JPH0775784A - Method for producing water including more excessive hydrogen ions or hydroxide ions than counter ions and water thus obtained - Google Patents

Method for producing water including more excessive hydrogen ions or hydroxide ions than counter ions and water thus obtained

Info

Publication number
JPH0775784A
JPH0775784A JP5334572A JP33457293A JPH0775784A JP H0775784 A JPH0775784 A JP H0775784A JP 5334572 A JP5334572 A JP 5334572A JP 33457293 A JP33457293 A JP 33457293A JP H0775784 A JPH0775784 A JP H0775784A
Authority
JP
Japan
Prior art keywords
chamber
ions
anode
cathode
excess
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP5334572A
Other languages
Japanese (ja)
Other versions
JP3458341B2 (en
Inventor
Nobuo Sumida
修生 澄田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KOHIIRENTO TECHNOL KK
Original Assignee
KOHIIRENTO TECHNOL KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KOHIIRENTO TECHNOL KK filed Critical KOHIIRENTO TECHNOL KK
Priority to JP33457293A priority Critical patent/JP3458341B2/en
Publication of JPH0775784A publication Critical patent/JPH0775784A/en
Application granted granted Critical
Publication of JP3458341B2 publication Critical patent/JP3458341B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To provide a technique which is suitable for washing or surface treatment and by which water contg. hydrogen ions or hydroxide ions of more excessive concentration than counter ions that is easily subjected to waste liquid treatment is effectively produced, and to provide the water contg. hydrogen ions or hydroxide ions of more excessive concentration than counter ions. CONSTITUTION:In a method for producing water contg. more excessive hydrogen ions or hydroxide ions than counter ions, an electrolyzer of a three-chamber construction consisting of an anode chamber 9 provided with an anode electrode 2, a cathode chamber 8 provided with a cathode electrode 1 and an intermediate chamber 5 put between the anode chamber 9 and the cathode chamber 8 is used. Water is fed to the anode chamber 9 and/or the cathode chamber 8, and also electrolytic treatment is made on condition that there is electrolyte in the intermediate chamber 5 to produce water contg. hydrogen ions or hydroxide ions of more excessive concentration than counter ions.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、各種汚染物質の洗浄や
工業材料の表面処理に適した水に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to water suitable for cleaning various pollutants and surface treatment of industrial materials.

【0002】[0002]

【発明の背景】水のpH及び酸化還元能力は、洗浄又は
表面処理に関する分野で非常に重要な意味を持つ。以下
で、これらの分野において、水のpH及び酸化還元能力
が如何なる役割を果たしているか、又、水のpH及び酸
化還元能力をどのようにコントロールしているかについ
て、その概略を説明する。
BACKGROUND OF THE INVENTION Water pH and redox capacity have very important implications in the field of cleaning or surface treatment. Below, an outline will be given of what role the pH and redox capacity of water play in these fields, and how the pH and redox capacity of water are controlled.

【0003】洗浄処理の対象となる汚染物質は、イオン
状物質や反応生成物、液状、粒子状物質に大別される。
イオン状物質の汚染形態には、ガラス表面等に観られる
イオン交換による吸着、半導体や金属の表面に観られる
イオンの静電的引力による付着、及び半導体、金属、セ
ラミックスの表面層へのイオンの拡散による侵入といっ
たものが挙げられる。
The contaminants to be cleaned are roughly classified into ionic substances, reaction products, liquids and particulate substances.
Contaminant forms of ionic substances include adsorption due to ion exchange found on the glass surface, adhesion due to electrostatic attraction of ions found on the surface of semiconductors and metals, and adsorption of ions on the surface layer of semiconductors, metals and ceramics. An example is invasion by diffusion.

【0004】又、反応生成物による汚染形態は、ボイラ
のスケールのような水中不純物の沈積付着や金属表面に
発生する酸化皮膜、錆に分類される。これに比べて粒子
状物質による汚染形態は複雑であり、即ち、化学的な結
合による付着、ファンデルワールス力や水素結合等の物
理化学的結合による付着、静電力もしくは磁気力による
物理的付着等が挙げられる。
The form of contamination by reaction products is classified into deposits and adhesion of impurities in water such as boiler scales, oxide films formed on metal surfaces, and rust. Compared with this, the form of contamination by particulate matter is complicated, that is, adhesion by chemical bond, adhesion by physicochemical bond such as van der Waals force or hydrogen bond, physical adhesion by electrostatic force or magnetic force, etc. Is mentioned.

【0005】これらの汚染物質の中で、イオン状物質は
純水又は超純水によって洗浄されるのが一般的であり、
例えば半導体の洗浄に際しては、電気抵抗率が約18M
Ω/cmの超純水が用いられる。反応生成物について
は、通常、化学薬品を用いて洗浄される。例えば、先の
スケール等は酸とキレート剤とを組合わせた薬剤が用い
られ、特に、両者の機能を併せ持つクエン酸、エチレン
ジアミン四酢酸、ニトリロ三酢酸といったものが使用さ
れている。
Among these pollutants, ionic substances are generally washed with pure water or ultrapure water,
For example, when cleaning semiconductors, the electrical resistivity is about 18M.
Ω / cm ultrapure water is used. The reaction product is usually washed with chemicals. For example, the above-mentioned scale and the like use a drug in which an acid and a chelating agent are combined, and in particular, citric acid, ethylenediaminetetraacetic acid, and nitrilotriacetic acid, which have both functions, are used.

【0006】次に、表面処理に関してであるが、溶解に
よって金属表面の酸化皮膜が除去される速度は、水溶液
のpHと酸化還元能力とに大きく依存する。例えば、鉄
の酸化皮膜を構成する四三酸化鉄(Fe3 4 )は、p
Hが約4以下の酸性であって、かつ、還元性を有する水
溶液中で速やかに溶解する。尚、金属の酸化皮膜溶解に
用いられる代表的な薬剤としては、酸及び還元剤の両機
能を有する蓚酸や、その他にもクエン酸、エチレンジア
ミン四酢酸を組合わせたものが挙げられる。
Next, regarding surface treatment, the rate at which the oxide film on the metal surface is removed by dissolution largely depends on the pH of the aqueous solution and the redox ability. For example, iron trioxide (Fe 3 O 4 ) forming an iron oxide film is p
H is an acid of about 4 or less and is rapidly dissolved in an aqueous solution having a reducing property. Incidentally, typical agents used for dissolving the metal oxide film include oxalic acid having both functions of an acid and a reducing agent, and a combination of citric acid and ethylenediaminetetraacetic acid.

【0007】金属の中でも、クロム鋼の表面酸化皮膜は
酸化性の水溶液中で溶解する。この処理に用いられる代
表的な薬剤としては、水酸化ナトリウムと過マンガン酸
カリウムとを組合わせたものや、フッ酸と硝酸とを組合
わせたものが挙げられる。尚、シリコンウェハ洗浄の分
野で、表面層をエッチングすることにより洗浄処理を行
う場合があり、この処理には、アンモニア水と過酸化水
素水とを組合わせたものや、水酸化ナトリウム、又は硝
酸等が用いられる。
Among metals, the surface oxide film of chromium steel dissolves in an oxidizing aqueous solution. Typical agents used for this treatment include a combination of sodium hydroxide and potassium permanganate, and a combination of hydrofluoric acid and nitric acid. In the field of silicon wafer cleaning, a cleaning process may be carried out by etching the surface layer. For this process, a combination of ammonia water and hydrogen peroxide solution, sodium hydroxide, or nitric acid is used. Etc. are used.

【0008】そして、シリコンウェハ等に付着する液
体、又は皮膜状の汚染物質の除去には、この汚染物質を
酸化分解したり、溶解させるといった方法が適用されて
おり、酸化分解に用いられる薬剤としては、硫酸と過酸
化水素とを組合わせたもの、水酸化アンモニウムと過酸
化水素とを組合わせたもの等が挙げられる。無機物質で
ある汚染物質を溶解する場合には、塩酸と過酸化水素、
硫酸と過酸化水素、塩酸と硝酸、硫酸と硝酸とを組合わ
せたものが用いられる。
To remove the liquid or film-like contaminants adhering to the silicon wafer or the like, a method of oxidatively decomposing or dissolving the contaminants is applied. Examples thereof include a combination of sulfuric acid and hydrogen peroxide, a combination of ammonium hydroxide and hydrogen peroxide, and the like. When dissolving contaminants that are inorganic substances, hydrochloric acid and hydrogen peroxide,
A combination of sulfuric acid and hydrogen peroxide, hydrochloric acid and nitric acid, and sulfuric acid and nitric acid is used.

【0009】又、有機物質である汚染物質を溶解する場
合は、トリクロロエタン、ジクロロメタン等の有機塩素
系溶剤が使用される。以上の説明から明らかなように、
水のpHと酸化還元能力とは、洗浄及び表面処理におい
て重要な役割を果たしているのである。ところで、水の
pHを酸性又はアルカリ性とし、酸化還元能力を付与す
る手段としては、化学薬品を添加する方法と電気分解
(以下、電解と称する)を利用する方法とがある。
Further, in case of dissolving a pollutant which is an organic substance, an organic chlorine type solvent such as trichloroethane or dichloromethane is used. As is clear from the above explanation,
The pH of water and its redox capacity play important roles in cleaning and surface treatment. By the way, as a means for making the pH of water acidic or alkaline and imparting redox ability, there are a method of adding a chemical agent and a method of utilizing electrolysis (hereinafter referred to as electrolysis).

【0010】化学薬品を用いてpHを酸性にシフトさせ
る場合には、酸が用いられるから、H+ の対イオンとし
てCl- ,SO4 2- ,NO3 - ,CH3 COO- 等の陰
イオンが存在する。一方、pHをアルカリ性にシフトさ
せる場合には、塩基が用いられるので、OH- の対イオ
ンとしてNa+ ,K+ ,Ca2+等の金属イオンが共存す
る。
When a chemical is used to shift the pH to acidic, an acid is used, and therefore, an anion such as Cl , SO 4 2− , NO 3 , CH 3 COO as a counter ion of H + . Exists. On the other hand, when the pH is shifted to alkaline, a base is used, so that metal ions such as Na + , K + and Ca 2+ coexist as counter ions of OH .

【0011】即ち、化学薬品を使用する場合には対イオ
ンの存在無くして、H+ やOH- を添加することは実質
上不可能である。このような事情に鑑みて、化学薬品を
用いずにpHをコントロールする方法として、電解法、
特にカソード極とアノード極との間に隔膜を設けた装置
による隔膜電解法が考えられ始めた。
That is, when chemicals are used, it is virtually impossible to add H + and OH without the presence of counter ions. In view of such circumstances, as a method of controlling pH without using a chemical agent, an electrolytic method,
In particular, a diaphragm electrolysis method using a device in which a diaphragm is provided between the cathode electrode and the anode electrode has begun to be considered.

【0012】しかしながら、従来の隔膜電解装置では、
カソード極、隔膜、アノード極の間が大きく離れている
ので、水溶液の電気抵抗率を下げることが必須条件とな
り、塩類等の電解質を所定量添加しなければならない。
ところで、添加した塩類が陰イオンと陽イオンとに電離
した液を電解すると、陰イオンはアノード極に、陽イオ
ンはカソード極に移動する。この結果として、アノード
極側は酸性に、一方、カソード極側はアルカリ性になる
のであるが、この方法によってH+ やOH- を生成する
と、それに伴って対イオンも増加することになり、次の
ような問題が引き起こされる。
However, in the conventional diaphragm electrolysis device,
Since the cathode electrode, the diaphragm, and the anode electrode are widely separated from each other, it is an essential condition to reduce the electrical resistivity of the aqueous solution, and a predetermined amount of electrolyte such as salts must be added.
By the way, when the solution in which the added salt is ionized into anion and cation is electrolyzed, the anion moves to the anode electrode and the cation moves to the cathode electrode. As a result, the anode side becomes acidic, while the cathode side becomes alkaline. However, when H + and OH are generated by this method, counter ions also increase accordingly, and Such a problem is caused.

【0013】即ち、洗浄又は表面処理において、酸又は
アルカリと酸化還元剤とを使用した場合、水溶液中にH
+ やOH- と共に等モルの対イオンが共存することにな
り、洗浄又は表面処理の後に、これらの対イオンの残留
に起因して材料が劣化したり、廃液の処理が困難とな
る。例えば、洗浄後の金属表面にCl- 等の腐食を促進
するハロゲンイオンが残留すると、急速な腐食の進行が
懸念される。又、洗浄後の半導体にイオン性不純物が残
留すると、半導体の性能は著しく低下する。
That is, when an acid or alkali and a redox agent are used for cleaning or surface treatment, H
Equimolar counterions coexist with + and OH , and after cleaning or surface treatment, the materials are deteriorated due to the residual of these counterions and the treatment of the waste liquid becomes difficult. For example, if halogen ions that promote corrosion such as Cl remain on the surface of the metal after cleaning, rapid progress of corrosion is feared. Further, if ionic impurities remain in the semiconductor after cleaning, the performance of the semiconductor is significantly deteriorated.

【0014】更に、これらの問題点に関連して、残留す
るイオン等を除去する為に洗浄後にリンス作業を実施す
る必要があり、シリコンウェハ1枚に当たり数千リット
ルもの大量の超純水が使用されているのが現状である。
しかしながら、近年、水資源そのもの、又、汚染問題が
深刻なものとなって来ており、水の使用量削減を図る為
の技術開発が望まれている。
Further, in connection with these problems, it is necessary to carry out a rinsing operation after cleaning in order to remove residual ions and the like, and a large amount of ultrapure water of several thousand liters is used per silicon wafer. This is the current situation.
However, in recent years, water resources themselves and pollution problems have become serious, and technical development for reducing the amount of water used is desired.

【0015】[0015]

【発明の開示】本発明者は、上記の問題点に関する研究
を鋭意推し進めていった結果、洗浄や表面処理に際して
用いられる水として、対イオンよりも水素イオン又は水
酸イオンを過剰に含む水を用いれば、効果的に洗浄や表
面処理が行われるといった知見を得るに至った。又、こ
のような対イオンよりも水素イオン又は水酸イオンを過
剰に含む水は電解手段により得られることも見出した。
DISCLOSURE OF THE INVENTION As a result of earnestly advancing the research on the above problems, the present inventor has found that water used in cleaning or surface treatment includes water containing hydrogen ions or hydroxyl ions in excess of counter ions. We have come to the knowledge that cleaning and surface treatment can be performed effectively if used. It was also found that water containing hydrogen ions or hydroxyl ions in excess of the counter ions can be obtained by electrolytic means.

【0016】先ず、水溶液を電解処理する際の溶質の酸
化還元反応及びH2 O分子の酸化還元反応について説明
する。H2 Oの酸化還元反応に関連する反応式として
は、以下の(1)〜(11)のものが考えられる。 2H+ +2e- ⇔ H2 O =0.01V (1) O2 +2H+ +2e- ⇔ H2 2 O =0.69V (2) H2 2 +H+ +2e- ⇔ OH- +H2 O EO =0.71V (3) O2 +4H+ +4e- ⇔ 2H2 O EO =1.22V (4) HO2 +H+ +e- ⇔ H2 2 O =1.495V(5) H2 2 +2H+ +2e- ⇔ 2H2 O EO =1.77V (6) OH+H+ +e- ⇔ H2 O EO =2.85V (7) 2H2 O+2e- ⇔ H2 +2OH- O =0.82V (8) O2 +2H2 O+4e- ⇔ 4OH- O =0.401V(9) HO2 - +H2 O+2e- ⇔ 3OH- O =0.76V (10) OH+e- ⇔ OH- O =2.02V (11) 但し、E0 は標準酸化還元電位である。
First, the redox reaction of a solute and the redox reaction of H 2 O molecules when electrolytically treating an aqueous solution will be described. The following reaction formulas (1) to (11) are considered as reaction formulas related to the redox reaction of H 2 O. 2H + + 2e - ⇔ H 2 E O = 0.01V (1) O 2 + 2H + + 2e - ⇔ H 2 O 2 E O = 0.69V (2) H 2 O 2 + H + + 2e - ⇔ OH - + H 2 O E O = 0.71V (3) O 2 + 4H + + 4e ⇔ 2H 2 O E O = 1.22V (4) HO 2 + H + + e ⇔ H 2 O 2 E O = 1.495V (5) H 2 O 2 + 2H + + 2e ⇔ 2H 2 O E O = 1.77V (6) OH + H + + e ⇔ H 2 O E O = 2.85V (7) 2H 2 O + 2e ⇔ H 2 + 2OH E O = 0. 82V (8) O 2 + 2H 2 O + 4e ⇔ 4OH E O = 0.401V (9) HO 2 + H 2 O + 2e ⇔ 3OH E O = 0.76V (10) OH + e ⇔ OH E O = 2 0.02 V (11) where E 0 is the standard redox potential.

【0017】上記の(1)〜(11)の反応式を考察する
と、H2 Oの酸化還元反応により、H+ ,OH- ,OH
−radical,H2 ,O2 ,H2 2 ,HO2 等が
生成することが判る。又、水溶液中には、通常、O2
2 ,CO2 が微量ではあるが、溶解しているので、同
時に、これらの分子の酸化還元反応も考慮することが必
要となる。
[0017] Considering the reaction formula (1) to (11), by a redox reaction of H 2 O, H +, OH -, OH
-Radical, H 2, O 2, H 2 O 2, HO 2 , etc. It can be seen to be generated. Further, in the aqueous solution, normally, O 2 ,
Although N 2 and CO 2 are dissolved in a small amount, it is necessary to take into consideration the redox reaction of these molecules at the same time.

【0018】O2 が水溶液中に存在するとき、上記
(1)〜(11)の式に加えて、以下の反応式が考えられ
る。 O2 +e- ⇔ O2 - O =−0.563V(12) O2 +H+ +e- ⇔ HO2 O =−0.13V (13) O2 +H2 O+2e- ⇔ HO2 - +OH- O =−0.076V(14) O2 +2H+ +2e- ⇔ H2 2 O =0.6824V(15) O3 +H2 O+2e- ⇔ O2 +2OH- O =1.24V (16) 次に、N2 が水溶液中に存在するときには、以下の反応
式が考えられる。
When O 2 exists in an aqueous solution, the following reaction formulas are considered in addition to the above formulas (1) to (11). O 2 + e - ⇔ O 2 - E O = -0.563V (12) O 2 + H + + e - ⇔ HO 2 E O = -0.13V (13) O 2 + H 2 O + 2e - ⇔ HO 2 - + OH - E O = -0.076V (14) O 2 + 2H + + 2e - ⇔ H 2 O 2 E O = 0.6824V (15) O 3 + H 2 O + 2e - ⇔ O 2 + 2OH - E O = 1.24V (16) next In addition, when N 2 is present in the aqueous solution, the following reaction formula can be considered.

【0019】 N2 +4H2 O+4e- ⇔ N2 4 +4OH- E=−1.15V(17) 2NO3 - +12H+ +10e- ⇔N2 +6H2 O E=−1.24V (18) N2 4 +8H+ +8e- ⇔ N2 +4H2 O E=1.35V (19) 2HNO2 +6H+ +6e- ⇔ N2 +4H2 O E=1.44V (20) 2NO+4H+ +4e- ⇔ N2 +2H2 O E=1.68V (21) 更に、CO2 が水溶液中に存在するときには、代表的な
ものとして、以下の反応式が考えられる。
N 2 + 4H 2 O + 4e ⇔ N 2 H 4 + 4OH E = −1.15V (17) 2NO 3 + 12H + + 10e ⇔ N 2 + 6H 2 O E = −1.24V (18) N 2 H 4 + 8H + + 8e ⇔ N 2 + 4H 2 O E = 1.35V (19) 2HNO 2 + 6H + + 6e ⇔ N 2 + 4H 2 O E = 1.44V (20) 2NO + 4H + + 4e ⇔ N 2 + 2H 2 O E = 1.68V (21) Further, when CO 2 exists in the aqueous solution, the following reaction formula is considered as a typical one.

【0020】 2CO2 +2H+ +2e- ⇔ H2 2 4 E=−0.49V (22) CO2 +2H+ +2e- ⇔ CO+H2 O E=−0.12V (23) CO2 +2H+ +2e- ⇔ HCOOH E=−0.199V(24) 但し、Eは標準酸化還元電位である。以上の(1)〜
(24)までの式を考察すると、O2 からは、O2 - ,H
2 ,O3 ,H2 2 等の酸化・還元剤とOH- とが生
成され、又、N2 からは、N24 ,NO3 - ,N2
4 ,HNO2 ,NO及びH+ が生成される。
2CO 2 + 2H + + 2e ⇔ H 2 C 2 O 4 E = −0.49V (22) CO 2 + 2H + + 2e ⇔ CO + H 2 O E = −0.12V (23) CO 2 + 2H + + 2e ⇔ HCOOH E = -0.199V (24) However, E is a standard oxidation-reduction potential. Above (1) ~
Considering the equations up to (24), from O 2 to O 2 , H
Oxides and reducing agents such as O 2 , O 3 and H 2 O 2 and OH are produced, and N 2 is converted to N 2 H 4 , NO 3 and N 2 O.
4 , HNO 2 , NO and H + are produced.

【0021】ここで、特に注目すべきことは、H2 O,
2 O−O2 及びH2 O−N2 系から生成されるH+
びOH- は、それぞれの対イオンとのバランスがとれて
いない、換言すれば対イオンと比較して、H+ 及びOH
- は過剰に生成されているのである。尚、H2 O−CO
2 系では還元反応のみが起こり、その生成物は有機酸で
あるから、これは先の、H2 O,H2 O−O2 ,H2
−N2 系の反応とは著しく異なる。
Here, it should be noted that H 2 O,
H 2 O-O 2 and H 2 O-N 2 system is produced from H + and OH - are not balanced with each counter ion, as compared to in other words counterion, H + and OH
- is what is generated excessively. Incidentally, H 2 O-CO
In the 2 system, only the reduction reaction occurs, and the product is an organic acid. Therefore, this is the same as the above H 2 O, H 2 O—O 2 , H 2 O.
It is significantly different from the reaction of the -N 2 system.

【0022】上述した酸化還元反応を起こす為に電解法
を用いた場合、電解反応は、溶質の濃度、電解槽の構造
及び電解条件に依存するものであり、溶質の面からは濃
度が小さいほうが望ましく、構造の面からは各イオンを
分離する為に隔膜構造であることが望ましい。そして、
電流密度としては、溶質の酸化還元反応よりもH2 Oの
分解が起こるようなものであることが望ましい。
When the electrolysis method is used to cause the above-mentioned redox reaction, the electrolysis reaction depends on the solute concentration, the structure of the electrolytic cell and the electrolysis conditions. It is desirable to have a diaphragm structure in order to separate each ion from the viewpoint of the structure. And
The current density is preferably such that the decomposition of H 2 O occurs rather than the redox reaction of the solute.

【0023】ところで、純水は電気抵抗率が極端に高い
ので電解が極めて困難であり、電気抵抗率を下げる為に
電解質を添加する必要である。しかしながら、通常、電
解質が添加された水溶液を電解すると、水溶液中に存在
するイオンの移動が起こるので、対イオンと比較して過
剰な濃度のH+ 又はOH- を生成することは極めて困難
である。
By the way, since pure water has an extremely high electric resistivity, it is extremely difficult to electrolyze, and it is necessary to add an electrolyte in order to lower the electric resistivity. However, when electrolyzing an aqueous solution to which an electrolyte is added, it is extremely difficult to generate an excessive concentration of H + or OH as compared with a counter ion, because the ions existing in the aqueous solution move. .

【0024】例えば、NaCl水溶液を電解すると、カ
ソード極では、 Na+ +e- ⇒ Na (25) 2Na+2H2 O ⇒ 2Na+ +2OH- +H2 (26) といった反応が起き、一方、アノード極では、 2Cl- −2e- ⇒ Cl2 (27) といった反応が起こるので、イオンのバランスを崩すこ
とはできない。
For example, when an aqueous solution of NaCl is electrolyzed, a reaction of Na + + e ⇒ Na (25) 2Na + 2H 2 O ⇒ 2Na + + 2OH + H 2 (26) occurs at the cathode electrode, while 2Cl at the anode electrode. -2e - ⇒ since Cl 2 (27), such reaction occurs, it is impossible to break the balance of ions.

【0025】従って、電解質が存在するか否かに拘ら
ず、H2 O−O2 系やH2 O−N2 系の電解反応を効率
良く行わせることができれば、対イオンと比較して過剰
な濃度のH+ 又はOH- を生成することができるもので
あり、即ち、上述したようにO 2 とN2 の酸化還元反応
から生成するH+ とOH- は対イオンとのバランスがと
れていないから、H2 Oのみの反応を考慮すれば良いこ
とが判る。
Therefore, regardless of whether or not an electrolyte is present,
No, H2OO2System and H2ON2Efficient system electrolysis reaction
If done well, excess compared to counterions
H of various concentrations+Or OH-With what can generate
Yes, that is, O as described above 2And N2Redox reaction
H generated from+And OH-Balances with counterions
H is because it is not2You only need to consider the reaction of O
I understand.

【0026】H+ 又はOH- を過剰に含む水を高効率で
生成する為には、既述した如く、水溶液中の溶質に比べ
て、H2 Oの電離度を高くすれば良いのであるが、H2
Oの電離度を高くする為には、溶質濃度を可能な限り小
さくすることが必要である。しかしながら、溶質の濃度
を下げると、電気抵抗率が高くなり、電解処理が極めて
困難なものとなる。
In order to produce water containing excess H + or OH with high efficiency, it is sufficient to increase the ionization degree of H 2 O as compared with the solute in the aqueous solution as described above. , H 2
In order to increase the degree of ionization of O, it is necessary to make the solute concentration as low as possible. However, if the concentration of solute is lowered, the electric resistivity becomes high, and the electrolytic treatment becomes extremely difficult.

【0027】このような事情に鑑みて、本発明者は、更
なる研究を鋭意推し進めていった結果、アノード極が浸
漬させられたアノード室、及びカソード極が浸漬させら
れたカソード室、これらアノード室及びカソード室に挟
まれた中間室からなる三室構造の電解槽を用い、中間室
に電解質を存在させた状態で電解処理を行えば、カソー
ド室とアノード室の溶質濃度を仮に零としても、H2
の電解が可能であることを見出した。尚、このときH2
Oの電解と並行して中間室内の溶質も同時に電解される
が、溶質の移動速度以上に電解電流を増大させれば問題
なくH2 Oの電解処理が行われる。
In view of the above circumstances, the present inventor has earnestly pursued further research, and as a result, the anode chamber in which the anode electrode was immersed, the cathode chamber in which the cathode electrode was immersed, and these anodes Using an electrolytic cell with a three-chamber structure consisting of an intermediate chamber sandwiched between a cathode chamber and a cathode chamber, if electrolytic treatment is performed in a state where an electrolyte is present in the intermediate chamber, even if the solute concentration in the cathode chamber and the anode chamber is zero, H 2 O
It has been found that the electrolysis of is possible. At this time, H 2
The solute in the intermediate chamber is also electrolyzed at the same time as the electrolysis of O. However, if the electrolysis current is increased above the moving speed of the solute, the electrolysis of H 2 O can be performed without any problem.

【0028】本発明は上記の知見に基づいてなされたも
のであり、本発明の目的は、洗浄又は表面処理に好適
で、しかも、廃液処理が容易な対イオンより過剰な濃度
の水素イオン又は水酸イオンを含む水を効率良く製造す
る技術、又、対イオンより過剰な濃度の水素イオン又は
水酸イオンを含む水を提供することである。上記本発明
の目的は、対イオンよりも水素イオン又は水酸イオンを
過剰に含む水を製造する方法であって、アノード極が設
けられたアノード室と、カソード極が設けられたカソー
ド室と、前記アノード室及びカソード室に挟まれた中間
室とからなる三室構造の電解槽を用い、前記アノード室
及び/又はカソード室に水を供給すると共に、前記中間
室には電解質が存在する条件下で電解処理を行うことを
特徴とする対イオンよりも水素イオン又は水酸イオンを
過剰に含む水の製造方法によって達成される。
The present invention has been made on the basis of the above findings, and the object of the present invention is suitable for cleaning or surface treatment, and moreover, hydrogen ion or water at a concentration higher than that of the counter ion which is easy to treat waste liquid. It is an object of the present invention to provide a technique for efficiently producing water containing acid ions, and to provide water containing hydrogen ions or hydroxide ions in a concentration higher than that of counter ions. The object of the present invention is a method for producing water containing hydrogen ions or hydroxide ions in excess of counterions, wherein the anode chamber is provided with an anode electrode, and the cathode chamber is provided with a cathode electrode, An electrolytic cell having a three-chamber structure consisting of an intermediate chamber sandwiched between the anode chamber and the cathode chamber is used, water is supplied to the anode chamber and / or the cathode chamber, and an electrolyte is present in the intermediate chamber. This is achieved by a method for producing water containing hydrogen ions or hydroxide ions in excess of counter ions, which is characterized by performing electrolytic treatment.

【0029】又、対イオンよりも水素イオン又は水酸イ
オンを過剰に含む水を製造する方法であって、アノード
極が設けられたアノード室と、カソード極が設けられた
カソード室と、前記アノード室及びカソード室に挟まれ
た中間室とからなる三室構造の電解槽を用い、前記アノ
ード室及び/又はカソード室に水を供給・排出すると共
に、前記中間室には電解質が存在する条件下で電解処理
を行うことを特徴とする対イオンよりも水素イオン又は
水酸イオンを過剰に含む水の製造方法によって達成され
る。
A method for producing water containing hydrogen ions or hydroxide ions in excess of counter ions, wherein the anode chamber is provided with an anode electrode, the cathode chamber is provided with a cathode electrode, and the anode is provided. Chamber and a middle chamber sandwiched between the cathode chamber and a three-chamber structure electrolytic cell is used, water is supplied to and discharged from the anode chamber and / or the cathode chamber, and an electrolyte is present in the middle chamber. This is achieved by a method for producing water containing hydrogen ions or hydroxide ions in excess of counter ions, which is characterized by performing electrolytic treatment.

【0030】又、アノード極が設けられたアノード室
と、カソード極が設けられたカソード室と、前記アノー
ド室及びカソード室に挟まれた中間室とからなる三室構
造の電解槽を用い、前記アノード室及び/又はカソード
室に水を供給すると共に、前記中間室には電解質が存在
する条件下で電解処理を行うことにより得られた対イオ
ンよりも水素イオン又は水酸イオンを過剰に含む水によ
って達成される。
Further, an electrolytic cell having a three-chamber structure comprising an anode chamber provided with an anode electrode, a cathode chamber provided with a cathode electrode, and an intermediate chamber sandwiched between the anode chamber and the cathode chamber is used. Water is supplied to the chamber and / or the cathode chamber, and the intermediate chamber is subjected to electrolytic treatment under the condition that an electrolyte is present. To be achieved.

【0031】又、アノード極が設けられたアノード室
と、カソード極が設けられたカソード室と、前記アノー
ド室及びカソード室に挟まれた中間室とからなる三室構
造の電解槽を用い、前記アノード室及び/又はカソード
室に水を供給・排出すると共に、前記中間室には電解質
が存在する条件下で電解処理を行うことにより得られた
対イオンよりも水素イオン又は水酸イオンを過剰に含む
水によって達成される。
Further, an electrolytic cell having a three-chamber structure consisting of an anode chamber provided with an anode electrode, a cathode chamber provided with a cathode electrode, and an intermediate chamber sandwiched between the anode chamber and the cathode chamber is used, and the anode is provided. Water is supplied to and discharged from the chamber and / or the cathode chamber, and the intermediate chamber contains hydrogen ions or hydroxide ions in excess of the counter ions obtained by performing electrolytic treatment in the presence of an electrolyte. Achieved by water.

【0032】尚、上記の発明において、アノード室及び
/又はカソード室に供給する水は導電率が3000μS
/cm以下の水、望ましくは導電率が2000μS/c
m以下の水であることが好ましく、又、中間室に存在さ
せる電解質は気化性の物質、特に硝酸塩、アミン系化合
物、有機酸塩の群の中から選ばれたものが好ましい。そ
して、得られた対イオンよりも水素イオン又は水酸イオ
ンを過剰に含む水には酸化及び/又は還元物質を共存さ
せておくことが好ましいものである。
In the above invention, the water supplied to the anode chamber and / or the cathode chamber has a conductivity of 3000 μS.
/ Cm or less of water, preferably with a conductivity of 2000 μS / c
Water having a volume of m or less is preferable, and the electrolyte present in the intermediate chamber is preferably a vaporizable substance, particularly one selected from the group consisting of nitrates, amine compounds and organic acid salts. Then, it is preferable that an oxidizing and / or reducing substance is made to coexist in water containing hydrogen ions or hydroxyl ions in excess of the obtained counter ions.

【0033】尚、本発明における対イオンよりも水素イ
オンを過剰に含む水とは対イオン濃度と等濃度の水素イ
オン濃度による計算上のpHよりも低いpHを示す水の
ことであり、又、本発明における対イオンよりも水酸イ
オンを過剰に含む水とは対イオン濃度と等濃度の水酸イ
オン濃度による計算上のpHよりも高いpHを示す水の
ことである。
The water containing hydrogen ions in excess of the counter ions in the present invention is water having a pH lower than the calculated pH based on the hydrogen ion concentration equal to the counter ion concentration, and In the present invention, the water containing more hydroxide ions than the counter ions is water having a pH higher than the calculated pH based on the concentration of the counter ions and the concentration of the hydroxide ions.

【0034】以下、実施例によって本発明を具体体に説
明する。
The present invention will be specifically described below with reference to examples.

【0035】[0035]

【実施例】【Example】

〔実施例1〕図1及び図2は本発明の一実施例を示すも
のであり、図1は電解槽の概略断面図、図2は電解槽と
各種タンク等との接続状態を示す配管図である。各図
中、1はカソード極、2はアノード極、3,4は隔膜で
あり、図1に示す如く、カソード極1及びアノード極2
の表面に対向配設させられた隔膜3,4で挟まれる部分
に中間室5が形成される。
[Embodiment 1] FIGS. 1 and 2 show an embodiment of the present invention. FIG. 1 is a schematic sectional view of an electrolytic cell, and FIG. 2 is a piping diagram showing a connection state between the electrolytic cell and various tanks. Is. In each figure, 1 is a cathode pole, 2 is an anode pole, and 3 and 4 are diaphragms. As shown in FIG. 1, the cathode pole 1 and the anode pole 2 are
An intermediate chamber 5 is formed in a portion sandwiched by the diaphragms 3 and 4 which are arranged so as to face each other.

【0036】6は上記の電極や隔膜を収納する容器、7
は外部に設けられた直流電源、8はカソード室、9はア
ノード室である。10は純水製造装置であり、ポンプ1
1の作用で純水製造装置10で製造された純水(導電率
が0.06μS/cm)がカソード室8及びアノード室
9に供給されるよう構成されている。
6 is a container for accommodating the above electrodes and diaphragm, and 7
Is a DC power source provided outside, 8 is a cathode chamber, and 9 is an anode chamber. Reference numeral 10 is a pure water producing device, and a pump 1
Pure water (conductivity of 0.06 μS / cm) produced by the pure water producing apparatus 10 by the action of 1 is supplied to the cathode chamber 8 and the anode chamber 9.

【0037】12は電解処理されたカソード室8内の液
が送り込まれる液受けタンク、13も電解処理されたア
ノード室9内の液が送り込まれる液受けタンクである。
14は電解質水溶液が充填された電解液タンクであり、
この電解液タンク14内の電解質水溶液はポンプ15の
作用で中間室5内に送られるよう構成されている。
Reference numeral 12 is a liquid receiving tank into which the liquid in the electrolytically treated cathode chamber 8 is fed, and 13 is also a liquid receiving tank into which the liquid in the electrolytically treated anode chamber 9 is fed.
14 is an electrolytic solution tank filled with an electrolytic aqueous solution,
The aqueous electrolyte solution in the electrolytic solution tank 14 is configured to be sent into the intermediate chamber 5 by the action of the pump 15.

【0038】尚、電解処理によってカソード室8内のカ
ソード液はアルカリ性に、又、アノード室9内のアノー
ド液は酸性になる傾向が強い。従って、カソード極1の
材質は耐アルカリ性に優れたものであることが望まし
く、例えば白金、パラジウム、金、炭素鋼、ステンレス
鋼、銀、銅、グラファイト、ガラス質カーボン等の使用
が望ましい。
There is a strong tendency that the catholyte in the cathode chamber 8 becomes alkaline and the anolyte in the anode chamber 9 becomes acidic by the electrolytic treatment. Therefore, it is desirable that the material of the cathode 1 has excellent alkali resistance, and for example, platinum, palladium, gold, carbon steel, stainless steel, silver, copper, graphite, vitreous carbon and the like are preferably used.

【0039】又、アノード極2の材質としては、耐酸性
に優れ、酸化し難いものであることが望ましく、例えば
Pt,Ru,Ir,Pd,β−PbO2 ,NiFe2
4 、ガラス質カーボン等が望ましい。隔膜3,4として
は、セルロースや合成高分子材料(PE,PP,PE
T,PTFE等)からなるフィルタ又は有孔フィルム、
イオン交換膜が挙げられる。
The material of the anode 2 is preferably one that is excellent in acid resistance and is difficult to oxidize. For example, Pt, Ru, Ir, Pd, β-PbO 2 , NiFe 2 O.
4 , glassy carbon is desirable. As the diaphragms 3 and 4, cellulose or synthetic polymer materials (PE, PP, PE
T, PTFE, etc.) filter or perforated film,
An ion exchange membrane is mentioned.

【0040】尚、隔膜3,4は、これらフィルタ、有孔
フィルム及びイオン交換膜を組合わせたものであっても
良く、特に、イオン交換膜としては、カソード極1側で
はOH- が中間室5に移動することを防止する為に強酸
性又は弱酸性のカチオン交換膜を用い、他方、アノード
極2側ではH+ が中間室5に移動することを防止する為
に強塩基や弱塩基のアニオン交換膜を用いることが好ま
しい。
The diaphragms 3 and 4 may be a combination of these filters, a perforated film and an ion exchange membrane. Particularly, as the ion exchange membrane, OH - is the intermediate chamber on the cathode electrode 1 side. A strong or weakly acidic cation exchange membrane is used to prevent the migration of H + into the intermediate chamber 5, and a strong base or a weak base is used to prevent H + from moving into the intermediate chamber 5. It is preferable to use an anion exchange membrane.

【0041】又、中間室5内の溶質がカソード室8及び
アノード室9内に移動する必要がある場合には、イオン
交換膜として強酸性と強塩基性のイオン交換膜を重ねた
ものを用いれば良く、もしくは弱酸性と弱塩基性のイオ
ン交換膜を重ねたものを用いても良い。上述した隔膜
3,4の使用以外に溶質の移動を抑える手段としては、
中間室5の溶質濃度を下げる方法がある。しかしなが
ら、この方法では電気抵抗率が高くなり過ぎるので、中
間室5内に粒状のイオン交換樹脂を充填する。
When the solute in the intermediate chamber 5 needs to move into the cathode chamber 8 and the anode chamber 9, a stack of strongly acidic and strongly basic ion exchange membranes is used as the ion exchange membrane. It suffices to use it, or a combination of weakly acidic and weakly basic ion exchange membranes may be used. In addition to the above-mentioned use of the diaphragms 3 and 4, as means for suppressing the movement of solute,
There is a method of lowering the solute concentration in the intermediate chamber 5. However, in this method, since the electrical resistivity becomes too high, the intermediate chamber 5 is filled with the granular ion exchange resin.

【0042】中間室5に送られる電解質水溶液に溶解す
る電解質の選定基準は、洗浄又は表面処理の対象によっ
て異なる。即ち、シリコンウェハ等の半導体の洗浄の場
合には、イオン残留を極力抑える為に可能な限り低温で
気化する電解質を用いることが望ましく、例えば炭酸ア
ンモニウム、炭酸水素アンモニウム、硫酸ヒドラジン、
塩化ヒドラジン、硝酸アンモニウム、モルフォリン等の
アミン系化合物、又、炭酸ナトリウムや炭酸水素ナトリ
ウム等の炭酸塩、硝酸塩、更には亜硝酸塩が挙げられ
る。
The criteria for selecting the electrolyte to be dissolved in the aqueous electrolyte solution sent to the intermediate chamber 5 differs depending on the object of cleaning or surface treatment. That is, in the case of cleaning semiconductors such as silicon wafers, it is desirable to use an electrolyte that vaporizes at a temperature as low as possible in order to suppress ion retention as much as possible. For example, ammonium carbonate, ammonium hydrogen carbonate, hydrazine sulfate,
Examples thereof include amine compounds such as hydrazine chloride, ammonium nitrate and morpholine, carbonates such as sodium carbonate and sodium hydrogen carbonate, nitrates, and further nitrites.

【0043】洗浄又は表面処理の廃棄物処理を容易にす
る為には、環境に悪影響を与えず、アノード液とカソー
ド液とを混合するだけで、そのまま廃棄可能な電解質が
望ましく、具体的にはNaCl,Na2 SO4 ,KC
l,K2 SO4 等のナトリウム塩や硫酸塩が挙げられ
る。又、中間室5の電解質濃度は何ら限定されないが、
1×10-3〜5mol/lの範囲であることが望まし
い。尚、中間室5に粒状イオン交換樹脂を充填する場合
には、1×10-6〜5×10-3mol/lの範囲が望ま
しい。
In order to facilitate the waste treatment of cleaning or surface treatment, an electrolyte which does not adversely affect the environment and which can be discarded as it is by mixing the anolyte and the catholyte is desirable. NaCl, Na 2 SO 4 , KC
1, sodium salts such as K 2 SO 4 and sulfates. The electrolyte concentration in the intermediate chamber 5 is not limited at all,
It is preferably in the range of 1 × 10 −3 to 5 mol / l. When the intermediate chamber 5 is filled with the granular ion exchange resin, the range of 1 × 10 −6 to 5 × 10 −3 mol / l is desirable.

【0044】そして、カソード室8とアノード室9内の
電解質濃度としては1×10-2mol/l以下であるこ
とが望ましい。尚、電解質濃度が1×10-2mol/l
における導電率は1000μS/cm程度である。更
に、電解電流密度は、5mA/cm2 以上であることが
望ましい。上述の如く構成した電解槽を図2に示す如く
配置し、以下の条件で電解処理を行って対イオンよりも
水素イオン又は水酸イオンを過剰に含む水を得た。
The electrolyte concentration in the cathode chamber 8 and the anode chamber 9 is preferably 1 × 10 -2 mol / l or less. The electrolyte concentration is 1 × 10 -2 mol / l
Has a conductivity of about 1000 μS / cm. Furthermore, the electrolytic current density is preferably 5 mA / cm 2 or more. The electrolytic cell configured as described above was arranged as shown in FIG. 2, and electrolytic treatment was performed under the following conditions to obtain water containing hydrogen ions or hydroxide ions in excess of counter ions.

【0045】即ち、図1に示す電解槽において、カソー
ド極1にはニードルパンチ加工を施したSUS304鋼
板を、又、アノード極2には80メッシュの白金をそれ
ぞれ用いた。尚、電極の縦横寸法は80×60mmとし
た。カソード極1側の隔膜3には、目付80g/mm2
のPP製不織布とカチオン交換膜(徳山ソーダ(株)製
CMH)を、アノード極2側の隔膜4には、PP製不
織布とアニオン交換膜(徳山ソーダ(株)製 AMH)
を用いた。尚、隔膜3と隔膜4との間隔tは約6mmと
した。
That is, in the electrolytic cell shown in FIG. 1, needle-punched SUS304 steel plate was used for the cathode 1 and 80 mesh platinum was used for the anode 2. The vertical and horizontal dimensions of the electrode were 80 × 60 mm. The diaphragm 3 on the cathode 1 side has a basis weight of 80 g / mm 2
The PP non-woven fabric and cation exchange membrane (CMH manufactured by Tokuyama Soda Co., Ltd.) are used for the diaphragm 4 on the anode 2 side, and the PP non-woven fabric and anion exchange membrane (AMH manufactured by Tokuyama Soda Co., Ltd.) are used.
Was used. The distance t between the diaphragm 3 and the diaphragm 4 was about 6 mm.

【0046】純水製造装置10から送られる純水(導電
率が0.06μS/cm)の流量は200cc/min
とし、中間室5には電解液タンク14から濃度が1mo
l/lのNaCl水溶液を送った。そして、電解電流密
度は80mA/cm2 とした。電解処理が行われた液に
ついてpHや酸化還元電位について調べた処、ガラス電
極で測定したカソード液のpHは約12.2であり、銀
−塩化銀電極で測定した酸化還元電位は約−900mV
(vsAg/AgCl)であった。
The flow rate of pure water (conductivity 0.06 μS / cm) sent from the pure water producing apparatus 10 is 200 cc / min.
In the intermediate chamber 5, the concentration from the electrolyte tank 14 is 1 mo.
A 1 / l aqueous NaCl solution was sent. The electrolysis current density was set to 80 mA / cm 2 . When pH and redox potential of the electrolytically treated liquid were examined, the pH of the catholyte measured with a glass electrode was about 12.2, and the redox potential measured with a silver-silver chloride electrode was about -900 mV.
(VsAg / AgCl).

【0047】一方、アノード液のpHは2.2であり、
酸化還元電位は1180mV(vsAg/AgCl)で
あった。そして、カソード液を元素分析したところ、N
aの濃度は約2.5×10-3mol/lであり、又、同
様にアノード液におけるClの濃度は約2.1×10-3
mol/lであった。即ち、測定したpHから換算され
たOH- 及びH+ の濃度に比較して、Na+ 及びCl-
の濃度は小さく、対イオンより過剰なOH- 又はH+
生成されたことが判る。
On the other hand, the pH of the anolyte is 2.2,
The redox potential was 1180 mV (vsAg / AgCl). Then, elemental analysis of the catholyte revealed that N
The concentration of a is about 2.5 × 10 −3 mol / l, and similarly, the concentration of Cl in the anolyte is about 2.1 × 10 −3.
It was mol / l. That is, compared with the OH and H + concentrations converted from the measured pH, Na + and Cl
It can be seen that the concentration of OH was small and excess OH or H + was produced over the counter ion.

【0048】尚、NaOHを溶解して調整したpH=1
2のアルカリ水溶液における酸化還元電位は約−200
mVであり、HClを用いて調整したpH=2.2の水
溶液における酸化還元電位は約+150mVであった。
このことから、電解処理によりカソード液には還元物質
が、アノード液には酸化物質が生成されたことが判る。
PH = 1 adjusted by dissolving NaOH
The redox potential in the alkaline aqueous solution of No. 2 is about -200.
mV, and the redox potential in an aqueous solution of pH = 2.2 adjusted with HCl was about +150 mV.
From this, it is understood that the electrolytic treatment produced a reducing substance in the catholyte and an oxidizing substance in the anolyte.

【0049】そして、上記液受けタンク12,13に溜
められた水溶液を用いて、洗浄テストを行ったので、そ
の結果を下記の表−1に示す。尚、被洗浄体としては、
切削油を塗布したプレパラート及び指紋を付着させたプ
レパラートを準備し、これらのプレパラートを50cc
/minの流量で2分間にわたって洗浄した。
A cleaning test was performed using the aqueous solution stored in the liquid receiving tanks 12 and 13, and the results are shown in Table 1 below. The object to be cleaned is
Prepare a preparation coated with cutting oil and a preparation to which fingerprints are attached, and these preparations are heated to 50 cc.
Washing was performed at a flow rate of / min for 2 minutes.

【0050】又、比較の為に、NaOH水溶液とHCl
水溶液を用いて同様の洗浄テストを行った。 表−1 アルカリ水 酸性水 電解水(本発明) NaOH水溶液 電解水(本発明) HCl水溶液 切削油 効果大 普通 − − 指紋 − − 効果大 普通 〔実施例2〕実施例1と同じ装置を用い、中間室5には
電解質水溶液として1mol/lの炭酸水素アンモニウ
ム水溶液を供給し、又、カソード室8及びアノード室9
には流量100cc/minで純水を供給した。そし
て、電解電流密度25mA/cm2 で電解処理を行い、
対イオンよりも水素イオン又は水酸イオンを過剰に含む
水を液受けタンク12,13に得た。
For comparison, an aqueous solution of NaOH and HCl are used.
A similar cleaning test was performed using an aqueous solution. Table-1 Alkaline water Acidic water Electrolyzed water (Invention) NaOH aqueous solution Electrolyzed water (Invention) HCl aqueous solution Cutting oil Normal effect--Fingerprint--Effect normal [Example 2] Using the same apparatus as in Example 1, A 1 mol / l ammonium hydrogen carbonate aqueous solution is supplied to the intermediate chamber 5 as an electrolyte aqueous solution, and the cathode chamber 8 and the anode chamber 9 are supplied.
Was supplied with pure water at a flow rate of 100 cc / min. Then, electrolytic treatment is performed at an electrolytic current density of 25 mA / cm 2 ,
Water containing hydrogen ions or hydroxyl ions in excess of counter ions was obtained in the liquid receiving tanks 12 and 13.

【0051】電解処理が行われた液についてpHや酸化
還元電位について調べた処、ガラス電極で測定したカソ
ード液のpHは約11.3であり、銀−塩化銀電極で測
定した酸化還元電位は約−800mV(vsAg/Ag
Cl)であった。一方、アノード液のpHは3.2であ
り、酸化還元電位は+950mV(vsAg/AgC
l)であった。
When the pH and the redox potential of the liquid subjected to the electrolytic treatment were examined, the pH of the catholyte measured with the glass electrode was about 11.3, and the redox potential measured with the silver-silver chloride electrode was About -800mV (vsAg / Ag
Cl). On the other hand, the pH of the anolyte was 3.2, and the redox potential was +950 mV (vsAg / AgC).
l).

【0052】尚、上記の電解処理では、時間の経過と共
にpHが中性に戻る(約2時間後にカソード液のpHは
9.0に、アノード液のpHは5.0になる)ことが確
認された。即ち、これは電解液の廃棄処理が極めて容易
であることを示すものである。そして、上記液受けタン
ク12,13に溜められた水溶液を用いて、洗浄テスト
を行ったので、その結果を下記の表−2に示す。
In the above electrolytic treatment, it was confirmed that the pH returned to neutral over time (after about 2 hours, the pH of the catholyte became 9.0 and the pH of the anolyte became 5.0). Was done. That is, this shows that the disposal of the electrolytic solution is extremely easy. A cleaning test was performed using the aqueous solution stored in the liquid receiving tanks 12 and 13, and the results are shown in Table 2 below.

【0053】尚、被洗浄体としては、切削油を塗布した
プレパラート及び指紋を付着させたプレパラートを準備
し、これらのプレパラートを50cc/minの流量で
2分間にわたって洗浄した。又、比較の為に、pH=1
1.3のNH4 OH水溶液及びCO2 ガスを0.5l/
minの流量で純水バブリングして得られたH2 CO3
水溶液を用いて同様に洗浄テストを行った。
As the objects to be cleaned, a preparation to which cutting oil was applied and a preparation to which fingerprints were attached were prepared, and these preparations were washed at a flow rate of 50 cc / min for 2 minutes. Also, for comparison, pH = 1
0.5 liters of 1.3 NH 4 OH aqueous solution and CO 2 gas
H 2 CO 3 obtained by bubbling pure water at a flow rate of min
A washing test was similarly performed using an aqueous solution.

【0054】 表−2 アルカリ水 酸性水 電解水(本発明) NH4OH 水溶液 電解水(本発明) H2CO3 水溶液 切削油 効果大 普通 − − 指紋 − − 効果大 効果無し 〔実施例3〕図1の電解槽の中間室5にカチオン交換樹
脂粒(デュポン社製 ナフィオンNR−50)を充填し
た。この電解槽を図2に示す如く配置して、カソード室
8とアノード室9に電気抵抗率が1MΩ/cmの純水を
流量200cc/minで供給し、又、中間室5には濃
度が1×10-4mol/lのNaCl水溶液を供給し
た。そして、電解電流密度40mA/cm2 で電解処理
を行い、対イオンよりも水素イオン又は水酸イオンを過
剰に含む水を得た。
Table-2 Alkaline Water Acidic Water Electrolyzed Water (Invention) NH 4 OH Aqueous Solution Electrolyzed Water (Invention) H 2 CO 3 Aqueous Solution Cutting Oil Normal Effect--Fingerprint ---- Effective Effect No Effect [Example 3] The intermediate chamber 5 of the electrolytic cell shown in FIG. 1 was filled with cation exchange resin particles (Nafion NR-50 manufactured by DuPont). This electrolytic cell is arranged as shown in FIG. 2, pure water having an electric resistivity of 1 MΩ / cm is supplied to the cathode chamber 8 and the anode chamber 9 at a flow rate of 200 cc / min, and the intermediate chamber 5 has a concentration of 1%. A × 10 −4 mol / l NaCl aqueous solution was supplied. Then, electrolysis was performed at an electrolysis current density of 40 mA / cm 2 to obtain water containing hydrogen ions or hydroxyl ions in excess of counter ions.

【0055】電解処理が行われた液についてpHや酸化
還元電位について調べた処、ガラス電極で測定したカソ
ード液のpHは約10.8であり、銀−塩化銀電極で測
定した酸化還元電位は約−700mV(vsAg/Ag
Cl)であった。一方、アノード液のpHは3.7であ
り、酸化還元電位は+1050mV(vsAg/AgC
l)であった。
When the pH and redox potential of the electrolytically treated liquid were examined, the pH of the catholyte measured with a glass electrode was about 10.8, and the redox potential measured with a silver-silver chloride electrode was About -700mV (vsAg / Ag
Cl). On the other hand, the pH of the anolyte was 3.7, and the redox potential was +1050 mV (vsAg / AgC).
l).

【0056】又、カソード液のNa+ 濃度は約1×10
-4mol/lであり、他方、アノード液のCl- 濃度は
約8×10-5mol/lであり、過剰なOH- 又はH+
が生成されていることが判る。
The Na + concentration in the catholyte is about 1 × 10.
-4 mol / l, on the other hand, the Cl - concentration of the anolyte is about 8 x 10 -5 mol / l, and an excess of OH - or H +.
It can be seen that is generated.

【0057】[0057]

【効果】対イオンよりも水素イオン又は水酸イオンを過
剰に含む水が効率良く得られ、しかも、この水は洗浄や
表面処理に際して極めて効果的なものである。
[Effect] Water containing hydrogen ions or hydroxide ions in excess of counter ions can be efficiently obtained, and this water is extremely effective in cleaning and surface treatment.

【図面の簡単な説明】[Brief description of drawings]

【図1】電解槽の概略断面図である。FIG. 1 is a schematic cross-sectional view of an electrolytic cell.

【図2】電解槽と各種タンクの接続状態を示す配管図で
ある。
FIG. 2 is a piping diagram showing a connection state of an electrolytic cell and various tanks.

【符号の説明】[Explanation of symbols]

1 カソード極 2 アノード極 3,4 隔膜 5 中間室 6 容器 7 直流電源 8 カソード室 9 アノード室 10 純水製造装置 11,15 ポンプ 12,13 液受けタンク 14 電解液タンク 1 Cathode electrode 2 Anode electrode 3,4 Diaphragm 5 Intermediate chamber 6 Container 7 DC power source 8 Cathode chamber 9 Anode chamber 10 Pure water production device 11,15 Pump 12,13 Liquid receiving tank 14 Electrolyte tank

Claims (9)

【特許請求の範囲】[Claims] 【請求項1】 対イオンよりも水素イオン又は水酸イオ
ンを過剰に含む水を製造する方法であって、アノード極
が設けられたアノード室と、カソード極が設けられたカ
ソード室と、前記アノード室及びカソード室に挟まれた
中間室とからなる三室構造の電解槽を用い、前記アノー
ド室及び/又はカソード室に水を供給すると共に、前記
中間室には電解質が存在する条件下で電解処理を行うこ
とを特徴とする対イオンよりも水素イオン又は水酸イオ
ンを過剰に含む水の製造方法。
1. A method for producing water containing hydrogen ions or hydroxide ions in excess of counter ions, comprising an anode chamber having an anode electrode, a cathode chamber having a cathode electrode, and the anode. Using an electrolyzer having a three-chamber structure consisting of an intermediate chamber sandwiched between a cathode chamber and a cathode chamber, water is supplied to the anode chamber and / or the cathode chamber, and electrolytic treatment is performed under the condition that an electrolyte is present in the intermediate chamber. A method for producing water containing hydrogen ions or hydroxide ions in excess of the counter ions.
【請求項2】 対イオンよりも水素イオン又は水酸イオ
ンを過剰に含む水を製造する方法であって、アノード極
が設けられたアノード室と、カソード極が設けられたカ
ソード室と、前記アノード室及びカソード室に挟まれた
中間室とからなる三室構造の電解槽を用い、前記アノー
ド室及び/又はカソード室に水を供給・排出すると共
に、前記中間室には電解質が存在する条件下で電解処理
を行うことを特徴とする対イオンよりも水素イオン又は
水酸イオンを過剰に含む水の製造方法。
2. A method for producing water containing hydrogen ions or hydroxide ions in excess of counter ions, the anode chamber having an anode electrode, the cathode chamber having a cathode electrode, and the anode. Chamber and a middle chamber sandwiched between the cathode chamber and a three-chamber structure electrolytic cell is used, water is supplied to and discharged from the anode chamber and / or the cathode chamber, and an electrolyte is present in the middle chamber. A method for producing water containing hydrogen ions or hydroxide ions in excess of counter ions, which is characterized by performing electrolytic treatment.
【請求項3】 アノード室及び/又はカソード室に供給
する水は導電率が3000μS/cm以下の水であるこ
とを特徴とする請求項1又は請求項2の対イオンよりも
水素イオン又は水酸イオンを過剰に含む水の製造方法。
3. The hydrogen ion or hydroxy acid rather than the counter ion of claim 1 or 2, wherein the water supplied to the anode chamber and / or the cathode chamber is water having an electric conductivity of 3000 μS / cm or less. A method for producing water containing excess ions.
【請求項4】 中間室に存在している電解質が気化性の
物質であることを特徴とする請求項1又は請求項2の対
イオンよりも水素イオン又は水酸イオンを過剰に含む水
の製造方法。
4. The production of water containing hydrogen ions or hydroxide ions in excess of the counter ions according to claim 1 or 2, wherein the electrolyte present in the intermediate chamber is a vaporizable substance. Method.
【請求項5】 中間室に存在している電解質が硝酸塩、
アミン系化合物、有機酸塩の群の中から選ばれたもので
あることを特徴とする請求項1又は請求項2の対イオン
よりも水素イオン又は水酸イオンを過剰に含む水の製造
方法。
5. The electrolyte existing in the intermediate chamber is nitrate.
A method for producing water containing hydrogen ions or hydroxide ions in excess of the counter ions of claim 1 or 2, which is selected from the group consisting of amine compounds and organic acid salts.
【請求項6】 アノード極が設けられたアノード室と、
カソード極が設けられたカソード室と、前記アノード室
及びカソード室に挟まれた中間室とからなる三室構造の
電解槽を用い、前記アノード室及び/又はカソード室に
水を供給すると共に、前記中間室には電解質が存在する
条件下で電解処理を行うことにより得られた対イオンよ
りも水素イオン又は水酸イオンを過剰に含む水。
6. An anode chamber provided with an anode electrode,
An electrolytic cell having a three-chamber structure including a cathode chamber provided with a cathode electrode and an intermediate chamber sandwiched between the anode chamber and the cathode chamber is used to supply water to the anode chamber and / or the cathode chamber and Water containing hydrogen ions or hydroxide ions in excess of the counter ions obtained by performing electrolytic treatment under the condition that an electrolyte is present in the chamber.
【請求項7】 アノード極が設けられたアノード室と、
カソード極が設けられたカソード室と、前記アノード室
及びカソード室に挟まれた中間室とからなる三室構造の
電解槽を用い、前記アノード室及び/又はカソード室に
水を供給・排出すると共に、前記中間室には電解質が存
在する条件下で電解処理を行うことにより得られた対イ
オンよりも水素イオン又は水酸イオンを過剰に含む水。
7. An anode chamber provided with an anode electrode,
Using a three-chambered electrolytic cell consisting of a cathode chamber provided with a cathode electrode and an intermediate chamber sandwiched between the anode chamber and the cathode chamber, while supplying and discharging water to the anode chamber and / or the cathode chamber, Water containing hydrogen ions or hydroxide ions in excess of the counter ions obtained by performing electrolytic treatment under the condition that an electrolyte is present in the intermediate chamber.
【請求項8】 中間室に存在している電解質が気化性の
物質であることを特徴とする請求項6又は請求項7の対
イオンよりも水素イオン又は水酸イオンを過剰に含む
水。
8. The water containing hydrogen ions or hydroxide ions in excess of the counter ions of claim 6 or 7, wherein the electrolyte present in the intermediate chamber is a vaporizable substance.
【請求項9】 酸化及び/又は還元物質を共存させたこ
とを特徴とする請求項6又は請求項7の対イオンよりも
水素イオン又は水酸イオンを過剰に含む水。
9. Water containing a hydrogen ion or a hydroxide ion in excess of the counter ion of claim 6 or 7, wherein an oxidizing and / or reducing substance is allowed to coexist.
JP33457293A 1993-07-12 1993-12-28 Method for producing washing water containing hydrogen ions or hydroxyl ions in excess of counter ions and obtained washing water Expired - Lifetime JP3458341B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP33457293A JP3458341B2 (en) 1993-07-12 1993-12-28 Method for producing washing water containing hydrogen ions or hydroxyl ions in excess of counter ions and obtained washing water

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP17158993 1993-07-12
JP5-171589 1993-07-12
JP33457293A JP3458341B2 (en) 1993-07-12 1993-12-28 Method for producing washing water containing hydrogen ions or hydroxyl ions in excess of counter ions and obtained washing water

Publications (2)

Publication Number Publication Date
JPH0775784A true JPH0775784A (en) 1995-03-20
JP3458341B2 JP3458341B2 (en) 2003-10-20

Family

ID=26494272

Family Applications (1)

Application Number Title Priority Date Filing Date
JP33457293A Expired - Lifetime JP3458341B2 (en) 1993-07-12 1993-12-28 Method for producing washing water containing hydrogen ions or hydroxyl ions in excess of counter ions and obtained washing water

Country Status (1)

Country Link
JP (1) JP3458341B2 (en)

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997046489A1 (en) * 1996-06-04 1997-12-11 Setoyama, Naomi Electrolyzed water generating apparatus, cleaning method using electrolyzed water, and cleaning agent used in same
JP2002052390A (en) * 2000-08-10 2002-02-19 Coherent Technology:Kk Method and apparatus for removing impurities
JP2007138233A (en) * 2005-11-17 2007-06-07 Toagosei Co Ltd Method of manufacturing high purity alkaline metal hydroxide
JP2007160496A (en) * 2005-11-15 2007-06-28 Shinshu Univ Workpiece polishing device, and workpiece polishing method
JP2008212334A (en) * 2007-03-02 2008-09-18 Masaaki Arai Air cleaning apparatus
AU2012201437B2 (en) * 2001-12-05 2012-10-11 Microsafe Group Dmcc Method and apparatus for producing negative and positive oxidative reductive potential (ORP) water
JP2013536319A (en) * 2010-07-29 2013-09-19 リキッド・ライト・インコーポレーテッド Reduction of carbon dioxide to product
US8834445B2 (en) 2006-01-20 2014-09-16 Oculus Innovative Sciences, Inc. Methods of treating or preventing peritonitis with oxidative reductive potential water solution
US8840873B2 (en) 2005-03-23 2014-09-23 Oculus Innovative Sciences, Inc. Method of treating second and third degree burns using oxidative reductive potential water solution
US9168318B2 (en) 2003-12-30 2015-10-27 Oculus Innovative Sciences, Inc. Oxidative reductive potential water solution and methods of using the same
WO2016043072A1 (en) * 2014-09-19 2016-03-24 株式会社 東芝 Electrolytic device, electrode unit, and method for generating electrolytic water
US9498548B2 (en) 2005-05-02 2016-11-22 Oculus Innovative Sciences, Inc. Method of using oxidative reductive potential water solution in dental applications
US9708722B2 (en) 2012-07-26 2017-07-18 Avantium Knowledge Centre B.V. Electrochemical co-production of products with carbon-based reactant feed to anode
US9970117B2 (en) 2010-03-19 2018-05-15 Princeton University Heterocycle catalyzed electrochemical process
US10119196B2 (en) 2010-03-19 2018-11-06 Avantium Knowledge Centre B.V. Electrochemical production of synthesis gas from carbon dioxide
US10287696B2 (en) 2012-07-26 2019-05-14 Avantium Knowledge Centre B.V. Process and high surface area electrodes for the electrochemical reduction of carbon dioxide
US10329676B2 (en) 2012-07-26 2019-06-25 Avantium Knowledge Centre B.V. Method and system for electrochemical reduction of carbon dioxide employing a gas diffusion electrode
US10342825B2 (en) 2009-06-15 2019-07-09 Sonoma Pharmaceuticals, Inc. Solution containing hypochlorous acid and methods of using same
CN115594259A (en) * 2022-10-08 2023-01-13 青岛理工大学(Cn) Multipurpose electrochemical device for water treatment and application

Cited By (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997046489A1 (en) * 1996-06-04 1997-12-11 Setoyama, Naomi Electrolyzed water generating apparatus, cleaning method using electrolyzed water, and cleaning agent used in same
JP2002052390A (en) * 2000-08-10 2002-02-19 Coherent Technology:Kk Method and apparatus for removing impurities
AU2012201437B2 (en) * 2001-12-05 2012-10-11 Microsafe Group Dmcc Method and apparatus for producing negative and positive oxidative reductive potential (ORP) water
US10016455B2 (en) 2003-12-30 2018-07-10 Sonoma Pharmaceuticals, Inc. Method of preventing or treating influenza with oxidative reductive potential water solution
US9642876B2 (en) 2003-12-30 2017-05-09 Sonoma Pharmaceuticals, Inc. Method of preventing or treating sinusitis with oxidative reductive potential water solution
US9168318B2 (en) 2003-12-30 2015-10-27 Oculus Innovative Sciences, Inc. Oxidative reductive potential water solution and methods of using the same
US8840873B2 (en) 2005-03-23 2014-09-23 Oculus Innovative Sciences, Inc. Method of treating second and third degree burns using oxidative reductive potential water solution
US9498548B2 (en) 2005-05-02 2016-11-22 Oculus Innovative Sciences, Inc. Method of using oxidative reductive potential water solution in dental applications
US8333882B2 (en) 2005-11-15 2012-12-18 Fujikoshi Machinery Corp. Polishing apparatus and method of polishing work
JP2007160496A (en) * 2005-11-15 2007-06-28 Shinshu Univ Workpiece polishing device, and workpiece polishing method
JP2007138233A (en) * 2005-11-17 2007-06-07 Toagosei Co Ltd Method of manufacturing high purity alkaline metal hydroxide
US9072726B2 (en) 2006-01-20 2015-07-07 Oculus Innovative Sciences, Inc. Methods of treating or preventing inflammation and hypersensitivity with oxidative reductive potential water solution
US8834445B2 (en) 2006-01-20 2014-09-16 Oculus Innovative Sciences, Inc. Methods of treating or preventing peritonitis with oxidative reductive potential water solution
US9782434B2 (en) 2006-01-20 2017-10-10 Sonoma Pharmaceuticals, Inc. Methods of treating or preventing inflammation and hypersensitivity with oxidative reductive potential water solution
JP2008212334A (en) * 2007-03-02 2008-09-18 Masaaki Arai Air cleaning apparatus
US10342825B2 (en) 2009-06-15 2019-07-09 Sonoma Pharmaceuticals, Inc. Solution containing hypochlorous acid and methods of using same
US9970117B2 (en) 2010-03-19 2018-05-15 Princeton University Heterocycle catalyzed electrochemical process
US10119196B2 (en) 2010-03-19 2018-11-06 Avantium Knowledge Centre B.V. Electrochemical production of synthesis gas from carbon dioxide
JP2013536319A (en) * 2010-07-29 2013-09-19 リキッド・ライト・インコーポレーテッド Reduction of carbon dioxide to product
US10287696B2 (en) 2012-07-26 2019-05-14 Avantium Knowledge Centre B.V. Process and high surface area electrodes for the electrochemical reduction of carbon dioxide
US9708722B2 (en) 2012-07-26 2017-07-18 Avantium Knowledge Centre B.V. Electrochemical co-production of products with carbon-based reactant feed to anode
US10329676B2 (en) 2012-07-26 2019-06-25 Avantium Knowledge Centre B.V. Method and system for electrochemical reduction of carbon dioxide employing a gas diffusion electrode
US11131028B2 (en) 2012-07-26 2021-09-28 Avantium Knowledge Centre B.V. Method and system for electrochemical reduction of carbon dioxide employing a gas diffusion electrode
CN105612273B (en) * 2014-09-19 2018-04-20 株式会社东芝 Electrolysis unit, electrode unit and electrolyzed water producing method
JP6062597B2 (en) * 2014-09-19 2017-01-18 株式会社東芝 ELECTROLYTIC DEVICE, ELECTRODE UNIT, AND ELECTROLYTIC WATER GENERATION METHOD
CN105612273A (en) * 2014-09-19 2016-05-25 株式会社东芝 Electrolytic device, electrode unit, and method for generating electrolytic water
WO2016043072A1 (en) * 2014-09-19 2016-03-24 株式会社 東芝 Electrolytic device, electrode unit, and method for generating electrolytic water
CN115594259A (en) * 2022-10-08 2023-01-13 青岛理工大学(Cn) Multipurpose electrochemical device for water treatment and application
CN115594259B (en) * 2022-10-08 2023-05-12 青岛理工大学 Multipurpose electrochemical device for water treatment and application

Also Published As

Publication number Publication date
JP3458341B2 (en) 2003-10-20

Similar Documents

Publication Publication Date Title
JP3458341B2 (en) Method for producing washing water containing hydrogen ions or hydroxyl ions in excess of counter ions and obtained washing water
JP3181795B2 (en) Electrolyzed water production equipment
KR100712389B1 (en) The process and the apparatus for cleansing the electronic part using functional water
JPH08127887A (en) Electrolytic water producing device
JP2000226682A (en) Method and device for electrochemical processing
JP3396853B2 (en) Water production method and obtained water
JP3247134B2 (en) Liquid in which hydrogen ion or hydroxide ion and redox substance coexist by electrolysis of pure water and method for producing the same
JP3313263B2 (en) Electrolytic water generation method, its generation apparatus, and semiconductor manufacturing apparatus
JP4462513B2 (en) Electrolyzed water manufacturing method, cleaning water, and cleaning method
US6827832B2 (en) Electrochemical cell and process for reducing the amount of organic contaminants in metal plating baths
JPH11151493A (en) Electrolyzer and electrolyzing method
JP2001327934A (en) Cleaning device and cleaning method
JPH04244221A (en) Method for cleaning filter
JP3299250B2 (en) Pure water electrolysis tank with an intermediate chamber
JP3236315B2 (en) Pure water electrolysis tank with an intermediate chamber
JP3338435B2 (en) Method for producing liquid in which hydrogen ion or hydroxide ion and redox substance coexist by electrolysis of pure water
JP4071980B2 (en) Method and apparatus for cleaning electronic parts
JP4565182B2 (en) Method for decomposing refractory organometallic complexes
JP4053805B2 (en) Functional water, production method and production apparatus thereof
JPH101794A (en) Electrolytic cell and electrolyzing method
KR0168501B1 (en) Method for producing water and water obtained therefrom
JPH10296198A (en) Cleaning method
JPH07289854A (en) Metallic ion removing device and method therefor
JP2001096273A (en) Method and device for producing ionized water useful for cleaning
JP3981424B2 (en) Decomposition method of halogenated ethylene

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070808

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080808

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080808

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080808

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080808

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080808

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090808

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100808

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100808

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110808

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110808

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110808

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110808

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110808

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120808

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120808

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120808

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120808

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120808

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130808

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130808

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130808

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130808

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130808

Year of fee payment: 10

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term