JPH0560871A - Radiation detection element - Google Patents
Radiation detection elementInfo
- Publication number
- JPH0560871A JPH0560871A JP3224307A JP22430791A JPH0560871A JP H0560871 A JPH0560871 A JP H0560871A JP 3224307 A JP3224307 A JP 3224307A JP 22430791 A JP22430791 A JP 22430791A JP H0560871 A JPH0560871 A JP H0560871A
- Authority
- JP
- Japan
- Prior art keywords
- scintillator
- panel
- scintillators
- embedded
- pixels
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01T—MEASUREMENT OF NUCLEAR OR X-RADIATION
- G01T1/00—Measuring X-radiation, gamma radiation, corpuscular radiation, or cosmic radiation
- G01T1/16—Measuring radiation intensity
- G01T1/20—Measuring radiation intensity with scintillation detectors
Landscapes
- Physics & Mathematics (AREA)
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- General Physics & Mathematics (AREA)
- High Energy & Nuclear Physics (AREA)
- Molecular Biology (AREA)
- Spectroscopy & Molecular Physics (AREA)
- Measurement Of Radiation (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は放射線検出素子に関す
る。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a radiation detecting element.
【0002】[0002]
【従来の技術】放射線検出素子はシンチレータと光検出
パネルを組み合わせて構成され、このような従来技術と
して、二次元光センサの全面にシンチレータを付けたも
のがある。しかし、これではシンチレータのクロストー
クにより解像度が低下し、また二次元光センサにダメー
ジを与えやすい欠点がある。2. Description of the Related Art A radiation detecting element is constructed by combining a scintillator and a light detecting panel. As such a conventional technique, there is one in which a scintillator is attached to the entire surface of a two-dimensional photosensor. However, this has the drawbacks that the resolution decreases due to the crosstalk of the scintillator, and the two-dimensional optical sensor is easily damaged.
【0003】一方、光ファイバプレートの上部にシンチ
レータを付け、光ファイバプレートを通った光を二次元
光センサで受光する放射線検出素子も知られている。し
かし、光ファイバプレートは高価であり、装置が大型に
なってしまう。また、検出効率を上げるためにシンチレ
ータを厚くすると解像度が低下しやすい。On the other hand, there is also known a radiation detecting element in which a scintillator is attached to the upper part of the optical fiber plate and the light passing through the optical fiber plate is received by a two-dimensional optical sensor. However, the optical fiber plate is expensive and the device becomes large. Moreover, if the scintillator is made thick to increase the detection efficiency, the resolution is likely to be lowered.
【0004】上記の従来技術の欠点を克服するものとし
て、光ファイバプレートの表面に多数の凹凸を形成し、
ここにシンチレータを付けた技術が、例えば特開昭61
−225739号および同63−221279号に提案
されている。In order to overcome the above-mentioned drawbacks of the prior art, a large number of irregularities are formed on the surface of the optical fiber plate,
A technique in which a scintillator is attached here is disclosed in, for example, JP-A-61
-225739 and 63-212279.
【0005】[0005]
【発明が解決しようとする課題】しかし、上記の公報の
技術によると、画素分離を図る為には、シンチレータの
厚さと同程度か、それ以上の段差をコアガラスとクラッ
ドガラスに設けなければならない。この段差がファイバ
ー径と同程度であれば、シンチレータの充填は可能であ
り、低エネルギーの放射線を高S/Nの検出器で検出す
る場合は、あまり問題は生じない。しかし、高エネルギ
ーの放射線を非晶質半導体からなる二次元光センサで検
出しようとすると、シンチレータは300μm程度の厚
さが要求される。However, according to the technique of the above-mentioned publication, in order to achieve pixel separation, it is necessary to provide a step difference in the core glass and the clad glass, which is about the same as or more than the thickness of the scintillator. .. If this step is approximately the same as the fiber diameter, scintillator filling is possible, and when detecting low-energy radiation with a high S / N detector, there is not much problem. However, in order to detect high-energy radiation with a two-dimensional optical sensor made of an amorphous semiconductor, the scintillator is required to have a thickness of about 300 μm.
【0006】例えば、直径10μm程度のファイバーの
コア又はクラッドに、300μmの段差をつけ、数μm
の粒径のシンチレータをつめようとすると、ファイバー
プレート全面に欠陥なく充填するのは非常に困難であ
り、充填量の不足や不均一は信号量の不足や感度ムラを
起こす。ファイバー径の大きいファイバープレートを用
いた場合(例えば直径100μm程度)、シンチレータ
は均一に充填されるが、二次元光センサの受光部と位置
的なマッチングがとれず、さらに全面エッチングによっ
てシンチレータを埋め込む為、受光部がない位置のファ
イバーの光も周辺のセンサーが迷光として拾ってしま
い、共に解像度を落とす原因となる。For example, a step of 300 μm is formed on a core or clad of a fiber having a diameter of about 10 μm,
If a scintillator having a particle size of 1 is attempted to be packed, it is very difficult to fill the entire surface of the fiber plate without any defect, and insufficient filling amount or non-uniformity causes insufficient signal amount and uneven sensitivity. When a fiber plate with a large fiber diameter is used (for example, a diameter of about 100 μm), the scintillator is uniformly filled, but the scintillator cannot be positionally matched with the light receiving part of the two-dimensional optical sensor, and the scintillator is embedded by etching the entire surface. However, the light from the fiber at the position where there is no light receiving part is also picked up by the surrounding sensors as stray light, which causes a decrease in resolution.
【0007】また、上記公報の技術では、クラッド部の
シンチレータでの励起光はセンサへの入射光とならない
ので、開口率が小さくなり、必然的に光量が下がるた
め、開口率が100%のものに比べてシンチレータの厚
さ(つまり、エッチング量)は、より厚くしなければな
らない。これは、上記のシンチレータの充填の困難さを
更に増加させる事となる。Further, in the technique of the above publication, the excitation light in the scintillator of the clad portion is not incident light to the sensor, so that the aperture ratio becomes small and the amount of light inevitably decreases, so that the aperture ratio is 100%. The thickness (that is, the etching amount) of the scintillator must be made thicker than that of. This further increases the difficulty of filling the scintillator.
【0008】また、上記のいずれの従来技術について
も、潮解性のあるシンチレータの場合、センサ自体を、
真空またはN2 封入のパッケージに入れる必要がある。
特開昭63−215987によると、潮解性の対策とし
てCsIを蒸着した後、キシレン系樹脂をCVD法によ
り蒸着する方法が述べられているが、多数の凹凸やえぐ
れのあるシンチレータ表面を完全に覆うのは非常に困難
であり、1ヶ所のピンホールで感度劣化を起こしてしま
う。Further, in any of the above-mentioned prior arts, in the case of a deliquescent scintillator, the sensor itself is
Must be packaged in a vacuum or N 2 sealed package.
According to Japanese Patent Laid-Open No. 63-215987, a method of depositing CsI and then depositing a xylene-based resin by a CVD method is described as a measure against deliquescent. However, it completely covers a scintillator surface having a large number of irregularities and engravings. It is very difficult to do so, and the sensitivity deteriorates even with one pinhole.
【0009】本発明は、これら従来技術の問題点を解決
した放射線検出素子を提供することを課題としている。An object of the present invention is to provide a radiation detecting element which solves the problems of the prior art.
【0010】[0010]
【課題を解決するための手段】本発明に係る放射線検出
素子は、所定のピッチで基板に形成された複数の凹部に
シンチレータを埋め込んで構成されたシンチレータ埋込
パネルと、複数の画素を有する光検出パネルとを貼り合
わせて一体化したことを特徴とする。A radiation detecting element according to the present invention comprises a scintillator-embedded panel having scintillators embedded in a plurality of recesses formed in a substrate at a predetermined pitch, and a light having a plurality of pixels. It is characterized in that it is attached to a detection panel and integrated.
【0011】[0011]
【作用】本発明の構成によれば、シンチレータ埋込パネ
ルと光検出パネルを貼り合わせて一体化したので、シン
チレータの密封を容易になし得る。また、凹部に埋め込
むことにしたので、この凹部の深さに応じてシンチレー
タを厚くでき、解像度を低下させることなく検出効率を
高め得る。さらに、防湿保護膜と反射膜を形成すること
で、耐湿性の更なる向上と、検出効率の更なる向上を実
現できる。According to the structure of the present invention, since the scintillator-embedded panel and the light detection panel are bonded and integrated, the scintillator can be easily sealed. Further, since the scintillator is embedded in the recess, the scintillator can be thickened according to the depth of the recess, and the detection efficiency can be improved without lowering the resolution. Further, by forming the moisture-proof protective film and the reflective film, it is possible to further improve the moisture resistance and the detection efficiency.
【0012】[0012]
【実施例】以下、添付図面により、本発明のいくつかの
実施例を説明する。DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Several embodiments of the present invention will be described below with reference to the accompanying drawings.
【0013】まず、実施例の要部の説明に先立ち、本発
明の放射線検出素子が用いられる放射線検出装置の全体
構成を説明する。図10は全体構成を示す斜視図で、鉛
製の放射線遮蔽板100を浮上させて描いてある。ガラ
ス基板200の中央部にはホトダイオード(PD)や薄
膜トランジスタ(TFT)などからなる二次元光センサ
300が形成され、この上にシンチレータ埋込パネル4
00が貼り合わされている。また、二次元光センサ30
0の一方の辺に沿うように垂直シフトレジスタ500が
ガラス基板200上に設けられ、他方の辺に沿うように
ガラス基板200上に水平シフトレジスタ600が設け
られている。垂直シフトレジスタ500は画素のスキャ
ン用であり、水平シフトレジスタ600はデータの出力
用であり、出力データはガラス基板200上に設けたア
ンプ700から映像信号として外部に取り出される。First, prior to the description of the main part of the embodiment, the overall construction of a radiation detecting apparatus using the radiation detecting element of the present invention will be explained. FIG. 10 is a perspective view showing the entire structure, in which a radiation shield plate 100 made of lead is floated and drawn. A two-dimensional optical sensor 300 including a photodiode (PD) and a thin film transistor (TFT) is formed in the center of the glass substrate 200, and the scintillator-embedded panel 4 is formed thereon.
00 is pasted together. In addition, the two-dimensional optical sensor 30
The vertical shift register 500 is provided on the glass substrate 200 along one side of 0, and the horizontal shift register 600 is provided on the glass substrate 200 along the other side of 0. The vertical shift register 500 is for pixel scanning, the horizontal shift register 600 is for data output, and the output data is taken out as an image signal from an amplifier 700 provided on the glass substrate 200.
【0014】本実施例においては、上記の基板構成にお
いて、二次元光センサ300とシンチレータ埋込パネル
400を貼り合わせた点に特徴があり、その様子は図1
の一部断面にて示した斜視図の通りである。すなわち、
二次元光センサ300はガラス基板200上に二次元の
アレイとして形成した複数の画素30を有し、一方、シ
ンチレータ埋込パネル400はシリコン基板41の複数
の凹部に埋め込まれた複数のシンチレータ42を有し、
各々の画素30と各々のシンチレータ42が対称の位置
で対応している。The present embodiment is characterized in that the two-dimensional optical sensor 300 and the scintillator-embedded panel 400 are attached to each other in the above-mentioned substrate structure, which is shown in FIG.
It is as the perspective view shown by the partial cross section of FIG. That is,
The two-dimensional optical sensor 300 has a plurality of pixels 30 formed as a two-dimensional array on the glass substrate 200, while the scintillator-embedded panel 400 has a plurality of scintillators 42 embedded in a plurality of recesses of a silicon substrate 41. Have,
Each pixel 30 and each scintillator 42 correspond at symmetrical positions.
【0015】このような放射線検出素子では、図1の上
方からX線やガンマ(γ)線などの放射線が入射する
と、シンチレータ42で発光が生じ、この光子が画素3
0に検出される。この出力は、垂直シフトレジスタ50
0および水平シフトレジスタ600によって読み出さ
れ、アンプ700で増幅されて出力される。In such a radiation detecting element, when a radiation such as an X-ray or a gamma (γ) ray is incident from the upper side of FIG.
Detected as 0. This output is the vertical shift register 50
0 is read by the horizontal shift register 600, amplified by the amplifier 700, and output.
【0016】二次元光センサ300の各々の画素30
は、図2のように構成されている。図2(a)は画素3
0の平面図、同図(b)は断面図である。各々の画素3
0は、光検出セルとしてのホトダイオード31と、スイ
ッチとしての薄膜トランジスタ32を有し、ホトダイオ
ード31は薄膜トランジスタ32のソース電極33上に
Pinシリコンホトダイオードとして構成されている。
ホトダイオード31のアノード電極34はコモンライン
35に接続され、薄膜トランジスタ32のドレイン電極
はドレインライン36に接続され、ゲート電極はゲート
ライン37に接続されている。なお、ドレインライン3
6は前述の水平シフトレジスタ600に、ゲートライン
37は垂直シフトレジスタ500にそれぞれ接続されて
いる。そして、薄膜トランジスタ32にシンチレーショ
ン光が入射しないように、絶縁膜をはさんで薄膜トラン
ジスタ32上に遮光膜38が設けられている。Each pixel 30 of the two-dimensional photosensor 300
Are configured as shown in FIG. FIG. 2A shows the pixel 3
0 is a plan view, and FIG. 3B is a sectional view. Each pixel 3
Reference numeral 0 has a photodiode 31 as a photo-detecting cell and a thin film transistor 32 as a switch. The photodiode 31 is configured as a Pin silicon photodiode on the source electrode 33 of the thin film transistor 32.
The anode electrode 34 of the photodiode 31 is connected to the common line 35, the drain electrode of the thin film transistor 32 is connected to the drain line 36, and the gate electrode thereof is connected to the gate line 37. The drain line 3
6 is connected to the horizontal shift register 600, and the gate line 37 is connected to the vertical shift register 500. Then, a light shielding film 38 is provided on the thin film transistor 32 with an insulating film interposed therebetween so that scintillation light does not enter the thin film transistor 32.
【0017】図3は画素30とシンチレータ42の対応
関係を示す断面図である。シンチレータ埋込パネル40
0の本体をなすシリコン基板41には、二次元光センサ
300の各画素30に対応して開孔が形成され、ここに
シンチレータ42が埋め込まれている。そして、上面が
保護膜(SiO2 膜)43で被覆され、その上にアルミ
ニウムやクロムなどの反射膜44が形成されている。こ
の構成によれば、上方からのX線やガンマ線は反射膜4
4および保護膜43を透過してシンチレータ42に到達
し、シンチレーション発光を起こさせる。この光子はホ
トダイオード31に入射して検出される。一方、上方に
放射されたシンチレーション光も、反射膜44で反射さ
れてホトダイオード31に入射されるので、検出効率が
高い。なお、この場合のシンチレータ42としては、C
sI(ヨウ化セシウム)などが用いられる。FIG. 3 is a sectional view showing a correspondence relationship between the pixel 30 and the scintillator 42. Scintillator embedded panel 40
Openings are formed in the silicon substrate 41 forming the main body of 0 corresponding to each pixel 30 of the two-dimensional photosensor 300, and the scintillator 42 is embedded therein. Then, the upper surface is covered with a protective film (SiO 2 film) 43, and a reflective film 44 made of aluminum, chromium or the like is formed thereon. According to this structure, X-rays and gamma rays from above are reflected by the reflection film 4.
4 and the protective film 43 to reach the scintillator 42 to cause scintillation light emission. This photon enters the photodiode 31 and is detected. On the other hand, the scintillation light emitted upward is also reflected by the reflection film 44 and enters the photodiode 31, so that the detection efficiency is high. The scintillator 42 in this case is C
sI (cesium iodide) or the like is used.
【0018】図4は画素30とシンチレータ42の対応
関係を示す別の例の断面図である。この場合にも、シリ
コン基板41に設けられた開孔がホトダイオード31と
対応し、ここにシンチレータ42としてGd2 O2 Sが
埋め込まれている。この場合には、シンチレータ42に
潮解性がないので、シリコン基板41の開口を二次元光
センサ300で密封するようには構成されていない。な
お、この詳細については後述する。FIG. 4 is a cross-sectional view of another example showing the correspondence between the pixels 30 and the scintillators 42. Also in this case, the opening provided in the silicon substrate 41 corresponds to the photodiode 31, and Gd 2 O 2 S is embedded therein as the scintillator 42. In this case, since the scintillator 42 has no deliquescent property, the opening of the silicon substrate 41 is not configured to be sealed by the two-dimensional optical sensor 300. The details will be described later.
【0019】次に、二次元光センサ300とシンチレー
タ埋込パネル400の貼り合わせ構造体の製造プロセス
を説明する。Next, the manufacturing process of the bonded structure of the two-dimensional optical sensor 300 and the scintillator embedded panel 400 will be described.
【0020】図5および図6は図3の実施例に対応する
製造工程別の断面図である。まず、上面および下面が<
100>面となったシリコン基板41を用意し、熱酸化
法によって厚さ1μm程度のSiO2 からなる保護膜4
3を形成する(図5(a),(b)参照)。熱酸化によ
れば、ピンホールのない膜が形成できる。FIG. 5 and FIG. 6 are cross-sectional views by manufacturing process corresponding to the embodiment of FIG. First, the top and bottom
A silicon substrate 41 having a 100> surface is prepared, and a protective film 4 made of SiO 2 and having a thickness of about 1 μm is formed by a thermal oxidation method.
3 is formed (see FIGS. 5A and 5B). By thermal oxidation, a pinhole-free film can be formed.
【0021】次に、フォトリソグラフィ技術を用いるこ
とにより、上面の保護膜43に多数の開口46を形成す
る。そして、開口46の個数と位置は、貼り合わせる二
次元光センサ300の画素30と対応させる(図5
(c)参照)。ここで、開口46を<111>面のうち
<110>面と直角に交わる面と<110>面との交線
によって構成し、水酸化カリウム溶液に入れると、エッ
チングレートの差(横方向に対して縦方向が400倍)
により、垂直な開孔47がシリコン基板41に形成され
る(図5(d)参照)。Next, a large number of openings 46 are formed in the protective film 43 on the upper surface by using the photolithography technique. Then, the number and position of the openings 46 correspond to the pixels 30 of the two-dimensional optical sensor 300 to be bonded (FIG. 5).
(See (c)). Here, the opening 46 is constituted by a line of intersection of the <110> plane of the <111> plane and a <110> plane, and when the opening 46 is placed in a potassium hydroxide solution, the difference in etching rate (in the lateral direction) (Vertical direction is 400 times)
Thus, a vertical opening 47 is formed in the silicon substrate 41 (see FIG. 5D).
【0022】次に、シリコン基板41の下面の保護膜4
3上にアルミニウムなどを真空蒸着することにより、シ
ンチレーション光反射用の反射膜44を形成する(図6
(a)参照)。しかる後、シンチレータ42の材料とし
て例えばCsI(Na)を、蒸着法や溶融法等で開孔4
7に埋め込み、不要部分を除去する(図6(b)参
照)。Next, the protective film 4 on the lower surface of the silicon substrate 41.
By vacuum-depositing aluminum or the like on the film 3, a reflection film 44 for reflecting scintillation light is formed (FIG.
(See (a)). After that, for example, CsI (Na) is used as the material of the scintillator 42 and the opening 4
7 and removes unnecessary portions (see FIG. 6B).
【0023】次に、しかるべき処理をした後に、別途に
ガラス基板200上に作製した二次元光センサ300
を、ガラス基板200と共にシンチレータ埋込パネル4
00に対向させ(図6(c)参照)、接着剤49によっ
て貼り合わせる。このとき、シンチレータ42とホトダ
イオード31が個々に対応するようにしておく(図6
(d)参照)。Next, after being appropriately processed, the two-dimensional optical sensor 300 separately manufactured on the glass substrate 200.
Together with the glass substrate 200, the scintillator-embedded panel 4
No. 00 (see FIG. 6C) and are bonded by an adhesive 49. At this time, the scintillator 42 and the photodiode 31 correspond to each other (see FIG. 6).
(See (d)).
【0024】上記プロセスで作製された放射線検出素子
では、シリコン基板41の開孔47に埋め込まれたシン
チレータ42は、一方はピンホールのない熱酸化による
保護膜43でカバーされ、他方は二次元光センサ300
によって接着剤49を介して密封されるので、通気性が
なく、従ってCsIなどに特有な潮解性の問題が生じな
い。さらに、保護膜43と反射膜44の間にSi3 N4
などをスパッタ法、CVD法で形成しておけば、膜強度
が向上して作業上の歩留りが良好となる。In the radiation detecting element manufactured by the above process, one of the scintillators 42 embedded in the opening 47 of the silicon substrate 41 is covered with a protective film 43 by thermal oxidation without pinholes, and the other is a two-dimensional light. Sensor 300
Since it is hermetically sealed via the adhesive 49, it is not breathable, and therefore the deliquescent problem peculiar to CsI or the like does not occur. Further, Si 3 N 4 is provided between the protective film 43 and the reflective film 44.
If the film is formed by a sputtering method or a CVD method, the film strength is improved and the yield in operation becomes good.
【0025】図7は図4の実施例に対応するプロセスを
示している。まず、図5(a)〜(b)と同様の工程に
より、図7(a)のようにシリコン基板41に開孔47
を形成する。次に、シンチレータ42の材料として潮解
性の低いGd2 O2 Sを沈降法で埋め込む(図7(b)
参照)。このとき、開孔47以外の部分にもGd2 O2
Sが堆積するが、除去することなく、上面に保護膜(S
iO2 膜)45とアルミニウムなどの反射膜44を形成
する。そして、ガラス基板200と共に二次元光センサ
300を下面から貼り合わせる(図7(c)参照)。FIG. 7 shows a process corresponding to the embodiment of FIG. First, as shown in FIG. 7A, an opening 47 is formed in the silicon substrate 41 by the same steps as those shown in FIGS.
To form. Next, Gd 2 O 2 S having a low deliquescent property is embedded as a material of the scintillator 42 by the sedimentation method (FIG. 7B).
reference). At this time, Gd 2 O 2 is also applied to the portion other than the opening 47.
S is deposited, but the protective film (S
An iO 2 film) 45 and a reflective film 44 of aluminum or the like are formed. Then, the two-dimensional optical sensor 300 is attached together with the glass substrate 200 from the lower surface (see FIG. 7C).
【0026】この実施例のプロセスの場合には、シンチ
レータ42が潮解性のないGd2 O2 Sなので、シリコ
ン基板41の下面に二次元光センサ300を貼り合わせ
ることが可能である。また、シリコン基板41はシンチ
レーション光の阻止能を有しているので、シリコン基板
41の上面のGd2 O2 Sを除去する必要がない。In the case of the process of this embodiment, since the scintillator 42 is Gd 2 O 2 S having no deliquescent property, the two-dimensional photosensor 300 can be attached to the lower surface of the silicon substrate 41. Further, since the silicon substrate 41 has a function of blocking scintillation light, it is not necessary to remove Gd 2 O 2 S on the upper surface of the silicon substrate 41.
【0027】図8はシンチレータの製造プロセスが二次
元光センサ300にダメージを与えない場合の工程を示
している。まず、二次元光センサ300を形成したガラ
ス基板200と、表面に保護膜43を形成したシリコン
基板41を用意し、貼り合わせる。このとき、ガラス基
板200上の受光エリア外には、アライメントマーク9
1を形成しておく。そして、保護膜43上にホトレジス
ト膜92をコーティングし、ホトマスク93を用いて露
光する。このとき、ホトマスク93にはクロムパターン
94と共に、アライメントマーク99をガラス基板20
0上のアライメントマーク91に対応させて設けておく
(図8(a)参照)。FIG. 8 shows the steps when the scintillator manufacturing process does not damage the two-dimensional optical sensor 300. First, the glass substrate 200 having the two-dimensional optical sensor 300 formed thereon and the silicon substrate 41 having the protective film 43 formed on the surface thereof are prepared and bonded. At this time, the alignment mark 9 is placed outside the light receiving area on the glass substrate 200.
1 is formed. Then, a photoresist film 92 is coated on the protective film 43 and exposed using a photomask 93. At this time, the alignment mark 99 is provided on the photomask 93 together with the chrome pattern 94 on the glass substrate 20.
It is provided so as to correspond to the alignment mark 91 above 0 (see FIG. 8A).
【0028】このようにして、ホトマスク93の位置合
せをして、露光、現象および保護膜43の選択エッチン
グにより開口46を形成する。そして、沈降法でGd2
O2 Sによるシンチレータ42を埋め込み、不要部分を
除去後に、保護膜45および反射膜44を形成する(図
8(c)参照)。このプロセスによれば、シンチレータ
42と画素30の位置合せを、アライメントマーク91
およびアライメントマーク99によって正確に行なえ
る。In this way, the photomask 93 is aligned, and the opening 46 is formed by exposure, phenomenon, and selective etching of the protective film 43. Then, by the sedimentation method, Gd 2
After the scintillator 42 made of O 2 S is embedded and unnecessary portions are removed, the protective film 45 and the reflective film 44 are formed (see FIG. 8C). According to this process, the alignment of the scintillator 42 and the pixel 30 is adjusted by the alignment mark 91.
And the alignment mark 99 enables accurate operation.
【0029】図9は、図8による放射線検出素子の変形
例を示している。この場合には、シリコン基板41のエ
ッチングによる開孔47の形成を、異方性の弱いエッチ
ャントで行なっている。このため、開孔47はテーパと
なり、ここにシンチレータ42が埋め込まれている。二
次元光センサ300の受光面の開口率が小さい場合に
は、放射線検出の有効面積が拡がるので、S/N比を向
上できる効果がある。FIG. 9 shows a modification of the radiation detecting element according to FIG. In this case, the opening 47 is formed by etching the silicon substrate 41 with an etchant having weak anisotropy. Therefore, the opening 47 is tapered and the scintillator 42 is embedded therein. When the aperture ratio of the light receiving surface of the two-dimensional optical sensor 300 is small, the effective area for radiation detection is expanded, so that the S / N ratio can be improved.
【0030】以上に説明した実施例の効果、利点を列挙
すると、次のようになる。まず、特性上の利点として、
シンチレータ42はシリコン基板41の開孔47ごとに
分離しているので、クロストークが少なく、従って高解
像度が実現できる。また、シリコン基板41の内部がシ
ンチレーション光の反射面として働くので、検出効率が
高くなる。さらに、反射膜44を設けることで、更に高
効率にできる。さらにまた、シンチレータ部分の窓材が
非常に薄く形成されるので、放射線の透過性に優れてい
る。The effects and advantages of the embodiments described above are listed below. First, as a characteristic advantage,
Since the scintillator 42 is separated for each opening 47 of the silicon substrate 41, crosstalk is small, and therefore high resolution can be realized. Moreover, since the inside of the silicon substrate 41 functions as a reflection surface of scintillation light, the detection efficiency is increased. Further, by providing the reflective film 44, the efficiency can be further improved. Furthermore, since the window material of the scintillator portion is formed to be very thin, it has excellent radiation transmittance.
【0031】次に、製造プロセス上の利点としては、半
導体プロセスとして確立されたシリコンウエーハプロセ
スで作製できるので、製造コストが低い。また、シンチ
レータ42を埋め込む開孔47のパターン設計、変更が
容易なので、多種多様の二次元光センサ300にマッチ
ングさせることができる。さらに、二次元光センサ30
0にダメージを与えることなく、シンチレータの製造プ
ロセスを実行することができる。Next, as an advantage of the manufacturing process, since it can be manufactured by the silicon wafer process established as a semiconductor process, the manufacturing cost is low. Moreover, since the pattern design and change of the opening 47 in which the scintillator 42 is embedded are easy, it is possible to match with the various two-dimensional optical sensors 300. Furthermore, the two-dimensional optical sensor 30
The scintillator manufacturing process can be performed without damaging 0.
【0032】更にデバイス上の利点としては、光ファイ
バプレートに比べて安価であり、高開口率にできる。ま
た、大型化も比較的容易である。さらに、二次元光セン
サ300とシンチレータ埋込パネル400を密着すれ
ば、SiO2 膜や反射膜44が潮解性のあるシンチレー
タ(例えばCsI(Na)など)を保護するため、真空
あるいはN2 封入のパッケージに収容する必要がなく、
感度劣化の心配もない。Further, as an advantage on the device, it is cheaper than the optical fiber plate and can have a high aperture ratio. Further, it is relatively easy to increase the size. Furthermore, if the adhesion of the two-dimensional optical sensor 300 and the scintillator embedded panel 400 to protect the scintillator SiO 2 film and the reflection film 44 with a deliquescent (e.g. CsI (Na), etc.), vacuum or N 2 filled You do n’t have to put it in a package,
There is no concern about sensitivity deterioration.
【0033】[0033]
【発明の効果】以上、詳細に説明した通り、本発明の構
成によれば、シンチレータ埋込パネルと光検出パネルを
貼り合わせて一体化したので、シンチレータの密封を容
易になし得る。また、凹部に埋め込むことにしたので、
この凹部の深さに応じてシンチレータを厚くでき、解像
度を低下させることなく検出効率を高め得る。さらに、
防湿保護膜と反射膜を形成することで、耐湿性の更なる
向上と、検出効率の更なる向上を実現できる。As described above in detail, according to the structure of the present invention, the scintillator-embedded panel and the light detection panel are bonded and integrated, so that the scintillator can be easily sealed. Also, because I decided to embed it in the recess,
The scintillator can be thickened according to the depth of the recess, and the detection efficiency can be improved without lowering the resolution. further,
By forming the moisture-proof protective film and the reflective film, it is possible to further improve the moisture resistance and the detection efficiency.
【図1】実施例に係る放射線検出素子を用いた放射線検
出装置の一部を断面で示した斜視図である。FIG. 1 is a perspective view showing a cross section of a part of a radiation detecting apparatus using a radiation detecting element according to an exemplary embodiment.
【図2】実施例の二次元光センサ300の一画素30の
構成を示す図である。FIG. 2 is a diagram showing a configuration of one pixel 30 of the two-dimensional photosensor 300 of the embodiment.
【図3】実施例の要部の断面図である。FIG. 3 is a sectional view of a main part of the embodiment.
【図4】別の実施例の要部の断面図である。FIG. 4 is a cross-sectional view of a main part of another embodiment.
【図5】図3の実施例に対応する製造プロセス図であ
る。FIG. 5 is a manufacturing process diagram corresponding to the embodiment of FIG. 3;
【図6】図3の実施例に対応する製造プロセス図であ
る。FIG. 6 is a manufacturing process diagram corresponding to the embodiment of FIG. 3;
【図7】図4の実施例に対応する製造プロセス図であ
る。FIG. 7 is a manufacturing process diagram corresponding to the embodiment in FIG. 4;
【図8】変形例に係る製造プロセス図である。FIG. 8 is a manufacturing process diagram according to a modification.
【図9】変形例の断面図である。FIG. 9 is a cross-sectional view of a modified example.
【図10】実施例の放射線検出素子が適用される放射線
検出装置の斜視図である。FIG. 10 is a perspective view of a radiation detection apparatus to which the radiation detection element according to the exemplary embodiment is applied.
100…放射線遮蔽板 200…ガラス基板 300…二次元光センサ 30…画素 31…ホトダイオード 32…薄膜トランジスタ 36…ドレインライン 37…ゲートライン 400…シンチレータ埋込パネル 41…シリコン基板 42…シンチレータ 43…保護膜 44…反射膜 49…接着剤 500…垂直シフトレジスタ 600…水平シフトレジスタ 700…アンプ 100 ... Radiation shielding plate 200 ... Glass substrate 300 ... Two-dimensional photosensor 30 ... Pixel 31 ... Photodiode 32 ... Thin film transistor 36 ... Drain line 37 ... Gate line 400 ... Scintillator embedded panel 41 ... Silicon substrate 42 ... Scintillator 43 ... Protective film 44 ... Reflective film 49 ... Adhesive agent 500 ... Vertical shift register 600 ... Horizontal shift register 700 ... Amplifier
───────────────────────────────────────────────────── フロントページの続き (72)発明者 本目 卓也 静岡県浜松市市野町1126番地の1 浜松ホ トニクス株式会社内 (72)発明者 高林 敏雄 静岡県浜松市市野町1126番地の1 浜松ホ トニクス株式会社内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Takuya Honme 1 1126 Ichinomachi, Hamamatsu City, Shizuoka Prefecture 1126 Hamamatsu Photonics Co., Ltd. (72) Toshio Takabayashi 1126 Hamamatsu City, Hamamatsu City, Shizuoka Prefecture 1 Hamamatsu Photonics Within the corporation
Claims (5)
凹部にシンチレータを埋め込んで構成されたシンチレー
タ埋込パネルと、複数の画素を有する光検出パネルとを
貼り合わせて一体化したことを特徴とする放射線検出素
子。1. A scintillator-embedded panel configured by embedding a scintillator in a plurality of recesses formed in a substrate at a predetermined pitch, and a photodetection panel having a plurality of pixels are bonded and integrated. Radiation detecting element.
素は、前記シンチレータ埋込パネルの有する前記複数の
凹部と同一ピッチで形成され、前記複数の画素の各々と
前記複数の凹部の各々が位置的に対応している請求項1
記載の放射線検出素子。2. The plurality of pixels of the photodetection panel are formed at the same pitch as the plurality of recesses of the scintillator-embedded panel, and each of the plurality of pixels and each of the plurality of recesses are positioned. Claim 1
The radiation detection element described.
数の凹部が前記光検出パネルにより密封されている請求
項1記載の放射線検出素子。3. The radiation detection element according to claim 1, wherein the plurality of recesses in which the scintillator is embedded are sealed by the light detection panel.
より被覆されている請求項1記載の放射線検出素子。4. The radiation detecting element according to claim 1, wherein the surface of the scintillator is covered with a moisture-proof protective film.
レータ埋込パネル表面に光反射膜が形成されている請求
項1記載の放射線検出素子。5. The radiation detecting element according to claim 1, wherein a light reflecting film is formed on a surface of the scintillator-embedded panel opposite to the light detecting panel.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP3224307A JPH0560871A (en) | 1991-09-04 | 1991-09-04 | Radiation detection element |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP3224307A JPH0560871A (en) | 1991-09-04 | 1991-09-04 | Radiation detection element |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH0560871A true JPH0560871A (en) | 1993-03-12 |
Family
ID=16811716
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP3224307A Pending JPH0560871A (en) | 1991-09-04 | 1991-09-04 | Radiation detection element |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0560871A (en) |
Cited By (40)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH07333348A (en) * | 1994-06-03 | 1995-12-22 | Toshiba Corp | Radiation detector and x-ray ct system with this detector |
WO1998036290A1 (en) * | 1997-02-14 | 1998-08-20 | Hamamatsu Photonics K.K. | Radiation detection device and method of producing the same |
WO1998036291A1 (en) * | 1997-02-14 | 1998-08-20 | Hamamatsu Photonics K.K. | Radiation detection device and method of producing the same |
US6133614A (en) * | 1995-08-28 | 2000-10-17 | Canon Kabushiki Kaisha | Apparatus for detecting radiation and method for manufacturing such apparatus |
WO2000063722A1 (en) * | 1999-04-16 | 2000-10-26 | Hamamatsu Photonics K.K. | Scintillator panel and radiation image sensor |
KR20010099356A (en) * | 2001-09-21 | 2001-11-09 | 김경현 | the Method for Coating using Parylene |
EP1258737A1 (en) * | 2000-01-13 | 2002-11-20 | Hamamatsu Photonics K.K. | Radiation image sensor and scintillator panel |
US6531225B1 (en) | 1998-06-18 | 2003-03-11 | Hamamatsu Photonics K.K. | Scintillator panel and radiation image sensor |
WO2003067282A1 (en) * | 2002-02-08 | 2003-08-14 | Kabushiki Kaisha Toshiba | X-ray detector and method for producing x-ray detector |
US6753531B2 (en) | 1999-04-09 | 2004-06-22 | Hamamatsu Photonics K.K. | Scintillator panel and radiation image sensor |
US6762420B2 (en) | 1998-06-18 | 2004-07-13 | Hamamatsu Photonics K.K. | Organic film vapor deposition method and a scintillator panel |
US6833548B2 (en) | 2000-05-19 | 2004-12-21 | Hamamatsu Photonics K.K. | Radiation detector and method of producing the same |
US6919569B2 (en) | 2000-05-19 | 2005-07-19 | Hamamatsu Photonics K.K. | Radiation detector and method of manufacture thereof |
US7034306B2 (en) | 1998-06-18 | 2006-04-25 | Hamamatsu Photonics K.K. | Scintillator panel and radiation image sensor |
US7151263B2 (en) | 2000-05-19 | 2006-12-19 | Hamamatsu Photonics K.K. | Radiation detector and method of manufacture thereof |
JP2008249335A (en) * | 2007-03-29 | 2008-10-16 | Konica Minolta Medical & Graphic Inc | Scintillator panel for radiation, and radiation image photographing device |
JP2009025075A (en) * | 2007-07-18 | 2009-02-05 | Konica Minolta Medical & Graphic Inc | Radiation scintillator panel and flat panel detector |
WO2009060349A3 (en) * | 2007-11-09 | 2009-09-24 | Koninklijke Philips Electronics N.V. | Protection of hygroscopic scintillators |
US7767974B2 (en) | 2007-06-11 | 2010-08-03 | Samsung Electronics Co., Ltd. | Thin-film transistor array substrate for x-ray detector and x-ray detector having the same |
CN102621573A (en) * | 2011-01-31 | 2012-08-01 | 富士胶片株式会社 | Radiological image detection apparatus |
WO2012161304A1 (en) | 2011-05-26 | 2012-11-29 | 東レ株式会社 | Scintillator panel and method for manufacturing scintillator panel |
CN102818811A (en) * | 2011-06-07 | 2012-12-12 | 富士胶片株式会社 | Radiation image detecting device |
WO2014042274A1 (en) * | 2012-09-14 | 2014-03-20 | 浜松ホトニクス株式会社 | Scintillator panel and radiation detector |
WO2014054422A1 (en) | 2012-10-03 | 2014-04-10 | 東レ株式会社 | Scintillator panel and method for producing scintillator panel |
WO2014069284A1 (en) | 2012-11-01 | 2014-05-08 | 東レ株式会社 | Radiation detection device and manufacturing method therefor |
WO2014077178A1 (en) | 2012-11-16 | 2014-05-22 | 東レ株式会社 | Scintillator panel |
WO2014080941A1 (en) | 2012-11-26 | 2014-05-30 | 東レ株式会社 | Scintillator panel and method for producing same |
WO2014080816A1 (en) | 2012-11-26 | 2014-05-30 | 東レ株式会社 | Scintillator panel and method for producing scintillator panel |
JP2015507741A (en) * | 2011-12-22 | 2015-03-12 | サン−ゴバン セラミックス アンド プラスティクス,インコーポレイティド | Image storage device including storage phosphor powder, method of forming image storage device, and computed radiography device |
WO2015068348A1 (en) * | 2013-11-05 | 2015-05-14 | キヤノン株式会社 | Radiographic imaging device and radiographic imaging system |
WO2015068686A1 (en) | 2013-11-06 | 2015-05-14 | 東レ株式会社 | Method for manufacturing three-dimensional structure, method for manufacturing scintillator panel, three-dimensional structure, and scintillator panel |
WO2015076150A1 (en) | 2013-11-20 | 2015-05-28 | 東レ株式会社 | Scintillator panel |
US20150331117A1 (en) * | 2014-05-13 | 2015-11-19 | Architek Material Co., Ltd. | Scintillator panel, radiation image sensor and method of making the same |
WO2016063357A1 (en) * | 2014-10-21 | 2016-04-28 | 公立大学法人大阪府立大学 | Method for producing alkali halide scintillator powder and method for producing scintillator material |
KR20170010352A (en) | 2014-05-30 | 2017-01-31 | 도레이 카부시키가이샤 | Scintillator panel, radiographic image detection device, and method for manufacturing same |
KR20170039659A (en) | 2014-08-08 | 2017-04-11 | 도레이 카부시키가이샤 | Scintillator panel and radiation detector |
JP2017173174A (en) * | 2016-03-24 | 2017-09-28 | 国立大学法人静岡大学 | Method for manufacturing radiation detection element |
JP2017191113A (en) * | 2012-06-25 | 2017-10-19 | ソニー株式会社 | Radiation detector and manufacturing method thereof |
CN108152848A (en) * | 2017-11-01 | 2018-06-12 | 同济大学 | A kind of micro-structure scintillation component with highlight extract efficiency |
KR20180136430A (en) | 2016-04-27 | 2018-12-24 | 도레이 카부시키가이샤 | Scintillator panel, manufacturing method thereof, and radiation detecting device |
-
1991
- 1991-09-04 JP JP3224307A patent/JPH0560871A/en active Pending
Cited By (82)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH07333348A (en) * | 1994-06-03 | 1995-12-22 | Toshiba Corp | Radiation detector and x-ray ct system with this detector |
US6133614A (en) * | 1995-08-28 | 2000-10-17 | Canon Kabushiki Kaisha | Apparatus for detecting radiation and method for manufacturing such apparatus |
CN100397096C (en) * | 1997-02-14 | 2008-06-25 | 浜松光子学株式会社 | Radiation detection device and method of producing the same |
WO1998036290A1 (en) * | 1997-02-14 | 1998-08-20 | Hamamatsu Photonics K.K. | Radiation detection device and method of producing the same |
WO1998036291A1 (en) * | 1997-02-14 | 1998-08-20 | Hamamatsu Photonics K.K. | Radiation detection device and method of producing the same |
USRE40291E1 (en) * | 1997-02-14 | 2008-05-06 | Hamamatsu Photonics K.K. | Radiation detection device and method of making the same |
US6262422B1 (en) | 1997-02-14 | 2001-07-17 | Hamamatsu Photonics K.K. | Radiation detection device and method of making the same |
US6278118B1 (en) | 1997-02-14 | 2001-08-21 | Hamamatsu Photonics K.K. | Radiation detection device and method of making the same |
US7705315B2 (en) | 1998-06-18 | 2010-04-27 | Hamamatsu Photonics K.K. | Scintillator panel and radiation image sensor |
US7034306B2 (en) | 1998-06-18 | 2006-04-25 | Hamamatsu Photonics K.K. | Scintillator panel and radiation image sensor |
US7112801B2 (en) | 1998-06-18 | 2006-09-26 | Hamamatsu Photonics K.K. | Scintillator panel and radiation image sensor |
US7662427B2 (en) | 1998-06-18 | 2010-02-16 | Hamamatsu Photonics K.K. | Organic film vapor deposition method |
US6531225B1 (en) | 1998-06-18 | 2003-03-11 | Hamamatsu Photonics K.K. | Scintillator panel and radiation image sensor |
US6762420B2 (en) | 1998-06-18 | 2004-07-13 | Hamamatsu Photonics K.K. | Organic film vapor deposition method and a scintillator panel |
US6777690B2 (en) | 1998-06-18 | 2004-08-17 | Hamamatsu Photonics K.K. | Organic film vapor deposition method and a scintillator panel |
US7408177B2 (en) | 1998-06-18 | 2008-08-05 | Hamamatsu Photonics K.K. | Scintillator panel and radiation image sensor |
US6849336B2 (en) | 1998-06-18 | 2005-02-01 | Hamamatsu Photonics K.K. | Scintillator panel and radiation image sensor |
US7897938B2 (en) | 1998-06-18 | 2011-03-01 | Hamamatsu Photonics K.K. | Scintillator panel |
US7048967B2 (en) | 1998-06-18 | 2006-05-23 | Hamamatsu Photonics K.K. | Organic film vapor deposition method and a scintillator panel |
US6753531B2 (en) | 1999-04-09 | 2004-06-22 | Hamamatsu Photonics K.K. | Scintillator panel and radiation image sensor |
US6911658B2 (en) | 1999-04-09 | 2005-06-28 | Hamamatsu Photonics K.K. | Scintillator panel and radiation image sensor |
WO2000063722A1 (en) * | 1999-04-16 | 2000-10-26 | Hamamatsu Photonics K.K. | Scintillator panel and radiation image sensor |
EP1258737A4 (en) * | 2000-01-13 | 2003-05-07 | Hamamatsu Photonics Kk | Radiation image sensor and scintillator panel |
EP1258737A1 (en) * | 2000-01-13 | 2002-11-20 | Hamamatsu Photonics K.K. | Radiation image sensor and scintillator panel |
US6891164B2 (en) | 2000-01-13 | 2005-05-10 | Hamamatsu Photonics K.K. | Radiation image sensor and scintillator panel |
US6919569B2 (en) | 2000-05-19 | 2005-07-19 | Hamamatsu Photonics K.K. | Radiation detector and method of manufacture thereof |
US7151263B2 (en) | 2000-05-19 | 2006-12-19 | Hamamatsu Photonics K.K. | Radiation detector and method of manufacture thereof |
US6833548B2 (en) | 2000-05-19 | 2004-12-21 | Hamamatsu Photonics K.K. | Radiation detector and method of producing the same |
KR20010099356A (en) * | 2001-09-21 | 2001-11-09 | 김경현 | the Method for Coating using Parylene |
US7053380B2 (en) | 2002-02-08 | 2006-05-30 | Kabushiki Kaisha Toshiba | X-ray detector and method for producing X-ray detector |
WO2003067282A1 (en) * | 2002-02-08 | 2003-08-14 | Kabushiki Kaisha Toshiba | X-ray detector and method for producing x-ray detector |
CN100335914C (en) * | 2002-02-08 | 2007-09-05 | 株式会社东芝 | X-ray detector and method for producing x-ray detector |
JP2008249335A (en) * | 2007-03-29 | 2008-10-16 | Konica Minolta Medical & Graphic Inc | Scintillator panel for radiation, and radiation image photographing device |
US7767974B2 (en) | 2007-06-11 | 2010-08-03 | Samsung Electronics Co., Ltd. | Thin-film transistor array substrate for x-ray detector and x-ray detector having the same |
JP2009025075A (en) * | 2007-07-18 | 2009-02-05 | Konica Minolta Medical & Graphic Inc | Radiation scintillator panel and flat panel detector |
US8373130B2 (en) | 2007-11-09 | 2013-02-12 | Koninklijke Philips Electronics N.V. | Protection of hygroscopic scintillators |
WO2009060349A3 (en) * | 2007-11-09 | 2009-09-24 | Koninklijke Philips Electronics N.V. | Protection of hygroscopic scintillators |
CN102621573A (en) * | 2011-01-31 | 2012-08-01 | 富士胶片株式会社 | Radiological image detection apparatus |
JP2012159395A (en) * | 2011-01-31 | 2012-08-23 | Fujifilm Corp | Radiation image detector |
WO2012161304A1 (en) | 2011-05-26 | 2012-11-29 | 東レ株式会社 | Scintillator panel and method for manufacturing scintillator panel |
US9177683B2 (en) | 2011-05-26 | 2015-11-03 | Toray Industries, Inc. | Scintillator panel and method for manufacturing scintillator panel |
JP5110230B1 (en) * | 2011-05-26 | 2012-12-26 | 東レ株式会社 | Scintillator panel and method for manufacturing scintillator panel |
CN102818811A (en) * | 2011-06-07 | 2012-12-12 | 富士胶片株式会社 | Radiation image detecting device |
JP2012251978A (en) * | 2011-06-07 | 2012-12-20 | Fujifilm Corp | Radiation detection device |
JP2015507741A (en) * | 2011-12-22 | 2015-03-12 | サン−ゴバン セラミックス アンド プラスティクス,インコーポレイティド | Image storage device including storage phosphor powder, method of forming image storage device, and computed radiography device |
JP2017191113A (en) * | 2012-06-25 | 2017-10-19 | ソニー株式会社 | Radiation detector and manufacturing method thereof |
WO2014042274A1 (en) * | 2012-09-14 | 2014-03-20 | 浜松ホトニクス株式会社 | Scintillator panel and radiation detector |
JP2014059171A (en) * | 2012-09-14 | 2014-04-03 | Hamamatsu Photonics Kk | Scintillator panel and radiation detector |
US9310494B2 (en) | 2012-09-14 | 2016-04-12 | Hamamatsu Photonics K.K. | Scintillator panel and radiation detector |
WO2014054422A1 (en) | 2012-10-03 | 2014-04-10 | 東レ株式会社 | Scintillator panel and method for producing scintillator panel |
US9684082B2 (en) | 2012-10-03 | 2017-06-20 | Toray Industries, Inc. | Scintillator panel and method for manufacturing scintillator panel |
WO2014069284A1 (en) | 2012-11-01 | 2014-05-08 | 東レ株式会社 | Radiation detection device and manufacturing method therefor |
JP5704260B2 (en) * | 2012-11-16 | 2015-04-22 | 東レ株式会社 | Scintillator panel |
US9564253B2 (en) | 2012-11-16 | 2017-02-07 | Toray Industries, Inc. | Scintillator panel |
CN104781889A (en) * | 2012-11-16 | 2015-07-15 | 东丽株式会社 | Protein production accelerator |
KR20150085809A (en) | 2012-11-16 | 2015-07-24 | 도레이 카부시키가이샤 | Scintillator panel |
WO2014077178A1 (en) | 2012-11-16 | 2014-05-22 | 東レ株式会社 | Scintillator panel |
US9791576B2 (en) | 2012-11-26 | 2017-10-17 | Toray Industries, Inc. | Scintillator panel and method for manufacturing scintillator panel |
KR20150090040A (en) | 2012-11-26 | 2015-08-05 | 도레이 카부시키가이샤 | Scintillator panel and method for producing same |
WO2014080816A1 (en) | 2012-11-26 | 2014-05-30 | 東レ株式会社 | Scintillator panel and method for producing scintillator panel |
WO2014080941A1 (en) | 2012-11-26 | 2014-05-30 | 東レ株式会社 | Scintillator panel and method for producing same |
US9632185B2 (en) | 2012-11-26 | 2017-04-25 | Toray Industries, Inc. | Scintillator panel and method for manufacturing the same |
WO2015068348A1 (en) * | 2013-11-05 | 2015-05-14 | キヤノン株式会社 | Radiographic imaging device and radiographic imaging system |
KR20160078958A (en) | 2013-11-06 | 2016-07-05 | 도레이 카부시키가이샤 | Method for manufacturing three-dimensional structure, method for manufacturing scintillator panel, three-dimensional structure, and scintillator panel |
US10132937B2 (en) | 2013-11-06 | 2018-11-20 | Toray Industries, Inc. | Method for manufacturing three-dimensional structure, method for manufacturing scintillator panel, three-dimensional structure, and scintillator panel |
WO2015068686A1 (en) | 2013-11-06 | 2015-05-14 | 東レ株式会社 | Method for manufacturing three-dimensional structure, method for manufacturing scintillator panel, three-dimensional structure, and scintillator panel |
JPWO2015068686A1 (en) * | 2013-11-06 | 2017-03-09 | 東レ株式会社 | Three-dimensional structure manufacturing method, scintillator panel manufacturing method, three-dimensional structure, and scintillator panel |
KR20160088295A (en) | 2013-11-20 | 2016-07-25 | 도레이 카부시키가이샤 | Scintillator panel |
US10176902B2 (en) | 2013-11-20 | 2019-01-08 | Toray Industries, Inc. | Scintillator panel |
WO2015076150A1 (en) | 2013-11-20 | 2015-05-28 | 東レ株式会社 | Scintillator panel |
US20150331117A1 (en) * | 2014-05-13 | 2015-11-19 | Architek Material Co., Ltd. | Scintillator panel, radiation image sensor and method of making the same |
US9372269B2 (en) * | 2014-05-13 | 2016-06-21 | Architek Material Co., Ltd. | Scintillator panel, radiation image sensor and method of making the same |
US10042060B2 (en) | 2014-05-30 | 2018-08-07 | Toray Industries, Inc. | Scintillator panel, radiographic image detection device, and method for manufacturing same |
KR20170010352A (en) | 2014-05-30 | 2017-01-31 | 도레이 카부시키가이샤 | Scintillator panel, radiographic image detection device, and method for manufacturing same |
KR20170039659A (en) | 2014-08-08 | 2017-04-11 | 도레이 카부시키가이샤 | Scintillator panel and radiation detector |
WO2016063357A1 (en) * | 2014-10-21 | 2016-04-28 | 公立大学法人大阪府立大学 | Method for producing alkali halide scintillator powder and method for producing scintillator material |
CN105849228A (en) * | 2014-10-21 | 2016-08-10 | 公立大学法人大阪府立大学 | Method for producing alkali halide scintillator powder and method for producing scintillator material |
US10208246B2 (en) | 2014-10-21 | 2019-02-19 | Osaka Prefecture University Public Corporation | Method for manufacturing alkali halide-based scintillator powder and method for manufacturing scintillator material |
JP2017173174A (en) * | 2016-03-24 | 2017-09-28 | 国立大学法人静岡大学 | Method for manufacturing radiation detection element |
KR20180136430A (en) | 2016-04-27 | 2018-12-24 | 도레이 카부시키가이샤 | Scintillator panel, manufacturing method thereof, and radiation detecting device |
US10741298B2 (en) | 2016-04-27 | 2020-08-11 | Toray Industries, Inc. | Scintillator panel and production method for same, and radiation detection apparatus |
CN108152848A (en) * | 2017-11-01 | 2018-06-12 | 同济大学 | A kind of micro-structure scintillation component with highlight extract efficiency |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPH0560871A (en) | Radiation detection element | |
US6909097B2 (en) | Scintillation detector, system and method providing energy and position information | |
EP1118878B1 (en) | Scintillator panel, radiation image sensor, and method for producing the same | |
EP0903590B1 (en) | Radiation detection device and method of producing the same | |
US6452186B1 (en) | Detector for the detection for electromagnetic radiation | |
US20080258067A1 (en) | Microelectronic System with a Passivation Layer | |
JP3996849B2 (en) | Protective cover for a device susceptible to moisture and its mounting method | |
JP2721476B2 (en) | Radiation detecting element and method of manufacturing the same | |
US20140030832A1 (en) | Pixelated Scintillation Detector and Method of Making Same | |
JPS5810620A (en) | Electromagnetic radiation detector | |
JP2547908B2 (en) | Radiation detector | |
JPH05188148A (en) | Radiation detecting element | |
JP2001330677A (en) | Radiation detector | |
JP4162030B2 (en) | Radiation detector | |
WO2004079397A1 (en) | Scintillator panel, scintillator panel laminate, radiation image sensor using the same, and radiation energy discriminator | |
US20180267180A1 (en) | Radiation detection element and radiation detection apparatus | |
JP2003075593A (en) | Radiation scintillator, image detector and manufacturing method thereof | |
US20090242774A1 (en) | Radiation detector | |
WO2019176137A1 (en) | Radiation detection panel, radiation detector, and method for manufacturing radiation detection panel | |
US7199369B1 (en) | Low threshold level radiation detector | |
JPH0463555B2 (en) | ||
JP4501238B2 (en) | Multi-slice radiation detector | |
JPH05875Y2 (en) | ||
JP2003262674A (en) | Image detector | |
JPH11160441A (en) | Radiation detecting element |