JPH0776739A - Production of metal calcium - Google Patents

Production of metal calcium

Info

Publication number
JPH0776739A
JPH0776739A JP24620793A JP24620793A JPH0776739A JP H0776739 A JPH0776739 A JP H0776739A JP 24620793 A JP24620793 A JP 24620793A JP 24620793 A JP24620793 A JP 24620793A JP H0776739 A JPH0776739 A JP H0776739A
Authority
JP
Japan
Prior art keywords
zone
vacuum
metal
temperature
reaction tube
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP24620793A
Other languages
Japanese (ja)
Inventor
Toshiro Nagata
俊郎 永田
Sukeyoshi Narita
祐喜 成田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Mineral Co Ltd
Original Assignee
Kawatetsu Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawatetsu Mining Co Ltd filed Critical Kawatetsu Mining Co Ltd
Priority to JP24620793A priority Critical patent/JPH0776739A/en
Publication of JPH0776739A publication Critical patent/JPH0776739A/en
Pending legal-status Critical Current

Links

Landscapes

  • Manufacture And Refinement Of Metals (AREA)

Abstract

PURPOSE:To efficiently produce high-purity metal Ca by housing pellets consisting of CaO and Al into a single reaction tube in which a high vacuum degree is obtainable and individual control of temp. is possible and subjecting these pellets to reduction and distillation under specific conditions. CONSTITUTION:The pellets of the CaO (quicklime) contg. MgO and metal Al are housed in the raw material zone B of the vacuum reaction tube 1. A Ca capturing cylinder (d) is installed in a zone D and an Mg capturing cylinder (e) in a zone E. While an inert gas is passed from the zone A to the zone E, the zone B is held at the evaporation temp. (about 700 deg.C) of the Mg and under a vacuum degree of about 1X10<-2>Torr to evaporate the Mg. The Mg is deposited on the capturing cylinder (e) of the zone E kept at a low temp. (about <=600 deg.C). The zone B is then heated up to about 1100 deg.C to evaporate the Ca and the temp. of the zone D is lowered to about <=700 deg.C, by which the metal Ca is deposited in the capturing cylinder (d) of the zone D. As a result, the metal Ca having extremely high purity is easily obtd.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、CaOをAlもしくは
Al合金により減圧下で、加熱還元する真空熱還元蒸留
法により高純度の金属カルシウムを製造する方法に関す
るものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing high-purity metallic calcium by vacuum thermal reduction distillation in which CaO is heated and reduced under reduced pressure using Al or an Al alloy.

【0002】[0002]

【従来の技術】高純度の金属Caは、レアメタルやレア
アースの還元剤、合金の添加剤その他種々の用途に供さ
れ、近年需要が増しつつあるが、その製造方法として
は、還元炉を用いAlを還元剤としてCaOを還元し、
次式の反応により第一段の99パーセント程度の粗金属
Caを得(第一段階)、 6CaO+2Al=3Ca+3CaO・Al2 3 その後上記粗金属Caを蒸留炉を使って850℃の蒸留
を繰り返すことにより、さらに純度を高める二段階法に
よる方法が知られている。
2. Description of the Related Art High-purity metal Ca is used as a reducing agent for rare metals and rare earths, as an additive for alloys, and for various other purposes, and the demand is increasing in recent years. Is used as a reducing agent to reduce CaO,
By the reaction of the following formula, about 99% crude metal Ca of the first stage is obtained (first stage), 6CaO + 2Al = 3Ca + 3CaO.Al 2 O 3 and then the above crude metal Ca is repeatedly distilled at 850 ° C. using a distillation furnace. , A method by a two-step method for further increasing the purity is known.

【0003】第一段階で得られた粗金属Ca中の不純物
では、Mgが原料の純度に直接反映され、さらに還元剤
として使用される金属Alも不純物として入ってしま
う。これは、上記各元素の減圧、高温下での挙動が類似
しているためである。したがって、従来の第一段階の還
元炉では反応時の温度、真空度等の変動が大きいため
(特に真空度の変動が大きい)に、一段だけでは高純度
のCaが得られないので、別に蒸留プロセスを設ける必
要があった。
Among the impurities in the crude metal Ca obtained in the first step, Mg is directly reflected on the purity of the raw material, and metal Al used as a reducing agent also enters as impurities. This is because the behaviors of the above elements under reduced pressure and high temperature are similar. Therefore, in the conventional first-stage reduction furnace, since the temperature, vacuum degree, etc. during the reaction have large fluctuations (especially the vacuum degree has large fluctuations), it is not possible to obtain high-purity Ca with only one step. It was necessary to set up a process.

【0004】このように従来技術において高純度の金属
Caを得るためには還元炉及び蒸留炉の二基の炉を必要
とし、築炉上、またその管理、操業上等に費用や手数を
要し、コストを高める原因となるなどの問題点があっ
た。
As described above, in the prior art, in order to obtain high-purity metallic Ca, two furnaces, a reduction furnace and a distillation furnace, are required, and cost and labor are required for the construction of the furnace, its management and operation. However, there is a problem that it causes an increase in cost.

【0005】[0005]

【発明が解決しようとする課題】このような現状に鑑
み、本発明者らは還元炉及び蒸留炉による二段プロセス
を単一の炉により一段階のプロセスによって高純度の金
属Caを得る方法について鋭意研究の結果、特定構造の
高真空反応管を使用することにより、還元蒸発反応及び
精製蒸留反応を速やかに行なわせると共に、従来の二段
プロセスにより得られる金属Caにも勝る99.9%以
上の高純度のものを得ることに成功し、本発明を完成し
た。
In view of the above situation, the present inventors have proposed a method for obtaining high-purity metal Ca by a single-stage process in which a two-stage process including a reduction furnace and a distillation furnace is performed. As a result of earnest research, by using a high-vacuum reaction tube having a specific structure, a reduction evaporation reaction and a purification distillation reaction can be rapidly performed, and at least 99.9% which is superior to metallic Ca obtained by a conventional two-step process. The present invention has been completed by succeeding in obtaining a high-purity product.

【0006】本発明の目的は、高真空度が得られ、温度
の個別制御可能な単一の反応管内で、還元、蒸留を行な
うことによって高純度金属Caを効率よく製造する方法
を提供することにある。
An object of the present invention is to provide a method for efficiently producing high-purity metal Ca by performing reduction and distillation in a single reaction tube which can obtain a high degree of vacuum and whose temperature can be controlled individually. It is in.

【0007】[0007]

【課題を解決するための手段】上記の目的を達成するた
め、本発明は、Al又はAl合金を還元剤として、Ca
Oを減圧下で加熱還元して金属カルシウムを製造する方
法において、高真空度が得られ、かつ内部に原料ゾー
ン、Mg堆積ゾーン及びCa堆積ゾーンを形成し、各ゾ
ーンの温度が個別制御できるようにした高真空反応管を
用い、前記原料ゾーンにCaOとAlもしくはAl合金
よりなるペレットを収容し、Mgが還元蒸発する真空度
及び温度の条件下でMgリッチ蒸気を発生させ、前記堆
積ゾーンを低温にしてここにMgリッチCaを堆積さ
せ、その後Caが還元蒸発する真空度及び温度条件に移
行した後は、前記Ca堆積ゾーンを低温にして該Ca堆
積ゾーンに高純度のCaを堆積させることを主要な特徴
とするものである。このように単一の反応管内で、あら
かじめ原料中に不純物として含まれるMg成分を蒸発さ
せ、別のゾーンへ堆積させることにより、Ca堆積ゾー
ンへは高純度のCaを一度の還元反応で得ることができ
る。
In order to achieve the above object, the present invention uses Ca or Al as a reducing agent.
In the method for producing metallic calcium by heating and reducing O under reduced pressure, a high degree of vacuum is obtained, and a raw material zone, a Mg deposition zone, and a Ca deposition zone are formed inside so that the temperature of each zone can be controlled individually. The high-vacuum reaction tube described above is used to store pellets of CaO and Al or an Al alloy in the raw material zone, generate Mg-rich vapor under the conditions of vacuum degree and temperature at which Mg is reduced and evaporated, and After the Mg-rich Ca is deposited here at a low temperature, and after the vacuum and temperature conditions in which Ca is reduced and evaporated, the Ca deposition zone is cooled to deposit high-purity Ca in the Ca deposition zone. Is the main feature. In this way, in a single reaction tube, the Mg component contained as an impurity in the raw material is evaporated in advance and deposited in another zone, so that high-purity Ca can be obtained in one reduction reaction in the Ca deposition zone. You can

【0008】[0008]

【実施例】石灰石を焼成し、200メッシュ以下に粉砕
した生石灰(CaO93.27%、MgO6.73%)
80部と金属Al粉末20部を混合し、1kg/cm2
の荷重でプレス成形したφ20mmのペレットを原料と
し、これを図1に示す少なくとも10-5Torrの高真
空が得られる真空反応管中の原料ゾーンBの位置に収容
した。さらに、Ca捕集筒(d)をDの位置に、Mg捕
集筒(e)をEの位置にそれぞれ設置した。Caよりも
Mgの蒸発温度が低いことを利用し、原料ゾーンを図
2,3に示す温度(700℃)、真空度(1×10-2
orr)に保ち、第1段階として不純物のMgだけを蒸
発させ、Mg蒸気を捕集筒(e)に堆積させた。そのと
きの炉内温度分布は、図4に示すようにCa捕集筒のあ
るDゾーンまで原料ゾーンよりも温度を高くし、Mg捕
集筒のあるEゾーンだけを低温(600℃以下)に保ち
Mg蒸気を堆積させた。
[Example] Quick lime obtained by firing limestone and pulverizing it to 200 mesh or less (CaO 93.27%, MgO 6.73%)
80 parts and 20 parts of metal Al powder are mixed, and 1 kg / cm 2
A pellet having a diameter of 20 mm press-molded under the load was used as a raw material, and the raw material was housed in the position of the raw material zone B in the vacuum reaction tube where a high vacuum of at least 10 −5 Torr shown in FIG. 1 was obtained. Further, the Ca collection cylinder (d) was installed at the position D, and the Mg collection cylinder (e) was installed at the position E. Utilizing the fact that the evaporation temperature of Mg is lower than that of Ca, the temperature of the raw material zone (700 ° C.) and the degree of vacuum (1 × 10 -2 T
Org), only the impurity Mg was evaporated as the first step, and Mg vapor was deposited in the collection tube (e). As for the temperature distribution in the furnace at that time, as shown in FIG. 4, the temperature is set higher than the raw material zone up to the D zone where the Ca collection tube is present, and only the E zone where the Mg collection tube is set to a low temperature (600 ° C. or lower). Keep Mg vapor deposited.

【0009】続いて原料ゾーンの温度を図2に示すよう
にCaが蒸発できる温度(1100℃)まで上昇させて
Caを蒸発させ、Ca蒸気を捕集筒(d)に堆積させ
た。このときの炉内温度分布は、図5に示すようにCa
捕集筒のあるDゾーンの温度を700℃以下まで下げ、
Ca蒸気が堆積できる温度に保ち、金属Caを堆積させ
た。反応中、蒸気の流れを原料側から捕集筒側へ確実に
するため、不活性ガスをAゾーンから導入し、Eゾーン
側へ排気した。また、2回の還元プロセスの直前には反
応管をできるだけ高真空にし酸素等不純物をできるだけ
排気した。
Subsequently, as shown in FIG. 2, the temperature of the raw material zone was raised to a temperature at which Ca could be evaporated (1100 ° C.) to evaporate Ca, and Ca vapor was deposited in the collecting cylinder (d). The temperature distribution in the furnace at this time is Ca as shown in FIG.
Lower the temperature of the D zone with the collecting cylinder to 700 ° C or lower,
Metal Ca was deposited by keeping the temperature at which Ca vapor could be deposited. During the reaction, an inert gas was introduced from the A zone and exhausted to the E zone side in order to ensure the flow of vapor from the raw material side to the collection cylinder side. Immediately before the two reduction processes, the reaction tube was evacuated to a vacuum as high as possible to exhaust impurities such as oxygen.

【0010】得られた堆積物の分析結果を下表に示す。
捕集筒(d)には、99.9%以上の純度を示す値とな
り、一度の還元により高純度の金属Caを得ることがで
きた。
The results of analysis of the obtained deposits are shown in the table below.
The collection cylinder (d) had a value indicating a purity of 99.9% or more, and high-purity metal Ca could be obtained by one reduction.

【0011】[0011]

【発明の効果】以上説明したように、従来方法では還元
炉において原料CaOを還元して粗金属Caを得た後、
別途蒸留炉に移して蒸留を繰り返してはじめて高純度C
aが得られたが、本発明によれば、単一の反応管内で還
元反応及び精製蒸留を連続的に速やかに効率よく行なう
ことができ、極めて純度の高い金属Caを容易に得られ
る。したがってコストダウンも達成される等その効果は
極めて大きい。
As described above, according to the conventional method, after the raw material CaO is reduced in the reduction furnace to obtain the crude metal Ca,
High purity C can only be obtained by repeating the distillation by transferring to a separate distillation furnace.
Although a was obtained, according to the present invention, the reduction reaction and the purification distillation can be carried out continuously and efficiently in a single reaction tube, and extremely high-purity metal Ca can be easily obtained. Therefore, the effect such as cost reduction is extremely large.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に使用する反応管の構成を示す概略図で
ある。
FIG. 1 is a schematic view showing the structure of a reaction tube used in the present invention.

【図2】反応管の原料ゾーンにおける温度の変化を示す
グラフである。
FIG. 2 is a graph showing a change in temperature in a raw material zone of a reaction tube.

【図3】反応管の原料ゾーンにおける真空度の変化を示
すグラフである。
FIG. 3 is a graph showing changes in the degree of vacuum in the raw material zone of the reaction tube.

【図4】Mg還元時の反応管内の温度分布図である。FIG. 4 is a temperature distribution diagram in the reaction tube during Mg reduction.

【図5】Ca還元時、蒸留時の反応管内の温度分布図で
ある。
FIG. 5 is a temperature distribution diagram in the reaction tube during Ca reduction and distillation.

【符号の説明】[Explanation of symbols]

1 反応管 2,3 真空計 4 ヒーター 5(A〜E) 各分割炉制御用熱電対 6 原料(CaO,Al混合ペレット) d Ca捕集筒 e Mg捕集筒 DESCRIPTION OF SYMBOLS 1 Reaction tube 2,3 Vacuum gauge 4 Heater 5 (A to E) Thermocouple for each split furnace control 6 Raw material (CaO, Al mixed pellets) d Ca collection tube e Mg collection tube

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 Al又はAl合金を還元剤として、Ca
Oを減圧下で加熱還元して金属カルシウムを製造する方
法において、高真空度が得られ、かつ内部に原料ゾー
ン、Mg堆積ゾーン及びCa堆積ゾーンを形成し、各ゾ
ーンの温度が個別制御できるようにした高真空反応管を
用い、前記原料ゾーンにCaOとAlもしくはAl合金
よりなるペレットを収容し、Mgが還元蒸発する真空度
及び温度の条件下でMgリッチ蒸気を発生させ、前記堆
積ゾーンを低温にしてここにMgリッチCaを堆積さ
せ、その後Caが還元蒸発する真空度及び温度条件に移
行した後は、前記Ca堆積ゾーンを低温にして該Ca堆
積ゾーンに高純度のCaを堆積させることにより、単一
の反応管内で還元と蒸留を行なうことを特徴とする金属
カルシウムの製造方法。
1. Ca as a reducing agent using Al or an Al alloy
In the method for producing metallic calcium by heating and reducing O under reduced pressure, a high degree of vacuum is obtained, and a raw material zone, a Mg deposition zone, and a Ca deposition zone are formed inside so that the temperature of each zone can be controlled individually. The high-vacuum reaction tube described above is used to store pellets of CaO and Al or an Al alloy in the raw material zone, generate Mg-rich vapor under the conditions of vacuum degree and temperature at which Mg is reduced and evaporated, and After the Mg-rich Ca is deposited here at a low temperature, and after the vacuum and temperature conditions in which Ca is reduced and evaporated, the Ca deposition zone is cooled to deposit high-purity Ca in the Ca deposition zone. The method for producing metallic calcium is characterized by carrying out reduction and distillation in a single reaction tube according to.
JP24620793A 1993-09-07 1993-09-07 Production of metal calcium Pending JPH0776739A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24620793A JPH0776739A (en) 1993-09-07 1993-09-07 Production of metal calcium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24620793A JPH0776739A (en) 1993-09-07 1993-09-07 Production of metal calcium

Publications (1)

Publication Number Publication Date
JPH0776739A true JPH0776739A (en) 1995-03-20

Family

ID=17145115

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24620793A Pending JPH0776739A (en) 1993-09-07 1993-09-07 Production of metal calcium

Country Status (1)

Country Link
JP (1) JPH0776739A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009009118A3 (en) * 2007-07-10 2009-07-23 Denyse Dubrucq Hydrogen generator, carbon dioxide and sulfate captor
WO2013084672A1 (en) 2011-12-07 2013-06-13 Jx日鉱日石金属株式会社 Method for producing calcium of high purity

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009009118A3 (en) * 2007-07-10 2009-07-23 Denyse Dubrucq Hydrogen generator, carbon dioxide and sulfate captor
WO2013084672A1 (en) 2011-12-07 2013-06-13 Jx日鉱日石金属株式会社 Method for producing calcium of high purity
EP2740810A4 (en) * 2011-12-07 2015-06-17 Jx Nippon Mining & Metals Corp Method for producing calcium of high purity
US9499877B2 (en) 2011-12-07 2016-11-22 Jx Nippon Mining & Metals Corporation Method for producing high-purity calcium
US10138533B2 (en) 2011-12-07 2018-11-27 Jx Nippon Mining & Metals Corporation Method for producing high-purity calcium

Similar Documents

Publication Publication Date Title
US4214920A (en) Method for producing solar cell-grade silicon from rice hulls
Plichta et al. On the existence of the β→ α m transformation in the alloy systems Ti-Ag, Ti-Au, and Ti-Si
CN111286653B (en) Method for producing magnesium-lithium alloy by vacuum aluminothermic reduction
CN101956159A (en) Method for preparing high-purity molybdenum titanium sputtering target
CN110512094B (en) Process for clean and continuous reduction of metal magnesium
JP2005336617A5 (en)
CN108441651B (en) Preparation method for improving purity and yield of molybdenum
KR101512949B1 (en) High-purity calcium and method of producing the same
US7964070B2 (en) Highly pure hafnium material, target thin film comprising the same and method for producing highly pure hafnium
JPH0776739A (en) Production of metal calcium
CN1030842C (en) Smelting method of special metallic arsenic
US6638336B1 (en) Manufacture of cost-effective titanium powder from magnesium reduced sponge
RU2687403C1 (en) Method for producing high-purity tellure by distillation with low content of selenium
US2372571A (en) Process for manufacturing metallic magnesium from magnesium silicates
Prentice et al. Magsonic™ carbothermal technology compared with the electrolytic and Pidgeon Processes
CN113667829A (en) Zinc-aluminum-iron alloy dezincification process
US1814720A (en) Preparation of ductile vanadium
RU2370558C1 (en) Method of production of high purity cobalt for sputtering targets
US2860965A (en) Process for producing pure manganese
CN103114213A (en) Method for preparing high-purity molybdenum for sapphire growth furnace
US3176056A (en) Method of forming and rapid firing periclase pellets
US2983599A (en) Production of alkali metals
CN117721327A (en) Method for separating crude tin and refined indium from indium-tin alloy
US2965475A (en) Process for the production of metals
US20230049604A1 (en) Method Of Carbothermic Process Of Magnesium Production And Co-Production Of Calcium Carbide