JPH0776570B2 - Oil-free sliding member - Google Patents

Oil-free sliding member

Info

Publication number
JPH0776570B2
JPH0776570B2 JP67588A JP67588A JPH0776570B2 JP H0776570 B2 JPH0776570 B2 JP H0776570B2 JP 67588 A JP67588 A JP 67588A JP 67588 A JP67588 A JP 67588A JP H0776570 B2 JPH0776570 B2 JP H0776570B2
Authority
JP
Japan
Prior art keywords
weight
alloy layer
oil
sliding member
powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP67588A
Other languages
Japanese (ja)
Other versions
JPH01182622A (en
Inventor
正弘 樋口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sankyo Oilless Industries Inc
Original Assignee
Sankyo Oilless Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sankyo Oilless Industries Inc filed Critical Sankyo Oilless Industries Inc
Priority to JP67588A priority Critical patent/JPH0776570B2/en
Publication of JPH01182622A publication Critical patent/JPH01182622A/en
Publication of JPH0776570B2 publication Critical patent/JPH0776570B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Sliding-Contact Bearings (AREA)
  • Powder Metallurgy (AREA)

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は軸受やスライドプレート等として使用される無
給油摺動部材に関するものである。
The present invention relates to an oil-free sliding member used as a bearing, a slide plate, or the like.

(従来の技術) 一般に無給油摺動部材として焼結合金軸受等がある。(Prior Art) Generally, there is a sintered alloy bearing or the like as an oil-free sliding member.

これは、鉄系粉末を圧縮形成、焼結、潤滑材の含有処理
等を施して形成されたものであり、圧壊強さが17〜20kg
f/mm2程度で、かつ空孔率が体積比に対して18%以上で
あるものが多いため、専ら軽荷重や中速度の摺動部材と
して利用され、衝撃荷重の高いプレス金型等のガイド部
材には機械的強度が弱いという理由で使用されていなか
った。
This is formed by compressing iron-based powder, sintering, and processing to contain a lubricant, and has a crush strength of 17 to 20 kg.
Since most of them have f / mm 2 and a porosity of 18% or more of the volume ratio, they are mainly used as light load or medium speed sliding members, and are used for press dies with high impact loads. The guide member was not used because of its low mechanical strength.

そのため上記ガイド部材には鋳鉄、アルミ青銅合金鋼材
等の孔部に固体潤滑材を埋設して形成したものが使用さ
れている。
For this reason, the guide member is made of cast iron, aluminum bronze alloy steel or the like having a solid lubricant embedded in the hole.

(発明が解決しようとする問題点) しかしながら、以上のガイド部材は鋳鉄を母材として固
体潤滑材を埋設加工する場合、鋳鉄母材の六面機械加
工、固体潤滑材の孔加工、固体潤滑材の埋設加工、仕上
機械加工、取付孔の面取加工、上下面研削加工等の多く
の工程を経て生産されるため、加工に時間と手間がかか
りその加工費が高価になるという問題点があった。
(Problems to be Solved by the Invention) However, in the above guide member, when the solid lubricant is embedded by using cast iron as the base material, hexagonal machining of the cast iron base material, drilling of the solid lubricant, solid lubricant Since it is manufactured through many processes such as burial processing, finishing machining, mounting hole chamfering, and upper and lower surface grinding, there is a problem that the processing cost becomes expensive because it takes time and labor. It was

本発明は以上の様な問題に鑑みてなされたものであり、
その目的は、加工工程を少なくすることにより容易かつ
安価で機械的強度の大きな無給油摺動部材を提供するこ
とである。
The present invention has been made in view of the above problems,
An object of the invention is to provide an oil-free sliding member which is easy and inexpensive and has high mechanical strength by reducing the number of processing steps.

(問題点を解決するための手段) 以上の問題点を解決するための本発明の第1の発明は、
鉄粉に3〜8重量%の黒鉛、3〜5重量%の錫、1〜3
重量%のケイ素、5〜10重量%の銅を含有して形成され
た摺動面側合金層と、鉄粉に20〜30重量%のステンレス
鋼の短繊維を含有して形成された中間合金層と、0.3〜
0.9重量%の炭素を含有した炭素鋼粉に1〜5重量%の
銅を含有して形成された支持体合金層との三層構造によ
り構成されたことを特徴とする構成にすることであり、
第2の発明は鉄粉に3〜8重量%の黒鉛、3〜5重量%
の錫、1〜3重量%のケイ素、5〜10重量%の銅を含有
して形成された摺動面側合金層と、鉄粉に20〜30重量%
の鉄の短繊維を含有して形成された中間合金層と、0.3
〜0.9重量%の炭素を含有した炭素鋼粉に1〜5重量%
の銅を含有して形成された支持体合金層との三層構造に
より構成されたことを特徴とする構成にすることであ
る。そして、摺動面側合金層の黒鉛は焼結合金層に自己
潤滑性を与えるために3重量%以上が必要であり、8重
量%を越えると焼結後の強度低下が著しく、摺動部の耐
荷性が低下する。したがって4〜6重量%が最適であ
る。錫は後述する銅と合金化して青銅を形成し、バイン
ダーとしての強度を高くする働きがあり3重量%以下で
はその働きが少なく、5重量%以上にすると単独に溶融
して多孔質な空孔を埋めてしまう。従って4重量%程度
が最適である。
(Means for Solving Problems) The first invention of the present invention for solving the above problems is
Iron powder with 3 to 8% by weight of graphite, 3 to 5% by weight of tin, 1 to 3
Sliding surface side alloy layer formed by containing silicon of 5% by weight and copper of 5-10% by weight, and intermediate alloy formed by containing short fibers of stainless steel of 20-30% by weight in iron powder. Layers and 0.3 ~
A carbon steel powder containing 0.9% by weight of carbon and a support alloy layer formed by containing 1 to 5% by weight of copper in a three-layer structure. ,
The second invention is iron powder containing 3 to 8% by weight of graphite and 3 to 5% by weight.
20 to 30% by weight on the sliding surface side alloy layer formed containing tin, 1 to 3% by weight of silicon and 5 to 10% by weight of copper, and iron powder.
An intermediate alloy layer formed containing iron short fibers of 0.3,
~ 1 to 5% by weight for carbon steel powder containing 0.9% by weight of carbon
And a support alloy layer formed by containing the above copper, a three-layer structure. Further, graphite of the sliding surface side alloy layer needs to be 3% by weight or more in order to impart self-lubricating property to the sintered alloy layer, and if it exceeds 8% by weight, the strength after sintering remarkably decreases, and the sliding portion Load resistance is reduced. Therefore, 4 to 6% by weight is optimum. Tin alloys with copper, which will be described later, to form bronze, and has the function of increasing the strength as a binder. When it is 3% by weight or less, the function is small, and when it is 5% by weight or more, it independently melts to form porous pores. Will be filled. Therefore, about 4% by weight is optimal.

ケイ素は黒鉛と鉄とを化合してチル化を防止し、黒鉛単
独で保持する黒鉛の安定化の働きをし、1重量%以下で
は、上記チル化が生じて部分的に硬い粒子が形成され
る。
Silicon combines graphite and iron to prevent chilling, and functions to stabilize graphite held by graphite alone. When the content is 1% by weight or less, chilling occurs and partially hard particles are formed. It

また3重量%を越えると焼結層強度を低下させる。従っ
て1.5〜2重量%が最適である。
Further, if it exceeds 3% by weight, the strength of the sintered layer is lowered. Therefore, 1.5 to 2% by weight is optimum.

銅は前記錫と合金化して青銅を形成し、バインダーとし
ての強度を高くする働きがあり、5重量%以下ではバイ
ンダーとしての効果が少なくて焼結層の靭性の低下をま
ねき、10重量%を越えるとバインダー過多となり硬度が
低下して耐荷重性が低下する。従って7〜8重量%が最
適である。
Copper alloys with the above tin to form bronze, and has the function of increasing the strength as a binder. If it is 5% by weight or less, the effect as a binder is small and the toughness of the sintered layer is reduced, and 10% by weight is added. If it exceeds the above range, the amount of binder becomes excessive and the hardness is lowered to lower the load resistance. Therefore, 7 to 8% by weight is optimum.

中間合金層のステンレス鋼の短繊維は長さ2〜3mmに切
断して鉄粉と混合する。20重量%以下では、短繊維が摺
動面側合金層と支持体合金層へ喰い込んで相互の連結強
度を高める効果が少なく、また30重量%を越えると鉄分
との混合が不十分となりやすく作業性が極端に低下して
しまう。従って25重量%が最適である。
The short fibers of stainless steel in the intermediate alloy layer are cut to a length of 2 to 3 mm and mixed with iron powder. If it is 20% by weight or less, the effect that the short fibers bite into the sliding surface side alloy layer and the support alloy layer to increase the mutual connection strength is small, and if it exceeds 30% by weight, the mixing with the iron component is likely to be insufficient. Workability is extremely reduced. Therefore, 25% by weight is optimal.

また、第2発明において前記中間合金層の短繊維を鉄と
した場合も、該鉄の短繊維は長さ2〜3mmに切断して鉄
粉と混合する。そして、この場合も20重量%以下では、
短繊維が摺動面側合金層と支持体合金層へ喰い込んで相
互の連結強度を高める効果が少なく、また30重量%を越
えると鉄粉との混合が不十分となりやすく作業性が極端
に低下してしまうので、25重量%が最適である。
In the second invention, when the short fiber of the intermediate alloy layer is iron, the short fiber of iron is cut into a length of 2 to 3 mm and mixed with iron powder. And, in this case as well, at 20% by weight or less,
Short fibers have little effect on biting into the alloy layer on the sliding surface side and the alloy layer on the support side to enhance mutual connection strength. If the amount exceeds 30% by weight, mixing with iron powder tends to be insufficient and workability will be extremely high. 25% by weight is optimal because it will decrease.

支持体合金層は強度を確保することに重点をおいてお
り、銅は粉体の圧縮形成時の密度を高める働きをし、1
重量%以下では効果がなく、5重量%以上では逆に硬度
の低下をまねく、従って3重量%が最適である。
The support alloy layer is focused on ensuring strength, and copper acts to increase the density of the powder during compression forming.
If the amount is less than 5% by weight, no effect is obtained, and if the amount is more than 5% by weight, the hardness is decreased. Therefore, 3% by weight is optimum.

また、炭素鋼粉の炭素含有料は焼結層の強度を高める為
であり、0.3重量%以下では強度が高くならず、又0.9重
量%以上では高くなり過ぎて後工程での機械加工が困難
となり、0.5〜0.7重量%が最適である。
In addition, the carbon content of carbon steel powder is to increase the strength of the sintered layer. If the content is less than 0.3% by weight, the strength does not increase. Therefore, 0.5 to 0.7% by weight is optimum.

(作用) 而して、上記構成によれば、摺動面側合金層は荷重の支
圧及び潤滑機能をもち、支持体合金層は取付部座の強度
を確保する機能をもち、また中間合金層は前記摺動側合
金層と支持体合金層との結合強度を高める機能を有す
る。
(Operation) Therefore, according to the above configuration, the sliding surface side alloy layer has a load bearing and lubricating function, the support alloy layer has a function of ensuring the strength of the mounting portion seat, and the intermediate alloy. The layer has a function of increasing the bonding strength between the sliding-side alloy layer and the support alloy layer.

(実施例) 以下、本発明の一実施例を図面に基づいて説明する。(Embodiment) An embodiment of the present invention will be described below with reference to the drawings.

図に示すものは支持体合金層3の上に中間合金層2を介
して摺動面側合金属1が重ね合わされて形成され、かつ
取り付け孔4が穿孔された潤滑機能を有する無給油摺動
部材Aであり、各種軸受、金型プレス等のガイド部材及
び各種支承部材として使用される。
What is shown in the figure is an oil-free slide having a lubricating function, which is formed by stacking a sliding surface side intermetallic material 1 on a support alloy layer 3 with an intermediate alloy layer 2 interposed therebetween, and having mounting holes 4 drilled. The member A is used as various bearings, guide members for die presses, and various bearing members.

まず第一工程として、粒度100μm以下の黒鉛粉末5重
量%、粒度50μm以下のアトマイズ鍋粉末4重量%、粒
度50μm以下のアトマイズケイ素粉末1.5重量%、粒度1
00μm以下の電解銅粉末合金層8重量%、残部を粒度15
0μm以下の鉄粉末、形成滑材としてステアリン酸亜鉛
5重量%をミキサーにて15分間混合して摺動面側合金層
の混合粉末を形成する。
First, as the first step, 5% by weight of graphite powder with a particle size of 100 μm or less, 4% by weight of atomized pot powder with a particle size of 50 μm or less, 1.5% by weight of atomized silicon powder with a particle size of 50 μm or less, particle size 1
8% by weight of electrolytic copper powder alloy layer of 00 μm or less, grain size of balance 15
Iron powder of 0 μm or less and 5% by weight of zinc stearate as a forming lubricant are mixed in a mixer for 15 minutes to form a mixed powder of a sliding surface side alloy layer.

次に粒度70μm長さ2〜3mmのステンレス鋼の短繊維を2
5重量%、残部を粒度150μm以下の鉄粉末、形成滑材と
してステアリン酸亜鉛5重量%をミキサーにて15分間混
合して中間合金層の混合粉末を形成する。
Next, 2 short stainless steel fibers with a grain size of 70 μm and a length of 2 to 3 mm
5% by weight, the balance of iron powder having a particle size of 150 μm or less, and 5% by weight of zinc stearate as a lubricant are mixed in a mixer for 15 minutes to form a mixed powder of an intermediate alloy layer.

そして粒度100μm以下の電解銅粉末3重量%、残部粒
度150μm以下の炭素含有量0.6%の炭素鋼粉末、形成滑
材としてステアリン酸亜鉛2重量%をミキサーにて15分
間混合して支持体合金層混合粉末を形成する。
Then, 3% by weight of electrolytic copper powder having a grain size of 100 μm or less, carbon steel powder having a balance of grain size of 150 μm or less and a carbon content of 0.6%, and 2% by weight of zinc stearate as a forming lubricant are mixed in a mixer for 15 minutes to form a support alloy layer. Form a mixed powder.

次に第二工程として前記第一工程で得られた各層の混合
粉末を形成金型に摺動面側合金層混合粉末を10mm,中間
合金層混合粉末を5mm,支持体合金層混合粉末を30mmの高
さづつ順に散布、充填し、油圧プレスで2500kgf/cm2
圧力で加圧形成して成形品を形成する。
Next, as the second step, the mixed powder of each layer obtained in the first step is formed into a mold, the sliding surface side alloy layer mixed powder is 10 mm, the intermediate alloy layer mixed powder is 5 mm, and the support alloy layer mixed powder is 30 mm. Are sprayed and filled in order of height, and a molded product is formed by press-forming with a hydraulic press at a pressure of 2500 kgf / cm 2 .

そして第三工程として、第二工程でえられた成形品を還
元雰囲気(H2-75%,C−25%)の、連続焼結炉で1150℃
で30分間焼結して無給油摺動部材Aを形成する。
And the third step, the molded article is caught in the second step the reducing atmosphere (H 2- 75%, C- 25%), 1150 ℃ in a continuous sintering furnace
Sintering is performed for 30 minutes to form an oil-free sliding member A.

従って従来の無給油摺動部材と比べ加工工程を大幅に省
略することができた。
Therefore, compared with the conventional oil-free sliding member, the machining process can be largely omitted.

以上のように形成された無給油摺動部材Aの摺動側面合
金層、中間合金層、支持体合金層、各々の硬度、空孔
率、密度を測定した結果を以下の表−1に表示する。
The results of measuring the sliding side surface alloy layer, the intermediate alloy layer, the support alloy layer, and the hardness, porosity, and density of the oil-free sliding member A formed as described above are shown in Table 1 below. To do.

そして該無給油摺動部材Aに含油処理を実施した後、荷
重100kgf/cm2、速度7.1m/minの無給油条件で摩擦試験し
た結果、常に良好な摺動特性を示し、30時間後摩擦量が
0.005mm、途中の摩擦係数は0.08と安定していた。
After the oil-free sliding member A was subjected to oil-impregnation treatment, a friction test was conducted under an oil-free condition with a load of 100 kgf / cm 2 and a speed of 7.1 m / min. Quantity
The coefficient of friction was 0.005 mm, and the friction coefficient on the way was stable at 0.08.

さらに図の取付孔4に示す六角孔付ボルトで取付けられ
る、ボルト頭部との接触面に5000kgf/cm2の荷重を繰り
返し10×104回繰返しても割れ、亀裂等の発生は無かっ
た。
Furthermore, even if a load of 5000 kgf / cm 2 was repeatedly applied 10 × 10 4 times to the contact surface with the bolt head, which was attached with the hexagon socket head cap screw shown in mounting hole 4 in the figure, no cracks or cracks were found.

尚、上記は第1発明の実施例について説明したが、第2
発明についても前記と同様の工程で三層構造の無給油摺
動部材が形成され、この第2発明における中間合金層
は、第1発明におけるステンレス鋼の短繊維にかわっ
て、粒度70μm長さ2〜3mmの鉄の短繊維を25重量%、
残部を粒度150μm以下の鉄粉末、形成骨材としてステ
アリン酸亜鉛5重量%を混合して形成するものである。
In addition, although the above has described the embodiment of the first invention,
Also in the invention, an oil-free sliding member having a three-layer structure is formed by the same steps as described above, and the intermediate alloy layer in the second invention replaces the short fiber of the stainless steel in the first invention, and has a grain size of 70 μm and a length of 2 μm. 25% by weight of iron short fibers of ~ 3 mm,
The balance is formed by mixing iron powder having a particle size of 150 μm or less and 5% by weight of zinc stearate as a forming aggregate.

したがって、第2発明における摺動側面合金層1、中間
合金層2、支持体合金層3の各々の硬度、空鋼孔率、密
度の測定結果も前記の第1発明と略同一であり、前記第
1発明と同様の効果を確認することができた。
Therefore, the measurement results of the hardness, empty steel porosity, and density of each of the sliding side surface alloy layer 1, the intermediate alloy layer 2, and the support alloy layer 3 in the second invention are substantially the same as those in the first invention. It was possible to confirm the same effect as that of the first invention.

(発明の効果) 本発明は以上のような構成にしたことにより下記の効果
を有する。
(Effects of the Invention) The present invention has the following effects due to the above configuration.

無給油摺動部材を加工工程をすくなくすることによ
り簡潔かつ容易に製造できるので、製造コストの低減を
図ることができた。
Since the oil-free sliding member can be simply and easily manufactured by eliminating the processing steps, the manufacturing cost can be reduced.

無給油摺動部材の成分の異なる合金で三層に構成し
たことにより、摺動面の潤滑性、耐摩擦性及び強度を高
めることができ、かつ該無給油摺動部材を取付ける際の
ボルトの軸力に耐え得る強度に形成することができた。
Since the oil-free sliding member is composed of three layers of alloys with different components, the lubricity, friction resistance and strength of the sliding surface can be increased, and the bolts used when mounting the oil-free sliding member can be improved. It could be formed to have a strength capable of withstanding the axial force.

【図面の簡単な説明】[Brief description of drawings]

図は本発明の無給油摺動部材の縦断面図である。 A:無給油摺動部材、1:摺動面側合金層 2:中間合金層、3:支持体合金層 The figure is a longitudinal sectional view of an oil-free sliding member of the present invention. A: Oil-free sliding member, 1: Sliding side alloy layer 2: Intermediate alloy layer, 3: Support alloy layer

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】鉄粉に3〜8重量%の黒鉛、3〜5重量%
の錫、1〜3重量%のケイ素、5〜10重量%の銅を含有
して形成された摺動面側合金層と、鉄粉に20〜30重量%
のステンレス鋼の短繊維を含有して形成された中間合金
層と、0.3〜0.9重量%の炭素を含有した炭素鋼粉に1〜
5重量%の銅を含有して形成された支持体合金層との三
層構造により構成されたことを特徴とする無給油摺動部
材。
1. Iron powder containing 3 to 8% by weight of graphite and 3 to 5% by weight.
20 to 30% by weight on the sliding surface side alloy layer formed containing tin, 1 to 3% by weight of silicon and 5 to 10% by weight of copper, and iron powder.
1 to the intermediate alloy layer formed by containing the short fiber of stainless steel and carbon steel powder containing 0.3 to 0.9% by weight of carbon
An oil-free sliding member having a three-layer structure with a support alloy layer containing 5% by weight of copper.
【請求項2】鉄粉に3〜8重量%の黒鉛、3〜5重量%
の錫、1〜3重量%のケイ素、5〜10重量%の銅を含有
して形成された摺動面側合金層と、鉄粉に20〜30重量%
の鉄の短繊維を含有して形成された中間合金層と、0.3
〜0.9重量%の炭素を含有した炭素鋼粉に1〜5重量%
の銅を含有して形成された支持体合金層との三層構造に
より構成されたことを特徴とする無給油摺動部材。
2. Iron powder containing 3 to 8% by weight of graphite and 3 to 5% by weight.
20 to 30% by weight on the sliding surface side alloy layer formed containing tin, 1 to 3% by weight of silicon and 5 to 10% by weight of copper, and iron powder.
An intermediate alloy layer formed containing iron short fibers of 0.3,
~ 1 to 5% by weight for carbon steel powder containing 0.9% by weight of carbon
An oil-free sliding member having a three-layer structure with a support alloy layer formed by containing copper.
JP67588A 1988-01-07 1988-01-07 Oil-free sliding member Expired - Fee Related JPH0776570B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP67588A JPH0776570B2 (en) 1988-01-07 1988-01-07 Oil-free sliding member

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP67588A JPH0776570B2 (en) 1988-01-07 1988-01-07 Oil-free sliding member

Publications (2)

Publication Number Publication Date
JPH01182622A JPH01182622A (en) 1989-07-20
JPH0776570B2 true JPH0776570B2 (en) 1995-08-16

Family

ID=11480322

Family Applications (1)

Application Number Title Priority Date Filing Date
JP67588A Expired - Fee Related JPH0776570B2 (en) 1988-01-07 1988-01-07 Oil-free sliding member

Country Status (1)

Country Link
JP (1) JPH0776570B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001018662A (en) * 1999-07-12 2001-01-23 Toyota Autom Loom Works Ltd Electric vehicle
BRPI0803956B1 (en) 2008-09-12 2018-11-21 Whirlpool S.A. metallurgical composition of particulate materials and process for obtaining self-lubricating sintered products
DE102009002043B4 (en) * 2009-03-31 2013-01-03 Federal-Mogul Wiesbaden Gmbh Plain bearing composite material

Also Published As

Publication number Publication date
JPH01182622A (en) 1989-07-20

Similar Documents

Publication Publication Date Title
KR101567840B1 (en) Powder method of manufacturing a component and component
JP5247329B2 (en) Iron-based sintered bearing and manufacturing method thereof
KR100816978B1 (en) Sintered material and parts using the same material
JP3859344B2 (en) Sliding material, sliding member and method of manufacturing the sliding member
JP4545162B2 (en) Composite sintered sliding member and manufacturing method thereof
US5466277A (en) Starting powder for producing sintered-aluminum alloy, method for producing sintered parts, and sintered aluminum alloy
KR20030071540A (en) Production method of high density iron based forged part
Lampman Compressibility and compactibility of metal powders
JP3613569B2 (en) Composite metal powder for sintered bearing and sintered oil-impregnated bearing
JP3861771B2 (en) Plain bearing and manufacturing method thereof
JP3800510B2 (en) Powder compact, method for producing the same, and method for producing a porous sintered body
JPH0776570B2 (en) Oil-free sliding member
JP3850357B2 (en) Porous metal structure
JPH07166278A (en) Coppery sliding material and production thereof
JPH0625386B2 (en) Method for producing aluminum alloy powder and sintered body thereof
KR19980019316A (en) SLIDING BEARING AND MANUFACTURING METHOD THEREOF
JPH029099B2 (en)
JP4177534B2 (en) Alloy powder for copper-based high strength sintered parts
JP4507348B2 (en) High-density iron-based powder molded body and method for producing high-density iron-based sintered body
JPS6330526B2 (en)
JPS6038442B2 (en) Manufacturing method of aluminum alloy low density sintered parts
JP3931503B2 (en) Lubricant for warm mold lubrication, high-density iron-based powder molded body, and method for producing high-density iron-based sintered body
JPS5939481B2 (en) Multi-layer sintered sliding member and its manufacturing method
JPH02290905A (en) Greasefree sliding material and manufacture thereof
JP2631146B2 (en) Sintered metal body and method for producing the same

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees