SiN is 300 Å as the third protective film, and AlTi is the fourth reflective film.
500 Å was sputtered for about 2 minutes to produce a magneto-optical disk.

【0021】実施例1 図2のチャンバ構成の装置の各積層膜チャンバにターゲ
ットとして直径8cmのSiターゲットをセットした
後、積層1st膜チャンバ内でガイドトラックを有する
ポリカーボネート基板上にアルゴンガスと窒素ガスを流
しながら340Åの積層1st膜を約2分間で設け、こ
れを積層2nd膜チャンバに移し積層1st膜と同様に
して330Åの積層2nd膜を約2分間で設け、さらに
積層3rd膜チャンバに移して330Åの積層3rd膜
を約2分間で設け、総圧約1000Åの積層保護膜を設
けた。このとき、各積層膜チャンバの移動間真空度は移
動間真空度0.5×10-5torrで一定に保持し、また積
層1st保護膜の屈折率はチャンバ内のガス厚を2mtor
rと一定とし標準ガス流量状態を中心(実施例1−4が
これに相当)に窒素ガス流量を増減させて、表1に示す
実施例1−1〜1−7の積層保護膜を作製した。なお、
ガス流量標準状態とは従来例の第1層保護膜を成膜とし
たときのアルゴンと窒素ガス流量を指す。次に、従来例
のディスクと同様にして第2層磁性記録膜としてTbD
yFeCoを200Å、第3層保護膜としてSiNを3
00Å、第4層反射膜としてAlTiを500Åスパタ
リングして実施例1−1〜1−7の光磁気ディスクを作
製した。
Example 1 After setting a Si target having a diameter of 8 cm as a target in each laminated film chamber of the apparatus having the chamber structure shown in FIG. 2, argon gas and nitrogen gas were placed on a polycarbonate substrate having a guide track in the laminated 1st film chamber. 340 Å laminated 1st film is provided in about 2 minutes while flowing, and is transferred to the laminated 2nd film chamber, and 330 Å laminated 2nd film is provided in the same manner as the laminated 1st film in about 2 minutes, and further transferred to the laminated 3rd film chamber. A 330 Å laminated 3rd film was provided in about 2 minutes, and a laminated protective film with a total pressure of about 1000 Å was provided. At this time, the vacuum degree during movement of each laminated film chamber was kept constant at a vacuum degree during movement of 0.5 × 10 −5 torr, and the refractive index of the laminated 1st protective film was 2 mtor for the gas thickness in the chamber.
The laminated protective film of Examples 1-1 to 1-7 shown in Table 1 was prepared by increasing and decreasing the nitrogen gas flow rate centering on the standard gas flow rate state (Example 1-4 corresponds to this) while keeping r constant. . In addition,
The gas flow rate standard state refers to the flow rates of argon and nitrogen gas when the first-layer protective film of the conventional example is formed. Next, as in the conventional disk, TbD was used as the second layer magnetic recording film.
yFeCo is 200Å and SiN is 3 as a third layer protective film.
00 Å, AlTi was sputtered at 500 Å as the fourth layer reflective film to fabricate the magneto-optical disks of Examples 1-1 to 1-7.

【0022】比較例1 実施例1において採用した範囲域外の窒素ガス流量で積
層1st膜を設けたこと以外は実施例1と同様にして比
較例1−1〜1−4の光磁気ディスクを作製した。
Comparative Example 1 Magneto-optical disks of Comparative Examples 1-1 to 1-4 were manufactured in the same manner as in Example 1 except that the laminated 1st film was provided at a nitrogen gas flow rate outside the range adopted in Example 1. did.

【0023】表1に従来例、実施例1−1〜1−7、比
較例1−1〜1−4の第1層保護膜の各積層膜の特性、
及び光磁気ディスクの特性を示す。従来例は実施例及び
比較例の基準として表示するものである。なお、屈折率
と膜厚はプラスチック基板と同時にセットしたモニター
ガラス上に成膜されたものをエリプソメーターで測定し
たものである。また、実施例1−1〜1−7、比較例1
−1〜1−4の第1層保護膜の各積層膜の組成比はオー
ジェ電子分光で深さ方向のプロファィルを測定して求め
た。また、屈折率差は{(積層1st膜の屈折率−積層
2nd膜の屈折率)/積層2nd膜の屈折率}×10
0、組成比差は{(積層1st膜の組成比−積層2sn
d膜の組成比)/積層2nd膜の組成比}×100によ
り求めた。さらに、信号特性はナカミチOMS2000
で測定した。
Table 1 shows the characteristics of each laminated film of the first layer protective film of the conventional example, Examples 1-1 to 1-7, and Comparative examples 1-1 to 1-4.
And the characteristics of the magneto-optical disk are shown. The conventional example is displayed as a reference for the example and the comparative example. The refractive index and the film thickness are measured by an ellipsometer after being formed on a monitor glass set at the same time as the plastic substrate. Moreover, Examples 1-1 to 1-7 and Comparative Example 1
The composition ratio of each laminated film of the first-layer protective film of -1 to 1-4 was obtained by measuring the profile in the depth direction by Auger electron spectroscopy. The difference in refractive index is {(refractive index of laminated 1st film−refractive index of laminated 2nd film) / refractive index of laminated 2nd film} × 10
0, the composition ratio difference is {(composition ratio of laminated 1st film−laminated 2sn
The composition ratio of the d film) / the composition ratio of the laminated 2nd film} × 100. Furthermore, the signal characteristics are Nakamichi OMS2000.
It was measured at.

【0023】[0023]

【表1】 [Table 1]

【0024】表1の結果により、従来の単層型保護膜デ
ィスクに対する積層型保護膜ディスクの反射率の許容幅
を±1%にし、C/N≧52(dB)とするには、窒素
ガス流量を調節して積層保護膜の屈折率差を±3(%)
になるようにすればよいことがわかる。また、各層の屈
折率差を±3(%)以内に収めるには、各層の元素比差
を±3%以内にすればよいこともわかる。
From the results shown in Table 1, nitrogen gas can be used in order to set the allowable range of the reflectance of the laminated protective film disc to ± 1% with respect to the conventional single-layer protective film disc so that C / N ≧ 52 (dB). Adjust the flow rate to make the refractive index difference of the laminated protective film ± 3 (%)
You can see that Further, it is also understood that in order to keep the refractive index difference of each layer within ± 3 (%), the element ratio difference of each layer should be within ± 3%.

【0025】実施例2 実施例1において、積層1st膜及び積層2nd膜作製
時の窒素ガス流量を標準ガス流量状態にして屈折率を一
定とし、積層3rd膜の屈折率を窒素ガス流量を標準ガ
ス流量状態を中心(実施例2−4がこれに相当)に変化
させた以外は実施例1と同様にして、実施例2−1〜2
−7の光磁気ディスクを作製した。
Example 2 In Example 1, the nitrogen gas flow rate during the production of the laminated 1st film and the laminated 2nd film was set to a standard gas flow rate state to keep the refractive index constant, and the laminated 3rd film was changed to a standard gas flow rate of the standard gas flow rate. Examples 2-1 and 2-2 are performed in the same manner as in Example 1 except that the flow rate state is changed to the center (Example 2-4 corresponds to this).
A -7 magneto-optical disk was produced.

【0026】比較例2 実施例2において採用した範囲域外の窒素ガス流量で積
層3rd膜を設けたこと以外は実施例1と同様にして比
較例2−1〜2−4の光磁気ディスクを作製した。
Comparative Example 2 Magneto-optical disks of Comparative Examples 2-1 to 2-4 were produced in the same manner as in Example 1 except that the laminated 3rd film was provided at a nitrogen gas flow rate outside the range adopted in Example 2. did.

【0027】表2に従来例、実施例2−1〜2−7、比
較例2−1〜2−4の第1層保護膜の特性、及び光磁気
ディスクの特性を示す。なお、屈折率と膜厚はプラスチ
ック基板と同時にセットしたモニターガラス上に成膜さ
れたものをエリプソメーターで測定したものである。ま
た、屈折率差は{(積層1st膜の屈折率−積層2nd
膜の屈折率)/積層2nd膜の屈折率}×100により
求めた。作製したサンプルの膜厚は、オージェ電子分光
で深さ方向のプロファィルを測定して求めた。さらに、
信号特性はナカミチOMS2000で測定した。
Table 2 shows the characteristics of the first layer protective film of the conventional example, Examples 2-1 to 2-7 and Comparative examples 2-1 to 2-4, and the characteristics of the magneto-optical disk. The refractive index and the film thickness are measured by an ellipsometer after being formed on a monitor glass set at the same time as the plastic substrate. Further, the difference in refractive index is {(refractive index of laminated 1st film−laminated 2nd
The refractive index of the film) / the refractive index of the laminated 2nd film} × 100. The film thickness of the prepared sample was obtained by measuring the profile in the depth direction by Auger electron spectroscopy. further,
The signal characteristics were measured by Nakamichi OMS2000.

【0028】[0028]

【表2】 [Table 2]

【0029】表2の結果より、従来の単層型保護膜ディ
スクに対し積層型保護膜ディスクの反射率の許容幅を±
1%にし、C/N≧52(dB)にするには、窒素ガス
流量を調節して各積層膜の屈折率差を±3(%)になる
ようにすればよいことがわかる。
From the results shown in Table 2, the allowable range of reflectance of the laminated protective film disk is ±± compared with the conventional single layer protective film disk.
It can be seen that in order to set C / N ≧ 52 (dB) to 1%, the nitrogen gas flow rate should be adjusted so that the difference in refractive index between the laminated films becomes ± 3 (%).

【0030】実施例3 実施例1において、標準ガス流量状態とし、移動間真空
度を10-5torr、10-6torrとした以外は実施例1と同
様にして実施例3−1、3−2の光磁気ディスクを作製
した。
Example 3 Examples 3-1, 3 and 3 were carried out in the same manner as in Example 1 except that the standard gas flow rate was used and the vacuum degree during movement was set to 10 −5 torr and 10 −6 torr. A magneto-optical disk No. 2 was produced.

【0031】比較例3 実施例3において、移動間真空度を10-4torr及び10
-3torrとした以外は実施例3と同様にして比較例3−1
及び3−2の光磁気ディスクを作製した。表3に従来
例、実施例3−1、比較例3−1、3−2の積層膜の特
性、及び光磁気ディスクの特性を示す。なお、屈折率と
膜厚はプラスチック基板と同じにセットしたモニターガ
ラス上に成膜されたものエリプソメーターで測定したも
のである。作製した積層保護膜の酸化膜の膜厚は、オー
ジェ電子分光で深さ方向のプロファィルを測定して求め
た。さらに、信号特性はナカミチOMS2000で測定
した。
Comparative Example 3 In Example 3, the degree of vacuum during movement was set to 10 −4 torr and 10
Comparative Example 3-1 in the same manner as in Example 3 except that -3 torr was used.
And 3-2 magneto-optical disks were produced. Table 3 shows the characteristics of the laminated films of the conventional example, Example 3-1, and Comparative examples 3-1, 3-2, and the characteristics of the magneto-optical disk. The refractive index and the film thickness are measured by an ellipsometer formed on a monitor glass set in the same manner as the plastic substrate. The thickness of the oxide film of the formed protective film was obtained by measuring the profile in the depth direction by Auger electron spectroscopy. Furthermore, the signal characteristics were measured by Nakamichi OMS2000.

【0033】[0033]

【表3】 [Table 3]

【0034】表3において、従来例は保護膜を1回のプ
ロセスで作製したもので当然界面酸化膜は形成されてい
ない。実施例では10Å以下の界面酸化膜が形成され、
性能は従来例に匹敵する。しかし、比較例のように界面
酸化膜の膜厚が増えるに従って反射率とC/Nがともに
低下するので、界面酸化膜の膜厚は10Å以下であるこ
とが好ましいことがわかる。
In Table 3, in the conventional example, the protective film was manufactured by a single process, and the interface oxide film was not formed. In the embodiment, an interfacial oxide film of 10 Å or less is formed,
The performance is comparable to the conventional example. However, as in the comparative example, both the reflectance and the C / N decrease as the thickness of the interfacial oxide film increases, so it can be seen that the thickness of the interfacial oxide film is preferably 10 Å or less.

【0035】実施例4 実施例1において、積層1st膜のガス圧を表4のよう
に従来例の基準ガス圧2mtorrを中心(実施例4−2が
相当)に1〜4mtorrに変化させて積層膜を作製した以
外は実施例1と同様にして、実施例4−1〜4−4の光
磁気ディスクを作製した。
Example 4 In Example 1, the gas pressure of the laminated 1st film was changed from 1 to 4 mtorr around the reference gas pressure of 2 mtorr of the conventional example as shown in Table 4 (corresponding to Example 4-2). Magneto-optical disks of Examples 4-1 to 4-4 were prepared in the same manner as in Example 1 except that the film was prepared.

【0036】比較例4 実施例4において、ガス圧を表4のように5mtorrとし
た以外は実施例4と同様にして比較例4−1の光磁気デ
ィスクを作製した。
Comparative Example 4 A magneto-optical disk of Comparative Example 4-1 was prepared in the same manner as in Example 4 except that the gas pressure was changed to 5 mtorr as shown in Table 4.

【0037】上記実施例4及び比較例4の光磁気ディス
クとは別に、第1層積層保護膜の各層を同様の条件で作
製して表面粗さ測定用試料とし、膜厚段差計で表面粗さ
を測定した。表4に従来例、実施例4−1〜4−4、比
較例4−1の第1層積層保護膜の各層の表面粗さ及び光
磁気ディスクの特性(ノイズレベル)を示す。また、信
号特性のノイズレベルはナカミチOMS2000で測定
した。
Separately from the magneto-optical discs of Example 4 and Comparative Example 4, each layer of the first layer laminated protective film was prepared under the same conditions as a sample for measuring surface roughness, and the surface roughness was measured by a film thickness difference meter. Was measured. Table 4 shows the surface roughness of each layer of the first layer laminated protective film of Conventional Example, Examples 4-1 to 4-4 and Comparative Example 4-1, and the characteristics (noise level) of the magneto-optical disk. The noise level of the signal characteristics was measured with Nakamichi OMS2000.

【0038】[0038]

【表4】 [Table 4]

【0039】積層膜の粗さが大きくなると、ノイズレベ
ルの上昇によってC/Nが低下する。実施例4−4では
表面粗さ18Åで1dB劣化しており、表面粗さが20
Å以下であるのが好ましいことがわかる。比較例4−1
では表面粗さが25Åであり、4dBの劣化が認められ
る。
When the roughness of the laminated film is increased, the noise level is increased and the C / N is decreased. In Example 4-4, the surface roughness is 18 Å and the deterioration is 1 dB, and the surface roughness is 20.
It can be seen that Å or less is preferable. Comparative Example 4-1
The surface roughness is 25Å, and deterioration of 4 dB is recognized.

【0040】[0040]

【発明の効果】本発明によれば、生産タクトを早くする
ために、基板と磁性記録層膜に設けられる保護膜を多層
構成にした光磁気記録媒体において、保護膜を構成する
積層膜各層の品質のバラツキを抑えて反射率変動を小さ
くし、再生C/N値の劣化を防止することが可能とな
る。
According to the present invention, in order to speed up the production tact, in a magneto-optical recording medium in which a protective film provided on a substrate and a magnetic recording layer film has a multi-layered structure, each layer of laminated films constituting the protective film is It is possible to suppress variation in quality, reduce reflectance fluctuation, and prevent reproduction C / N value from deteriorating.

【図面の簡単な説明】[Brief description of drawings]

【図1】従来の単層型保護膜ディスクを作製するための
チャンバ構成を示す図である。
FIG. 1 is a diagram showing a chamber configuration for producing a conventional single-layer type protective film disk.

【図2】本発明による積層型保護膜ディスクを作製する
ためのチャンバ構成を示す図である。
FIG. 2 is a diagram showing a chamber configuration for producing a laminated protective film disk according to the present invention.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 基板と磁性記録膜との間に設けられる保
護膜が、同一材料からなる複数の層を積層した構造を有
し、かつ該保護膜を構成する積層膜の屈折率差が±3.
0%以内であるか、又は各積層膜の組成比差が±3.0
%以内であることを特徴とする光磁気記録媒体。
1. A protective film provided between a substrate and a magnetic recording film has a structure in which a plurality of layers made of the same material are laminated, and a difference in refractive index between laminated films forming the protective film is ±. 3.
Within 0%, or the composition ratio difference of each laminated film is ± 3.0
%, A magneto-optical recording medium.
【請求項2】 各積層膜間に膜厚が10Å以下の界面酸
化膜を有することを特徴とする請求項1に記載の光磁気
記録媒体。
2. The magneto-optical recording medium according to claim 1, wherein an interfacial oxide film having a film thickness of 10 Å or less is provided between each laminated film.
【請求項3】 各積層膜の表面粗さRmaxが20Å以下
であることを特徴とする請求項1又は2に記載の光磁気
記録媒体。
3. The magneto-optical recording medium according to claim 1, wherein the surface roughness Rmax of each laminated film is 20 Å or less.
JP24589493A 1993-09-06 1993-09-06 Magneto-optical recording medium Pending JPH0778364A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24589493A JPH0778364A (en) 1993-09-06 1993-09-06 Magneto-optical recording medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24589493A JPH0778364A (en) 1993-09-06 1993-09-06 Magneto-optical recording medium

Publications (1)

Publication Number Publication Date
JPH0778364A true JPH0778364A (en) 1995-03-20

Family

ID=17140403

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24589493A Pending JPH0778364A (en) 1993-09-06 1993-09-06 Magneto-optical recording medium

Country Status (1)

Country Link
JP (1) JPH0778364A (en)

Similar Documents

Publication Publication Date Title
US6528442B1 (en) Optical transparent film and sputtering target for forming optical transparent film
JP3041702B2 (en) Recording medium for horizontal recording
JPH0770038B2 (en) Horizontal recording magnetic recording disk and manufacturing method
US5723032A (en) Magnetic recording medium and manufacturing method thereof
US20050082162A1 (en) Information recording medium, method of manufacturing the same, and sputtering target
JPH0778364A (en) Magneto-optical recording medium
JP3639264B2 (en) Optical disc and manufacturing method thereof
JPH06111403A (en) Film formation for recording medium consisting of multilayered artificial lattice films of transition metal/ noble metal
JP2943607B2 (en) Method for manufacturing magneto-optical recording medium
JPH0511559B2 (en)
JPH0291838A (en) Production of magneto-optical recording medium
JPS62117143A (en) Production of magnetic recording medium
JPH10283626A (en) Magnetic recording medium and production thereof
JPH0693300B2 (en) Method of manufacturing optical information recording carrier
JP3304382B2 (en) Magnetic recording medium and method of manufacturing the same
JP2775313B2 (en) Optical disc and method of manufacturing the same
JPH05128604A (en) Magneto-optical recording medium
JP2003173585A (en) Phase change optical disk and its manufacturing method
JPH06111404A (en) Film formation for recording medium consisting of multilayered artificial lattice films of transition metal/ noble metal
JPS6323235A (en) Optical information recording carrier
JPH0416851B2 (en)
JPH08273160A (en) Production of magnetic recording medium
JPH06139638A (en) Production of magneto-optical recording medium
JPS62267946A (en) Production of recording medium for magneto-optical disk
JPH06150239A (en) Production of magnetic head and chromium nitride film