JPH077830B2 - Solid-state image sensor for radiation detection - Google Patents

Solid-state image sensor for radiation detection

Info

Publication number
JPH077830B2
JPH077830B2 JP62318555A JP31855587A JPH077830B2 JP H077830 B2 JPH077830 B2 JP H077830B2 JP 62318555 A JP62318555 A JP 62318555A JP 31855587 A JP31855587 A JP 31855587A JP H077830 B2 JPH077830 B2 JP H077830B2
Authority
JP
Japan
Prior art keywords
radiation
layer
light
solid
rays
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP62318555A
Other languages
Japanese (ja)
Other versions
JPH01161184A (en
Inventor
賢治 永野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP62318555A priority Critical patent/JPH077830B2/en
Publication of JPH01161184A publication Critical patent/JPH01161184A/en
Publication of JPH077830B2 publication Critical patent/JPH077830B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Measurement Of Radiation (AREA)
  • Solid State Image Pick-Up Elements (AREA)
  • Light Receiving Elements (AREA)

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は固体撮像素子に関し、特に不要な光および放射
線に起因するバックグラウンドノイズを抑制する素子構
造を形成し、高精度の放射線計測が可能な放射線検出用
固体撮像素子に関する。
Description: TECHNICAL FIELD The present invention relates to a solid-state imaging device, and in particular, a device structure that suppresses background noise caused by unnecessary light and radiation is formed, and highly accurate radiation measurement is possible. The present invention relates to a solid-state image sensor for detecting radiation.

[従来の技術] 従来の固体撮像素子は紫外光から赤外光までの電磁波の
波長領域を主に感知の対象としており、受光領域は基本
的に無遮光、その他の領域は低エネルギーの放射線に対
してさえも遮蔽効果の低いAl材等の薄膜で遮光されてい
た。
[Prior Art] A conventional solid-state image sensor mainly senses an electromagnetic wave wavelength region from ultraviolet light to infrared light, and basically, a light receiving region is not shielded, and other regions are low energy radiation. Even against it, it was shielded by a thin film of Al material or the like, which has a low shielding effect.

第2図は従来の紫外光から赤外光までの光を主に検出の
対象とする固体撮像素子の一例を示す半導体チップの断
面図で、半導体基板1の一主面上に絶縁酸化膜2、ポリ
シリ電極3、リンガラス層4が順次形成され、このリン
ガラス層4上には通常Al層6が被着形成され、受光部7
は開口となるように構成されていた。従来の紫外光から
赤外光までの光を主に感知の対象とする固体撮像素子は
電磁波・荷電粒子が入射すると光が入射した場合と同じ
ように信号電荷を発生するので、電磁波・荷電粒子の検
出・計測に利用可能である。このような放射線計測に利
用する固体撮像素子は計測対象外の光を感じないことが
望ましい。また放射線計測ではバックグラウンド放射線
と呼ばれる、測定対象の試料以外からくる放射線があ
る。これは検出器や試料台が内蔵する放射能に起因する
もの、外部の線源から直接に、あるいは周囲の物質で散
乱されて入射するもの、宇宙線その他の天然放射線に起
因するものなどがあり、そのエネルギー分布は広範であ
るが、低エネルギーの放射線の強度が特に強い。
FIG. 2 is a cross-sectional view of a semiconductor chip showing an example of a conventional solid-state imaging device that mainly detects light from ultraviolet light to infrared light. An insulating oxide film 2 is formed on one main surface of a semiconductor substrate 1. , The polysilicon electrode 3 and the phosphorous glass layer 4 are sequentially formed, and the Al layer 6 is usually formed on the phosphorous glass layer 4 by deposition.
Was configured to be an opening. Conventional solid-state imaging devices that mainly sense light from ultraviolet light to infrared light generate signal charges when electromagnetic waves / charged particles enter, similar to the case when light enters, so electromagnetic waves / charged particles It can be used to detect and measure. It is desirable that the solid-state imaging device used for such radiation measurement does not sense light outside the measurement target. In radiation measurement, there is radiation called background radiation that comes from other than the sample to be measured. This may be due to the radioactivity contained in the detector or sample stage, that which is incident directly from an external radiation source or that is scattered by surrounding substances, and that which is caused by cosmic rays or other natural radiation. , Its energy distribution is wide, but the intensity of low-energy radiation is particularly strong.

[発明が解決しようとする問題点] しかしながらこのバックグラウンド放射線は、放射線計
測を行うに際してバックグラウンドノイズとなって計測
目的の放射線の検出を困難にする。このため、放射線検
出用固体撮像素子においては、従来の固体撮像素子のよ
うに無遮光であったりAl材等の遮光薄膜の形成では不要
な光および低エネルギー放射線に起因するバックグラウ
ンドノイズを抑制することができず、高精度の放射線計
測ができなかった。またAl材等を使用してバックグラウ
ンド放射線の低エネルギー放射線を遮蔽しようとすると
遮光膜の膜厚が厚くなってしまい、工業的生産性が悪い
という問題点があり、これまで放射線検出用に適した固
定撮像素子は得られていなかった。
[Problems to be Solved by the Invention] However, this background radiation becomes background noise when performing radiation measurement, and makes it difficult to detect radiation for measurement purposes. Therefore, in the solid-state image sensor for detecting radiation, the background noise caused by light and low-energy radiation that is not light-shielded like the conventional solid-state image sensor or unnecessary in the formation of a light-shielding thin film such as an Al material is suppressed. It was not possible to measure radiation with high precision. Also, when trying to shield low energy radiation of background radiation using Al material etc., there is a problem that the film thickness of the light shielding film becomes thick and the industrial productivity is poor, so far it has been suitable for radiation detection. No fixed image sensor has been obtained.

本発明は、以上述べたような従来の事情に対処してなさ
れたもので、不要な光および低エネルギー放射線に起因
するバックグラウンドノイズが抑制された放射線検出用
固体撮像素子を提供することを目的とする。
The present invention has been made in consideration of the conventional circumstances described above, and an object thereof is to provide a solid-state imaging device for radiation detection in which background noise caused by unnecessary light and low-energy radiation is suppressed. And

[問題点を解決するための手段] 本発明は、半導体基板の一主面に受光領域および信号電
荷を外部に転送する手段を集積してなる放射線検出用固
体撮像素子において、受光領域の形成された主面の全面
がPb材で形成された遮光膜で覆われてなることを特徴と
する放射線検出用固体撮像素子である。
[Means for Solving Problems] According to the present invention, in a solid-state imaging device for radiation detection, a light receiving area is formed in a main surface of a semiconductor substrate, and a light receiving area and means for transferring signal charges to the outside are integrated. The solid-state imaging device for radiation detection is characterized in that the entire main surface is covered with a light-shielding film made of Pb material.

[作用] 遮光膜がPb材で形成された素子構造を有するので、従来
のAl材等で形成するよりも薄い膜厚で、不要な低エネル
ギー放射線を遮蔽できると共に、受光領域もPb材の遮光
膜で覆われているので光等の入射を防ぐことができる。
従ってこれら光・計測不要な低エネルギー放射線の半導
体基板内での吸収・電荷発生が抑制されるので、バック
グラウンドノイズが抑制され、高精度の放射線計測が可
能となる。
[Function] Since the light-shielding film has an element structure formed of Pb material, unnecessary low-energy radiation can be shielded with a thinner film thickness than that formed of conventional Al material and the light-receiving region is also shielded by Pb material. Since it is covered with a film, it is possible to prevent the incidence of light or the like.
Therefore, the absorption of light and low energy radiation that does not require measurement in the semiconductor substrate is suppressed, and the generation of charges is suppressed, so that background noise is suppressed and high-precision radiation measurement becomes possible.

[実施例] 以下、本発明の一実施例について図面を参照して説明す
る。
[Embodiment] An embodiment of the present invention will be described below with reference to the drawings.

第1図は本発明の一実施例である。CCD撮像素子の半導
体チップの断面図で、不純物領域が形成された半導体基
板1上における放射線の入射面に絶縁酸化膜2、CCDシ
フトレジスタ転送ポリシリ電極3およびリンガラス層4
が順次形成され、該リンガラス層4上には遮光効果があ
り、かつ放射線に対しての遮蔽効果の大きいPb層5が全
面に亘って被着形成されている。本実施例のPb層5は撮
像領域に開口を有さず、計測対象外の光とバックグラウ
ンド放射線のうち、強度が特に強い低エネルギー成分の
放射線を遮り、バックグラウンドノイズを低減する。
FIG. 1 shows an embodiment of the present invention. FIG. 1 is a cross-sectional view of a semiconductor chip of a CCD image pickup device, showing an insulating oxide film 2, a CCD shift register transfer polysilicon electrode 3 and a phosphorus glass layer 4 on a radiation incident surface on a semiconductor substrate 1 on which an impurity region is formed.
Are sequentially formed, and a Pb layer 5 having a light-shielding effect and a large radiation-shielding effect is formed on the entire surface of the phosphorous glass layer 4 by adhesion. The Pb layer 5 of the present embodiment does not have an opening in the imaging region, blocks low-energy component radiation having particularly high intensity, out of the light outside the measurement target and the background radiation, and reduces background noise.

有効なPb層5の厚さは、測定対象とする放射線の種類と
エネルギー、そしてバックグラウンド放射線のエネルギ
ースペクトラムに依存する。つまり有効なPb層5の厚さ
はどの放射線ををどの程度のエネルギーまで阻止するか
という測定の目的によるので、ここで一義的に決めるこ
とはできない。
The effective thickness of the Pb layer 5 depends on the type and energy of the radiation to be measured and the energy spectrum of the background radiation. In other words, the effective thickness of the Pb layer 5 depends on the purpose of measurement as to which radiation is blocked up to what level of energy, and therefore cannot be uniquely determined here.

そこで以下に、いつくかの放射線エネルギーについて、
Pb層5の放射線遮蔽膜としての効果と従来遮光膜として
通常用いられているAl層の放射線を遮蔽する効果の例に
よって比較する。tをそれぞれPb層ないしAl層の厚さと
する。放射線の強度、飛程は「理科年表昭和55年度版」
(東京天文台編纂)によるデータをもとに算出した。
So, below, about some radiation energy,
An example of the effect of the Pb layer 5 as a radiation shielding film and the effect of shielding the radiation of the Al layer, which is conventionally used as a light shielding film, will be compared. Let t be the thicknesses of the Pb layer and the Al layer, respectively. The intensity and range of radiation is "Science chronology 1980 edition"
Calculated based on data from (Tokyo Observatory compilation).

まずγ線について述べる。Eγをγ線のエネルギーとす
る。γ線が物質を通過するときはγ線の強度は通過距離
が増えるにしたがって指数関数的に減少する。I0、Iを
それぞれPb層ないしAl層を通過する前と通過した後での
γ線の強度とすると、I/I0はPb層ないしAl層の通過によ
るγ線の減衰、すなわち遮蔽の程度を表す。
First, γ rays will be described. Let E γ be the energy of γ rays. When γ-rays pass through a substance, the intensity of γ-rays decreases exponentially as the passage distance increases. Let I 0 and I be the intensities of γ rays before and after passing through the Pb layer or Al layer, respectively, and I / I 0 is the attenuation of γ rays due to passage through the Pb layer or Al layer, that is, the degree of shielding. Represents

γ=0.05MeV、t=10μmのとき、I/I0はPb層なら0.
6、Al層なら1.0で、 Eγ=0.02MeV、t=10μmのとき、I/I0はPb層なら0.
1、Al層なら1.0で、 Eγ=0.02MeV、t=5μmのとき、I/I0はPb層なら0.
3、Al層なら1.0である。
When E γ = 0.05 MeV and t = 10 μm, I / I 0 is 0 for the Pb layer.
6, 1.0 for Al layer, I / I 0 is 0 for Pb layer when E γ = 0.02MeV and t = 10μm.
1, 1.0 for Al layer, and E / = 0 for Pb layer when E γ = 0.02 MeV and t = 5 μm.
3, 1.0 for Al layer.

このようにEγ<0.1MeVのγ線に対して、t/10μmのPb
層はAl層に比べて大きな遮蔽効果がある。
Thus, for γ rays with E γ <0.1 MeV, Pb of t / 10 μm
The layer has a greater shielding effect than the Al layer.

次にβ線について述べる。Eβをβ線のエネルギーとす
る。β線つまり電子が物質を通過するときは吸収曲線が
ならかで重い荷電粒子の場合のように平均飛程を定める
ことが困難であるので通常傾斜の急な部分を直線で延長
して強度が0になる距離を電子の実用飛程(Reffとす
る)としている。荷電粒子の飛程は通過物質中の電子濃
度に反比例する。82Pb20713Al27の電子濃度はそれぞ
れ、27×1024/cm3、7.8×1023/cm3である。
Next, β rays will be described. Let E β be the energy of β rays. When β rays, that is, electrons pass through a substance, it is difficult to determine the average range as in the case of heavy charged particles because the absorption curve is blunt, so the intensity is usually extended by extending the steep part with a straight line. The distance that becomes 0 is defined as the practical electron range (referred to as Reff). The range of charged particles is inversely proportional to the electron concentration in the passing substance. The electron concentrations of 82 Pb 207 and 13 Al 27 are 27 × 10 24 / cm 3 and 7.8 × 10 23 / cm 3 , respectively.

β=0.08MeVのとき、ReffはPb層なら10μm、Al層な
ら35μmで、 Eβ=0.01MeVのとき、ReffはPb層なら2μm、Al層な
ら7.3μmである。
When E β = 0.08 MeV, Reff is 10 μm for the Pb layer and 35 μm for the Al layer, and when E β = 0.01 MeV, Reff is 2 μm for the Pb layer and 7.3 μm for the Al layer.

次にα線について述べる。Eαをα線のエネルギーとす
る。α線も荷電粒子でβ線と同じく、平均飛程(Rとす
る)は通過物質中の電子濃度に反比例する。
Next, α rays will be described. Let E α be the energy of α rays. Like α rays, α rays are also charged particles, and the average range (denoted by R) is inversely proportional to the electron concentration in the passing substance.

α=1MeVのとき、RはPb層なら0.8μm、Al層なら2.8
μmで、 Eα=10MeVのとき、RはPb層なら14μm、Al層なら50
μmである。
When E α = 1MeV, R is 0.8μm for Pb layer and 2.8 for Al layer
When E α = 10 MeV, R is 14 μm for Pb layer and 50 for Al layer
μm.

このように、β線、α線などの荷電粒子の飛程は、Pb中
ではAl中の約1/3.5で、同じ遮蔽効果を得るのに要する
膜厚はPbはAlの約1/3.5でより。t〜10μmのPb層はE
β<0.1MeVのβ線、Eα<10MeVのα線に対して十分な
遮蔽効果がある。
Thus, the range of charged particles such as β rays and α rays is about 1 / 3.5 of that of Al in Pb, and the film thickness required to obtain the same shielding effect is about 1 / 3.5 of that of Pb. Than. Pb layer of t ~ 10 μm is E
There is a sufficient shielding effect for β rays of β <0.1 MeV and α rays of E α <10 MeV.

[発明の効果] 上述したように、本発明の素子構造によれば、放射線の
入射面から半導体基板に入射する光が無くなり、また従
来のAl材等で形成するよりも薄い膜厚で、不要な低エネ
ルギー放射線を遮蔽でき、これら光・計測不要な低エネ
ルギー放射線の半導体基板内での吸収・電荷発生が抑制
されてバックグラウンドノイズが抑制され、高精度の放
射線計測が可能な放射線検出用固体撮像素子を得ること
ができる。
[Advantages of the Invention] As described above, according to the element structure of the present invention, light incident on the semiconductor substrate from the radiation incident surface is eliminated, and the film thickness is thinner than that formed by a conventional Al material or the like, which is unnecessary. Solids for radiation detection that can shield high-precision radiation measurement by shielding the low-energy radiation, and by suppressing the absorption and charge generation of these low-energy radiation that does not require measurement in the semiconductor substrate. An image sensor can be obtained.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明の一実施例を示す半導体チップの断面
図、第2図は従来の固体撮像素子の一例を示す半導体チ
ップの断面図である。 1……半導体基板、2……絶縁酸化膜 3……ポリシリ電極、4……リンガラス層 5……Pb層、6……Al層 7……受光部
FIG. 1 is a sectional view of a semiconductor chip showing an embodiment of the present invention, and FIG. 2 is a sectional view of a semiconductor chip showing an example of a conventional solid-state imaging device. 1 ... semiconductor substrate, 2 ... insulating oxide film 3 ... polysilicon electrode, 4 ... phosphorus glass layer 5 ... Pb layer, 6 ... Al layer 7 ... light receiving part

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】半導体基板の一主面に受光領域および信号
電荷を外部に転送する手段を集積してなる放射線検出用
固体撮像素子において、受光領域の形成された主面の全
面がPb材で形成された遮光膜で覆われてなることを特徴
とする放射線検出用固体撮像素子。
1. A solid-state imaging device for radiation detection, comprising: a semiconductor substrate having a main surface on which a light-receiving region and means for transferring signal charges to the outside are integrated, and the entire main surface on which the light-receiving region is formed is made of Pb material. A solid-state imaging device for radiation detection, which is covered with the formed light-shielding film.
JP62318555A 1987-12-18 1987-12-18 Solid-state image sensor for radiation detection Expired - Lifetime JPH077830B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62318555A JPH077830B2 (en) 1987-12-18 1987-12-18 Solid-state image sensor for radiation detection

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62318555A JPH077830B2 (en) 1987-12-18 1987-12-18 Solid-state image sensor for radiation detection

Publications (2)

Publication Number Publication Date
JPH01161184A JPH01161184A (en) 1989-06-23
JPH077830B2 true JPH077830B2 (en) 1995-01-30

Family

ID=18100438

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62318555A Expired - Lifetime JPH077830B2 (en) 1987-12-18 1987-12-18 Solid-state image sensor for radiation detection

Country Status (1)

Country Link
JP (1) JPH077830B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007258750A (en) * 2007-06-14 2007-10-04 Fujifilm Corp Solid-state imaging apparatus and method of manufacturing same
JP5118661B2 (en) * 2009-03-25 2013-01-16 浜松ホトニクス株式会社 X-ray imaging device

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5946573A (en) * 1982-09-09 1984-03-15 Fuji Electric Co Ltd Self-checkable semiconductor radiation detector

Also Published As

Publication number Publication date
JPH01161184A (en) 1989-06-23

Similar Documents

Publication Publication Date Title
CN105324683B (en) X-ray imaging device with the cmos sensor being embedded in TFT tablets
US7745798B2 (en) Dual-phosphor flat panel radiation detector
JPH0560871A (en) Radiation detection element
JPH07235652A (en) X-ray image capture element and its preparation
JP2001330677A (en) Radiation detector
JP2005539232A (en) X-ray detector having a plurality of detector units
Send et al. Characterization of a pnCCD for applications with synchrotron radiation
JPS59122988A (en) Radiation measuring element
US20120181438A1 (en) Radiation detecting apparatus, radiation detecting system, and method of manufacturing radiation detecting apparatus
JPH077830B2 (en) Solid-state image sensor for radiation detection
US6512232B2 (en) Method and apparatus for improving the sensitivity of a gamma camera
CN112054087B (en) Graphene semiconductor radiation detection device and preparation method thereof
US20130032724A1 (en) Detection apparatus configured to detect soft x-ray radiation and detection system configured to detect soft x-ray radiation
JPH01219693A (en) Radiation detector
JP3358617B2 (en) Neutron dose rate meter
JP2609590B2 (en) 2D radiation detector
Tanaka et al. Performance of SOI Pixel Sensors Developed for X-ray Astronomy
CN109686747A (en) A kind of imaging sensor and its board structure
CN208690262U (en) A kind of imaging sensor substrate
US6821714B1 (en) Lithography process for patterning HgI2 photonic devices
KR100499046B1 (en) X-ray Image Sensor Using Multi-channel Plate
JP2676814B2 (en) Multi-type light receiving element
JPH02105090A (en) Radiant ray detecting device
Olschner Silicon drift photodiode array detectors
JPH0442082A (en) Scintillation detector

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term