JP4565182B2 - Method for decomposing refractory organometallic complexes - Google Patents

Method for decomposing refractory organometallic complexes Download PDF

Info

Publication number
JP4565182B2
JP4565182B2 JP2004275371A JP2004275371A JP4565182B2 JP 4565182 B2 JP4565182 B2 JP 4565182B2 JP 2004275371 A JP2004275371 A JP 2004275371A JP 2004275371 A JP2004275371 A JP 2004275371A JP 4565182 B2 JP4565182 B2 JP 4565182B2
Authority
JP
Japan
Prior art keywords
organometallic complex
hardly decomposable
electrode
decomposable organometallic
electrolyzing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2004275371A
Other languages
Japanese (ja)
Other versions
JP2006088011A (en
Inventor
謙介 本多
寛教 西野
陽子 山口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NATIONAL UNIVERSITY CORPORATION YAMAGUCHI UNIVERSITY
Original Assignee
NATIONAL UNIVERSITY CORPORATION YAMAGUCHI UNIVERSITY
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NATIONAL UNIVERSITY CORPORATION YAMAGUCHI UNIVERSITY filed Critical NATIONAL UNIVERSITY CORPORATION YAMAGUCHI UNIVERSITY
Priority to JP2004275371A priority Critical patent/JP4565182B2/en
Publication of JP2006088011A publication Critical patent/JP2006088011A/en
Application granted granted Critical
Publication of JP4565182B2 publication Critical patent/JP4565182B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Water Treatment By Electricity Or Magnetism (AREA)
  • Electrolytic Production Of Metals (AREA)

Description

本発明は、例えばエチレンジアミンテトラ酢酸(以下EDTAという)やニトリロトリ酢酸のような難分解性有機金属錯体の分解に関する。また難分解性有機金属錯体の中心金属を微粒子として回収する方法に関する。   The present invention relates to decomposition of hardly decomposable organometallic complexes such as ethylenediaminetetraacetic acid (hereinafter referred to as EDTA) and nitrilotriacetic acid. The present invention also relates to a method for recovering the central metal of the hardly decomposable organometallic complex as fine particles.

一般に錯体又は錯塩といわれる有機金属化合物の中には、安定で分解され難いものが数多く存在する。   There are many organic metal compounds generally called complexes or complex salts that are stable and difficult to decompose.

一般に配位子となり得る有機化合物は、遷移金属などと安定な錯体を形成するので、微量金属の捕捉剤として用いられる。   In general, an organic compound that can be a ligand forms a stable complex with a transition metal or the like, and thus is used as a trace metal scavenger.

たとえば、EDTAなどは、硬水の軟化剤、ゴムやビタミンCの酸化防止剤、医薬品などの金属不活性化剤、食品中の微量金属による変質防止剤、洗剤用の金属イオン封鎖或いは重金属イオンの沈殿防止剤、ボイラー洗浄剤、さらには酵素反応における金属イオンの影響を防止する目的や分析化学等に広く用いられている。   For example, EDTA is a softener for hard water, antioxidants for rubber and vitamin C, metal deactivators such as pharmaceuticals, anti-degradation agents due to trace metals in foods, sequestering metal ions or precipitation of heavy metal ions It is widely used for inhibitors, boiler cleaners, and for the purpose of preventing the influence of metal ions in enzyme reactions and analytical chemistry.

これらの金属錯体のうち、特に難分解性のものは、通常排水として捨てられた場合、河川や湖沼或いは海に流入し、CODやBODの増大を来たし、延いては富栄養化の原因の一つとなり、特に重金属の錯体にあっては、それ自体、土壌や水質の汚染物質として公害の原因ともなりかねない。   Among these metal complexes, particularly difficult-to-decompose ones, which are usually discarded as wastewater, flow into rivers, lakes, or seas, leading to an increase in COD and BOD, which is one of the causes of eutrophication. In particular, heavy metal complexes can themselves cause pollution as soil and water pollutants.

したがって錯体を含む排水も他の有害な化学物質等と同様に種々の化学処理や微生物処理を施し、分解除去した後は廃棄することが必要である。   Therefore, wastewater containing complexes must be subjected to various chemical treatments and microbial treatments as well as other harmful chemical substances, and discarded after being decomposed and removed.

しかしながら、錯体の中には、安定で難分解性のものが数多く存在する。錯体の安定度は、その中に含まれる金属イオン諸性質と配位子の性質とによって定まる。一般にアンモニアのように一分子中に一つの配位部位を持つものに比べ、エチレンジアミンの如く、一分子中に複数の配位部位を持つもの、換言すればキレート化合物を形成するものは安定であり、難分解性有機金属錯体となる。また中心金属にあっては、例えば二価遷移金属イオンを例に示すと、一般に安定性に関して次の関係があることが知られている。   However, there are many complexes that are stable and hardly decomposable. The stability of the complex is determined by the properties of the metal ions and the ligands contained therein. In general, those having multiple coordination sites in one molecule, such as ethylenediamine, in other words, those that form chelate compounds are more stable than those having one coordination site in one molecule such as ammonia. It becomes a hardly decomposable organometallic complex. In the case of the central metal, for example, when a divalent transition metal ion is shown as an example, it is generally known that there is the following relationship regarding stability.

Figure 0004565182
Figure 0004565182

更に錯体の安定度は、安定定数として実測・計算で求めることもできる。   Furthermore, the stability of the complex can also be determined by actual measurement and calculation as a stability constant.

たとえば、金属イオンM、配位子Lから1種の錯体(MLn)が生成する反応を考えると、次の式(1)が成立する場合、イオン強度一定(活量係数一定)という設定でモル濃度によるみかけの平衡定数を測定することにより、式(2)として求めることができる。   For example, considering a reaction in which one kind of complex (MLn) is generated from a metal ion M and a ligand L, when the following formula (1) is satisfied, the molarity is set at a constant ionic strength (activity coefficient constant). By measuring the apparent equilibrium constant depending on the concentration, it can be obtained as equation (2).

Figure 0004565182
(但し、Mは金属イオン、Lは配位子、Kは見かけの平衡定数(安定定数))
Figure 0004565182
(However, M is a metal ion, L is a ligand, K is an apparent equilibrium constant (stability constant))

本発明において、難分解性有機金属錯体と見なし得るものは、安定定数5以上の錯体であり、一般にキレート化合物がこれに該当する。特に中心金属として鉄、コバルト、ニッケル及び銅の錯体であり、これらは通常安定度定数が7以上の化合物であり、中でも銅にあっては10を超えるものである。   In the present invention, what can be regarded as a hardly decomposable organometallic complex is a complex having a stability constant of 5 or more, and generally a chelate compound corresponds to this. In particular, iron, cobalt, nickel, and copper complexes are used as the central metal, and these are usually compounds having a stability constant of 7 or more.

上述の如き安定な、すなわち難分解性有機金属錯体の廃棄処理は、従来特に有効な手段がなく、例えば産業上利用されている代表的な錯化剤であるEDTAによる錯体にあっても、その処理方法は、多孔質の鉄等に吸着させて、地中に埋めて廃棄する方法がとられているか又は稀釈して河川に流す方法が用いられているのが現状であり、いずれも有害物が流出しないという確証はない。   The disposal of the stable, ie, hardly decomposable organometallic complex as described above has hitherto not been particularly effective. For example, even in the case of a complex with EDTA, which is a typical complexing agent used in industry, The treatment method is to adsorb to porous iron or the like and bury it in the ground and dispose of it, or to dilute it and use it to flow into the river. There is no assurance that will not leak.

本発明は、上記技術背景に鑑み、難分解性有機金属錯体を簡単な手段により分解する方法を提供するにある。併せて、該有機金属錯体を構成する中心金属、特に銅などの重金属を、負極上のメッキさせるのではなく、微粒子として、回収し得る手段を提供するにある。   In view of the above technical background, the present invention provides a method for decomposing a hardly decomposable organometallic complex by simple means. In addition, the present invention provides a means by which the central metal constituting the organometallic complex, particularly heavy metals such as copper, can be recovered as fine particles instead of being plated on the negative electrode.

本発明は、正極及び負極からなる電極の少なくとも一方が炭素電極であり、両電極間に難分解性有機金属錯体を含む電解質溶液を存在させ、正極と負極の極性を定期的に転換しつつ電解することを特徴とする難分解性有機金属錯体の電気分解方法である。
In the present invention, at least one of an electrode composed of a positive electrode and a negative electrode is a carbon electrode, an electrolyte solution containing a hardly decomposable organometallic complex is present between both electrodes, and electrolysis is performed while periodically changing the polarity of the positive electrode and the negative electrode. This is a method for electrolyzing a hardly decomposable organometallic complex.

本発明の特徴の一つは、負極において、難分解性有機金属錯体から中心金属成分を引き抜き、還元反応を行わせることにある。かくして中心金属を失った配位子は容易に酸化により分解することができるため、陽極上で配位子を酸化分解することができるのである。   One of the characteristics of the present invention is that the negative metal is extracted from the hardly decomposable organometallic complex and a reduction reaction is performed in the negative electrode. Thus, since the ligand that has lost the central metal can be easily decomposed by oxidation, the ligand can be oxidized and decomposed on the anode.

これらの反応は難分解性有機金属錯体を含む電解質液を連続的又は間歇的に供給しつつ電気分解を行うことにより正,負両電極上で連続的に反応を行わせることも可能となる。   These reactions can be performed continuously on both the positive and negative electrodes by performing electrolysis while continuously or intermittently supplying an electrolyte solution containing a hardly decomposable organometallic complex.

本発明において、好ましい態様の一つは少なくとも負極として炭素電極を用いることにより、難分解性有機金属から引き抜かれ、還元された金属が負極上に沈着することなく、負極表面から微粒子状で脱離し、電解槽底に沈殿する。この傾向は、特に銅などの重金属において顕著である。かくして、電解槽底に沈殿した金属粒は濾過等の分別手段で極めて容易に回収することができるのである。   In the present invention, one of preferred embodiments is that at least a carbon electrode is used as the negative electrode, so that the reduced metal is extracted from the surface of the negative electrode without being deposited on the negative electrode without being deposited on the negative electrode. Precipitates at the bottom of the electrolytic cell. This tendency is particularly remarkable in heavy metals such as copper. Thus, the metal particles precipitated on the bottom of the electrolytic cell can be recovered very easily by a sorting means such as filtration.

かかる炭素電極としては、勿論アモルファスカーボンであってもよいが、耐久性の観点からは、結晶性炭素が好ましく、特にダイヤモンド電極が優れている。その他の炭素電極としてはダイヤモンドライクカーボンやグラッシーカーボン等も好適に使用される。   Of course, the carbon electrode may be amorphous carbon, but from the viewpoint of durability, crystalline carbon is preferable, and a diamond electrode is particularly excellent. As other carbon electrodes, diamond-like carbon, glassy carbon, or the like is also preferably used.

また本発明において電気分解を行うにあたり正極,負極間に印加する電極(電圧)は、当然難分解性有機金属錯体の電気分解を生ずる電圧以上であることが必要であり、一般に2.5ボルト以上の電圧が用いられる。   In the present invention, the electrode (voltage) applied between the positive electrode and the negative electrode for the electrolysis is naturally required to be equal to or higher than the voltage causing electrolysis of the hardly decomposable organometallic complex, and generally 2.5 volts or higher. Is used.

本発明によれば、従来分解除去が困難であった難分解性有機金属錯体、就中EDTAの重金属錯体を極めて容易に分解することが可能であり、延いては排水などに含まれる有機物の減量を可能とし、排水中のCODやBODの減少に貢献し得る。   According to the present invention, it is possible to very easily decompose a hardly-decomposable organometallic complex that has been difficult to decompose and remove, particularly a heavy metal complex of EDTA, and thus reduce the amount of organic matter contained in wastewater. Can contribute to the reduction of COD and BOD in the waste water.

更に本発明は、濾過等の簡単な手段だけで有害な重金属類の除去や価値のある金属類の回収などにも有効に利用できる。   Furthermore, the present invention can be effectively used for removing harmful heavy metals and recovering valuable metals only by simple means such as filtration.

本発明は、難分解性有機金属錯体の分解手段として、電気分解方法を用いることを最大の特徴とする。   The present invention is characterized by using an electrolysis method as a means for decomposing a hardly decomposable organometallic complex.

本発明者らの知見によれば、電気的に中性であり、電荷を持たない有機金属錯体であっても、その中心金属は陽イオンとして電荷を持っており、配位子との間で弱いイオン結合状態にあるが、電解処理することにより、負極上で配位子から金属イオンが引き抜かれ還元される。かかる反応は難分解性有機金属錯体が完全に電解質溶液に溶解している場合のみならず、電解質溶液中にコロイド状または微粒子状となって懸濁分散した状態であっても進行する。   According to the knowledge of the present inventors, even if the organometallic complex is electrically neutral and has no charge, the central metal has a charge as a cation, Although it is in a weak ionic bond state, metal ions are extracted from the ligand on the negative electrode and reduced by electrolytic treatment. This reaction proceeds not only when the hardly decomposable organometallic complex is completely dissolved in the electrolyte solution, but also in a state where it is suspended and dispersed in the electrolyte solution in the form of colloids or fine particles.

またかかる負極上での反応は、有機金属錯体の安定性度何如にかかわらず可能ではあるが、本発明にあっては、特に難分解性有機錯体について有意義に利用することができる。   Further, such a reaction on the negative electrode is possible regardless of the degree of stability of the organometallic complex, but in the present invention, it can be used particularly meaningfully for a hardly decomposable organic complex.

かくして、負極反応により得られる金属は、析出時、サブミクロン乃至数ミクロン程度の極めて微細な形状である。   Thus, the metal obtained by the negative electrode reaction has a very fine shape of about submicron to several microns when deposited.

しかも、それらの微細金属は、負極上に沈着することなく負極から脱離する傾向にある。特に負極として炭素電極を用いた場合顕著である。炭素電極としては、特に限定されずアモルファスカーボンやグラッシーカーボン、グラファイトやダイヤモンドライクの如く少なくとも一部に結晶構造を有するカーボン、中でもダイヤモンドの結晶構造を有する物質よりなる負極は、前記金属の沈着を生じないことのみならず、耐久性にも優れているので特に好ましい電極材料となる。   Moreover, these fine metals tend to desorb from the negative electrode without depositing on the negative electrode. This is particularly noticeable when a carbon electrode is used as the negative electrode. The carbon electrode is not particularly limited, and the negative electrode made of a substance having a crystal structure such as amorphous carbon, glassy carbon, graphite or diamond-like, at least a part of which has a crystal structure of diamond, causes deposition of the metal. Since it is excellent not only in the absence but also in durability, it is a particularly preferable electrode material.

かかるダイヤモンド電極は、従来公知のものが何等制限されることなく用いられる。たとえば、化学蒸着(CVD法)によりシリコン、ニオブ等の基板上にダイヤモンドの薄層を形成させたダイヤモンド電極が用いられる。ダイヤモンドは通常導電性を持たないが、ボロン等のドープにより導体となる。通常ボロン等の原子のドープ濃度はダイヤモンド1cm当り、1×1019個乃至は1023個程度の範囲である。 As such a diamond electrode, a conventionally known one can be used without any limitation. For example, a diamond electrode in which a thin layer of diamond is formed on a substrate such as silicon or niobium by chemical vapor deposition (CVD method) is used. Diamond usually has no conductivity, but becomes a conductor by doping with boron or the like. Usually, the doping concentration of atoms such as boron is in the range of about 1 × 10 19 to 10 23 per cm 3 of diamond.

すなわち、ドープ量が1×1019個よりも少ない場合には、ダイヤモンド電極が、均一な半導体膜となり難く、1×1023以上になると電気的には導体となるが、ダイヤモンド表面の特性が次第に失われる、同時に電極としての耐久性も損なわれる。 That is, when the doping amount is less than 1 × 10 19 , the diamond electrode is difficult to become a uniform semiconductor film, and when it becomes 1 × 10 23 or more, it becomes an electrical conductor, but the characteristics of the diamond surface gradually increase. At the same time, the durability as an electrode is lost.

また、基板上にCVD法により形成させたダイヤモンド薄層は、ほぼ多結晶体となるが、ダイヤモンドとしての化学的安定性が保たれる範囲内で結晶構造が壊れていても良い。更にCVD法により得られるダイヤモンド表面には、主としてC‐H結合が存在し、疎水性であるが、電極として用いる場合、錯体の電解電圧、一般に2〜5ボルトの電圧を印加することにより、次第に酸化されC‐OH結合となり、効率よく錯体からの金属の引き抜き・還元反応を生じ、金属は微粒子として電極から遊離させることができる。   Further, the thin diamond layer formed on the substrate by the CVD method is substantially polycrystalline, but the crystal structure may be broken as long as chemical stability as diamond is maintained. Furthermore, the diamond surface obtained by the CVD method has mainly C—H bonds and is hydrophobic, but when used as an electrode, it gradually increases by applying an electrolytic voltage of the complex, generally 2 to 5 volts. Oxidized to form a C—OH bond, efficiently causing a metal extraction / reduction reaction from the complex, and the metal can be released from the electrode as fine particles.

勿論、CVD法により得られたダイヤモンド電極の表面をクロム酸混液や酸素プラズマ処理することによりダイヤモンド表面に酸素を結合させた修飾電極や、錯体の電解に先立って、4ボルト以上の電圧(Ag/AgCl電極に対して:以下電圧の表示において同じ)を10分乃至1時間程度印加することにより、水の電解を行い、ダイヤモンド電極表面を酸化して用いることも好ましい態様となる。   Of course, the surface of the diamond electrode obtained by CVD is treated with a mixed solution of chromic acid or oxygen plasma so that oxygen is bonded to the surface of the diamond. It is also a preferred embodiment to apply water to the AgCl electrode (hereinafter the same in the voltage display) for about 10 minutes to 1 hour to electrolyze water and oxidize the surface of the diamond electrode.

本発明において対極(正極)は一般に白金、鉄、ニッケル、グラファイトなどの導電体が用いられるが、電極を定期的に転換することから、前記炭素電極を用いるのが好ましい。
In the present invention, a conductor such as platinum, iron, nickel, and graphite is generally used as the counter electrode (positive electrode) . However, the carbon electrode is preferably used because the electrode is periodically changed .

次に、中心金属を引き抜かれた配位子は、安定性を失い、正極上で容易に酸化分解を受け、最終的には炭酸ガス等となり、事実上消滅する。かかる酸化分解反応もまた、正・負電極間に印加される2〜5ボルトの電位差で十分に達成することが可能である。   Next, the ligand from which the central metal has been extracted loses stability, is easily oxidatively decomposed on the positive electrode, and eventually becomes carbon dioxide gas, which virtually disappears. Such oxidative decomposition reaction can also be sufficiently achieved with a potential difference of 2 to 5 volts applied between the positive and negative electrodes.

本発明の難分解性有機金属錯体の電気分解に使用する電解槽は、特に限定されるものではなく、通常の電気化学反応に用いられる無隔膜電解装置が利用できる。好ましい電解槽の態様としては、電極近辺の液の流速が十分に大きくしえるものであり、内部に攪拌器を有するものや、電解液の外部循環装置を有するものなどがあげられる。   The electrolytic cell used for the electrolysis of the hardly decomposable organometallic complex of the present invention is not particularly limited, and a diaphragm electrolyzer used for a normal electrochemical reaction can be used. Preferred embodiments of the electrolytic cell include those in which the liquid flow rate in the vicinity of the electrode can be sufficiently increased, and those having a stirrer inside and those having an external circulation device for the electrolytic solution.

通電方法等はすでに述べたごとく、一般に2〜5ボルト好ましくは、2.5〜4ボルトの電位差を形成するよう電圧を印加して電気分解を行う。すなわち2ボルト以下では錯体の分解が起こり難く、また5ボルトを超えると水の電解が激しくなり好ましくない。   As described above, the energization method is generally performed by applying a voltage so as to form a potential difference of 2 to 5 volts, preferably 2.5 to 4 volts. That is, when the voltage is 2 volts or less, the decomposition of the complex hardly occurs.

また、電解液は、一般に難分解性有機金属錯体を1ミリモル乃至1モル濃度溶解又は懸濁させ、通常電導性を調整するため0.05〜2規定程度電解質物質、一般には塩又は酸、例えば塩化カリ、塩酸又は硫酸を加える。   In addition, the electrolytic solution generally dissolves or suspends a hardly decomposable organometallic complex in a concentration of 1 to 1 mol, and usually adjusts conductivity by about 0.05 to 2 N electrolyte substance, generally a salt or acid, for example, Add potassium chloride, hydrochloric acid or sulfuric acid.

更に、本発明において最も効果的電気分解方法は、電解における極性を定期的に転換することである。すなわち、本発明のメカニズムにあっては一般に電気的に中性である難分解性有機金属錯体を対象とするため、まず陰極で中心金属の引き抜き、還元が行われ、次いで不安定となった配位子が陽極上で酸化分解を受けるのであるから、直流電解においては、難分解性有機金属錯体は陰極表面から、陽極表面へ移動することが必須となる。   Furthermore, the most effective electrolysis method in the present invention is to periodically change the polarity in electrolysis. That is, in the mechanism of the present invention, since the target is generally an electrically neutral hardly-decomposable organometallic complex, the central metal is first extracted and reduced at the cathode, and then becomes unstable. Since the ligand undergoes oxidative decomposition on the anode, in direct current electrolysis, it is essential that the hardly decomposable organometallic complex moves from the cathode surface to the anode surface.

しかしながら、実質的に電荷を持たない上記難分解性有機金属錯体又は、該錯体から中心金属を引き抜かれた配位子が電解液中を移動し、各電極に到達するには、液中の拡散か対流或いは液の攪拌による乱流によることになる。しかるに定期的に電極の極性を転換することにより、難分解性有機金属錯体又は該錯体から中心金属を引き抜かれた配位子は電極上に止まっていても還元と酸化とを順次受けることができるため電極間を移動することなく分解されるのである。   However, in order for the above-mentioned hardly decomposable organometallic complex having substantially no electric charge or a ligand from which the central metal is extracted from the complex to move to the electrolyte solution and reach each electrode, diffusion in the solution Or turbulent flow due to convection or liquid agitation. However, by periodically changing the polarity of the electrode, the refractory organometallic complex or the ligand from which the central metal has been extracted from the complex can undergo reduction and oxidation sequentially even if it remains on the electrode. Therefore, it is decomposed without moving between the electrodes.

更に好ましいことに、陰極上に析出する中心金属は、該電極が陽極となった瞬間に電極上から剥離するため極めて微細な且つ均一な状態で該金属を回収することが可能となるのである。   More preferably, since the central metal deposited on the cathode is peeled off from the electrode at the moment when the electrode becomes the anode, the metal can be recovered in a very fine and uniform state.

このため、本発明において、電解時に電極の極性を転換しつつ運転することは極めて有効な手段となる。   For this reason, in the present invention, it is an extremely effective means to operate while changing the polarity of the electrode during electrolysis.

本発明にあっては、電極の転換は0.1回/分〜4000回/分、好ましくは、0.5回/分〜100回/分程度である。   In the present invention, the electrode conversion is 0.1 times / minute to 4000 times / minute, preferably 0.5 times / minute to 100 times / minute.

更に、極性転換を頻繁に行う場合、例えば1000回/分以上とする場合には、直流電流に重ね合わせて用いることもできる。かくすることにより、電極上に析出する金属を微細化することができる。   Further, when the polarity is changed frequently, for example, when the rate is changed to 1000 times / minute or more, it can be used by being superimposed on the direct current. Thus, the metal deposited on the electrode can be miniaturized.

また、極性転換時の電流変化は、正弦波形となるように行うのが一般的であるが、オン・オフ切り替えとすることもできる。   The current change at the time of polarity change is generally performed so as to have a sinusoidal waveform, but can be switched on and off.

かかる電極の転換について、EDTA銅錯体を例とし説明すると、一方の電極としてダイヤモンド電極を用い、対極を白金とした場合、印加する電圧の電位の最大値を2.5ボルト、電圧変化は10mV〜500mV/秒、好ましくは、50mV〜300mV/秒の速度で正弦波形となるよう適宜変化させつつ電解を行う。かくして銅などはダイヤモンド電極上に付着することなくサブミクロンオーダーの粒径の揃った微粒子となってダイヤモンド電極表面から分離し、電解槽底に沈殿となって析出する。   The conversion of the electrode will be described with an EDTA copper complex as an example. When a diamond electrode is used as one electrode and the counter electrode is platinum, the maximum potential of the applied voltage is 2.5 volts, and the voltage change is 10 mV to The electrolysis is performed while appropriately changing to a sinusoidal waveform at a speed of 500 mV / second, preferably 50 mV to 300 mV / second. Thus, copper and the like are separated from the surface of the diamond electrode without depositing on the diamond electrode and separated from the surface of the diamond electrode, and deposited as a precipitate on the bottom of the electrolytic cell.

本発明において処理の対象となる難分解性有機金属錯体としては、安定定数5以上特に7以上のものが対象となり、一般にキレート化合物である。これらに属する配位子としては、エチレンジアミン、ジアミノプロパンなどのポリメチレンジアミン、ジエチレントリアミン、トリエチレンテトラミンなどのポリエチレンポリアミン、グリシンなどのアミノ酸類、エチレンジアミンテトラ酢酸、ニトリロトリ酢酸等のポリカルボン酸アミド等、チトクローム、クロロフィル、フェモグロビン等のポルフィリン類、ビピリジン、ジベンゼン、ジシクロペンタジエン類、クラウンエーテル類などの金属錯体があげられる。これらの錯体のうち、特に産業上EDTAの錯体、就中銅錯体の処理に有効である。
〔比較例〕
In the present invention, the hardly decomposable organometallic complexes to be treated are those having a stability constant of 5 or more, particularly 7 or more, and are generally chelate compounds. The ligands belonging to these include polymethylenediamines such as ethylenediamine and diaminopropane, polyethylenepolyamines such as diethylenetriamine and triethylenetetramine, amino acids such as glycine, polycarboxylic acid amides such as ethylenediaminetetraacetic acid and nitrilotriacetic acid, and cytochromes. And metal complexes such as porphyrins such as chlorophyll and femoglobin, bipyridine, dibenzene, dicyclopentadiene, and crown ethers. Of these complexes, it is particularly effective for the treatment of industrial EDTA complexes, especially copper complexes.
[Comparative Example]

一方の側壁下部に直径18mmの円形窓を有する内容積150mlのガラス製電解槽を用い、前記窓部にOリングを介して導電性ダイヤモンド電極を設置し、対極にはコイル状の白金ワイヤー(φ0.5mm,5cm)を用いた。また標準電極としてAg/AgCl電極(TOADenpa社製HS−205C)を用い、マグネットスターラーにより電解液を攪拌しつつ、ダイヤモンド電極に3Vの定電位を印加し、電解処理を行った。このとき対極には−3Vの電位が印加されている。   A glass electrolytic cell with an inner volume of 150 ml having a circular window with a diameter of 18 mm at the lower side of one side wall, a conductive diamond electrode installed in the window through an O-ring, and a coiled platinum wire (φ0 .5 mm, 5 cm). Further, an Ag / AgCl electrode (HS-205C manufactured by TOADenpa) was used as a standard electrode, and an electrolytic treatment was performed by applying a constant potential of 3 V to the diamond electrode while stirring the electrolytic solution with a magnetic stirrer. At this time, a potential of −3 V is applied to the counter electrode.

20mモルのCu−EDTA及び0.1モルの硫酸ナトリウムを加えた溶液を、前述した電位で80時間電解した。このとき、白金ワイヤー上にて銅の還元析出が起こり、ダイヤモンド電極上でEDTAが酸化分解される。   A solution containing 20 mmol of Cu-EDTA and 0.1 mol of sodium sulfate was electrolyzed at the above-mentioned potential for 80 hours. At this time, reduction and precipitation of copper occurs on the platinum wire, and EDTA is oxidatively decomposed on the diamond electrode.

電解の状況を時間の経過ごとにチェックする。すなわち電解液をサンプリングし、カラムとして、Inertsil ODS−3(GL,Science社)を用いた高速液体クロマトグラフィーにより、溶質を分離し、λ=200nm及び250nmで紫外線分析を行った。   Check the status of electrolysis over time. That is, the electrolyte was sampled, the solute was separated by high performance liquid chromatography using Inertsil ODS-3 (GL, Science) as a column, and ultraviolet analysis was performed at λ = 200 nm and 250 nm.

結果を図1に示す。   The results are shown in FIG.

図1よりCu2+の還元がまず進行し、時間の経過と共にEDTA錯体が減少し、逆にEDTAの分解物が増大することが分かる。EDTA錯体の濃度が初期濃度の10%程度まで低下するのに35時間を要した。 From FIG. 1, it can be seen that the reduction of Cu 2+ first proceeds, the EDTA complex decreases with the passage of time, and conversely, the decomposition products of EDTA increase. It took 35 hours for the EDTA complex concentration to drop to about 10% of the initial concentration.

また、白金ワイヤー上には銅が還元析出して銅メッキされた。この銅は硫酸溶液中で溶解することで除去することが可能であった。
〔実施例1〕
Further, copper was reduced and deposited on the platinum wire and plated with copper. This copper could be removed by dissolving in a sulfuric acid solution.
[Example 1]

一方の側壁の下部に直径10mmの円形窓を有する内容積25mlのガラス製電解槽を用い、前記窓部にOリングを介して導電性ダイヤモンド電極を設置し、対極にはコイル状の白金ワイヤー(φ0.5mm,100cm)を用いた。また標準電極としてAg/AgCl電極(TOADenpa社製HS−205C)を用い、マグネットスターラーにより電解液を攪拌しつつ,ダイヤモンド電極に−1.5〜3Vの電位を50mV/sの挿引速度でサイクリックに印加し,電解処理を行った。   Using a glass electrolytic cell with a volume of 25 ml having a circular window with a diameter of 10 mm at the lower part of one side wall, a conductive diamond electrode is installed in the window part via an O-ring, and a coiled platinum wire ( φ0.5 mm, 100 cm) was used. In addition, an Ag / AgCl electrode (HS-205C manufactured by TOADenpa) was used as a standard electrode, and a potential of −1.5 to 3 V was applied to the diamond electrode at an insertion speed of 50 mV / s while stirring the electrolyte solution with a magnetic stirrer. Applied to the click, electrolytic treatment was performed.

1mモルのCu−EDTA及び0.13molの塩化カリウムを加えた溶液を,前述した電位領域で100時間電解した。このとき0〜−1.5Vで銅の還元析出が、2.5V以上でEDTAの酸化分解がダイヤモンド電極上のみで起こる。   A solution containing 1 mmol of Cu-EDTA and 0.13 mol of potassium chloride was electrolyzed for 100 hours in the above-mentioned potential region. At this time, reduction precipitation of copper occurs at 0 to -1.5 V, and oxidative decomposition of EDTA occurs only on the diamond electrode at 2.5 V or more.

電解の状況を時間の経過ごとにチェックする。すなわち電解液をサンプリングし、カラムとして、Inertsil ODS−3(GL,Science社)を用いた高速液体クロマトグラフィーにより、溶質を分離し、λ=200nm及び250nmで紫外線分析を行った。   Check the status of electrolysis over time. That is, the electrolyte was sampled, the solute was separated by high performance liquid chromatography using Inertsil ODS-3 (GL, Science) as a column, and ultraviolet analysis was performed at λ = 200 nm and 250 nm.

結果を図2に示す。   The results are shown in FIG.

結果を図2に示す。
図2より、50時間でCu−EDTAの濃度が初期濃度の10%まで低下させることが可能であった。なお、この時間は比較例の1.5倍程度であるが、これは定電位印加処理の方が高電位印加時間が長いため、処理速度が速くなっている。これに対して実施例1では比較例のような白金ワイヤーへの銅の付着は見られず、銅はダイヤモンド電極上で還元析出した後、直径100nm程の微粒子として電極表面から剥離し、溶液中に放出される。また、この微粒子は処理後の溶液を濾紙(ポア径0.2μmAnodisc,Whatman)でろ過することにより、1μm程の微粒子の集合体として回収することができた。すなわち、電位をサイクリックに挿引することにより、電解処理において電極を汚染することなく、連続使用することが可能である。
(産業上の利用可能性)
The results are shown in FIG.
From FIG. 2, it was possible to reduce the Cu-EDTA concentration to 10% of the initial concentration in 50 hours. Although this time is about 1.5 times that of the comparative example , the processing speed is higher because the constant potential application process has a longer high potential application time. On the other hand, in Example 1 , copper adhesion to the platinum wire as in the comparative example was not observed, and after copper was reduced and deposited on the diamond electrode, it was peeled off from the electrode surface as fine particles having a diameter of about 100 nm, and in the solution. To be released. The fine particles could be recovered as an aggregate of fine particles of about 1 μm by filtering the treated solution with a filter paper (pore diameter 0.2 μm Anodisc, Whatman). In other words, the potential can be continuously used without contaminating the electrode in the electrolytic treatment by cyclically inserting the potential.
(Industrial applicability)

本発明によれば、EDTA錯体を容易に分解除去することができる。このため、従来排水として捨てられ、河川の汚染の原因物質のひとつを除去し得る。   According to the present invention, the EDTA complex can be easily decomposed and removed. For this reason, it is thrown away as conventional waste water and can remove one of the causative substances of river pollution.

また併せて、EDTA錯体の中心金属、特に有害な重金属をも除去し得るので、環境保全関連産業等に有効に利用し得る。   In addition, since the central metal of the EDTA complex, particularly harmful heavy metals, can be removed, it can be effectively used in environmental conservation related industries.

図1はCu‐EDTAとCu2+が直流の電解により減少し、代わってEDTAの分解生成物のピークが表れ次第に増大する状況を示す紫外線分析グラフである。FIG. 1 is an ultraviolet ray analysis graph showing a situation in which Cu-EDTA and Cu 2+ are reduced by direct current electrolysis, and instead, a peak of decomposition products of EDTA gradually increases. 図2は、電極の極性を転換しつつCu−EDTAを分解した場合の経時的分解状況を示すグラフである。FIG. 2 is a graph showing a temporal degradation state when Cu-EDTA is decomposed while changing the polarity of the electrode.

Claims (9)

電極の少なくとも一方が炭素電極であり、両電極間に難分解性有機金属錯体を含む電解質溶液を存在させ、正極と負極の極性を定期的に転換しつつ電解することを特徴とする難分解性有機金属錯体の電気分解方法。   Refractory property characterized in that at least one of the electrodes is a carbon electrode, an electrolyte solution containing a hardly decomposable organometallic complex is present between both electrodes, and electrolysis is performed while periodically changing the polarity of the positive electrode and the negative electrode Method for electrolysis of organometallic complex. 炭素電極が導電性ダイヤモンド、導電性ダイヤモンドライクカーボン、グラッシーカーボン及びアモルファスカーボンより選ばれた一種であることを特徴とする請求項1記載の難分解性有機金属錯体の電気分解方法。   2. The method for electrolyzing a hardly decomposable organometallic complex according to claim 1, wherein the carbon electrode is one selected from conductive diamond, conductive diamond-like carbon, glassy carbon, and amorphous carbon. 難分解性有機金属錯体がキレート化合物である請求項1又は請求項2記載の難分解性有機金属錯体の電気分解方法。   The method for electrolyzing a hardly decomposable organometallic complex according to claim 1 or 2, wherein the hardly decomposable organometallic complex is a chelate compound. キレート化合物が、アルキレンジアミン、エチレンジアミンテトラ酢酸、クラウンエーテル、ポルフィリン及びビピリジンより選ばれた少なくとも一種を配位子とする有機金属錯体である請求項3記載の難分解性有機金属錯体の電気分解方法。   The method for electrolyzing a hardly decomposable organometallic complex according to claim 3, wherein the chelate compound is an organometallic complex having at least one selected from alkylenediamine, ethylenediaminetetraacetic acid, crown ether, porphyrin and bipyridine as a ligand. 難分解性有機金属錯体の中心金属が鉄、コバルト、ニッケル及び銅から選ばれる少なくとも一種の金属である請求項1乃至3のいずれかに記載の難分解性有機金属錯体の電気分解方法。   The method for electrolyzing a hardly decomposable organometallic complex according to any one of claims 1 to 3, wherein the central metal of the hardly decomposable organometallic complex is at least one metal selected from iron, cobalt, nickel and copper. 難分解性有機金属錯体の中心金属イオンを負極で還元し、微粒子状として回収する請求項1記載の難分解性有機金属錯体の電気分解方法。   The method for electrolyzing a hardly decomposable organometallic complex according to claim 1, wherein the central metal ion of the hardly decomposable organometallic complex is reduced at the negative electrode and recovered as fine particles. 難分解性有機金属錯体が、エチレンジアミンテトラ酢酸の重金属錯体である請求項1記載の難分解性有機金属錯体の電気分解方法。   2. The method for electrolyzing a hardly decomposable organometallic complex according to claim 1, wherein the hardly decomposable organometallic complex is a heavy metal complex of ethylenediaminetetraacetic acid. エチレンジアミンテトラ酢酸の重金属錯体が、エチレンジアミンテトラ酢酸の銅錯体である請求項記載の難分解性有機金属錯体の電気分解方法。 The method for electrolyzing a hardly decomposable organometallic complex according to claim 7 , wherein the heavy metal complex of ethylenediaminetetraacetic acid is a copper complex of ethylenediaminetetraacetic acid. 正極と負極との間に2.5〜4ボルトの電圧を印加して電気分解を行うことを特徴とする請求項1記載の難分解性有機金属錯体の電気分解方法。   2. The method for electrolyzing a hardly decomposable organometallic complex according to claim 1, wherein the electrolysis is carried out by applying a voltage of 2.5 to 4 volts between the positive electrode and the negative electrode.
JP2004275371A 2004-09-22 2004-09-22 Method for decomposing refractory organometallic complexes Active JP4565182B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004275371A JP4565182B2 (en) 2004-09-22 2004-09-22 Method for decomposing refractory organometallic complexes

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004275371A JP4565182B2 (en) 2004-09-22 2004-09-22 Method for decomposing refractory organometallic complexes

Publications (2)

Publication Number Publication Date
JP2006088011A JP2006088011A (en) 2006-04-06
JP4565182B2 true JP4565182B2 (en) 2010-10-20

Family

ID=36229489

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004275371A Active JP4565182B2 (en) 2004-09-22 2004-09-22 Method for decomposing refractory organometallic complexes

Country Status (1)

Country Link
JP (1) JP4565182B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5503287B2 (en) * 2006-09-05 2014-05-28 エレメント シックス リミテッド Solid electrode
JPWO2011074606A1 (en) * 2009-12-15 2013-04-25 公立大学法人大阪府立大学 Metal nanoparticles and method for producing metal nanoparticles
CN106830262B (en) * 2017-03-14 2020-11-10 新昌县昱康环保机械有限公司 Heavy metal ion chelating agent for electroplating wastewater treatment and preparation method and application thereof
CN106865679B (en) * 2017-03-14 2020-12-15 嘉兴恒益安全服务股份有限公司 Nickel ion chelating agent for electroplating nickel-containing wastewater treatment and preparation method and application thereof
CN113620390B (en) * 2021-06-30 2023-04-18 广东省科学院测试分析研究所(中国广州分析测试中心) Method for catalytically treating heavy metal-EDTA complex wastewater by using electrically-assisted Fe-MOF material
CN113461117B (en) * 2021-07-08 2022-11-29 山东农业大学 Method for treating heavy metal organic complex wastewater by electrochemical oxidation coupled with electric flocculation

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06320184A (en) * 1993-05-06 1994-11-22 Asahi Kagaku Kenkyusho:Kk Treating method for waste developer
JP2004098055A (en) * 2002-08-21 2004-04-02 Fuji Photo Film Co Ltd Treatment method of organic waste water containing amino polycarboxylic acid

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06320184A (en) * 1993-05-06 1994-11-22 Asahi Kagaku Kenkyusho:Kk Treating method for waste developer
JP2004098055A (en) * 2002-08-21 2004-04-02 Fuji Photo Film Co Ltd Treatment method of organic waste water containing amino polycarboxylic acid

Also Published As

Publication number Publication date
JP2006088011A (en) 2006-04-06

Similar Documents

Publication Publication Date Title
Liu et al. Comparative studies on the electrocatalytic properties of modified PbO2 anodes
JP4116726B2 (en) Electrochemical treatment method and apparatus
Govindan et al. Removal of nitrate ion from water by electrochemical approaches
Palma-Goyes et al. The abatement of indigo carmine using active chlorine electrogenerated on ternary Sb2O5-doped Ti/RuO2-ZrO2 anodes in a filter-press FM01-LC reactor
US9199867B2 (en) Removal of metals from water
Huang et al. Removal of citrate and hypophosphite binary components using Fenton, photo-Fenton and electro-Fenton processes
CN105858818B (en) A kind of method that the more metal nano electrodes of Zn/Cu/Ti efficiently remove nitrate in groundwater
JP3458341B2 (en) Method for producing washing water containing hydrogen ions or hydroxyl ions in excess of counter ions and obtained washing water
KR20080043149A (en) A method of extraction of platinum group metals from the spent catalysts by electrochemical processes
JP3313263B2 (en) Electrolytic water generation method, its generation apparatus, and semiconductor manufacturing apparatus
JP3247134B2 (en) Liquid in which hydrogen ion or hydroxide ion and redox substance coexist by electrolysis of pure water and method for producing the same
Wang et al. Blue TiO2 nanotube electrocatalytic membrane electrode for efficient electrochemical degradation of organic pollutants
JP4565182B2 (en) Method for decomposing refractory organometallic complexes
JP4019723B2 (en) Electrolytic phosphate chemical treatment method
Zhang et al. Enhanced photoelectrocatalytic decomplexation of Ni-EDTA and simultaneous recovery of metallic nickel via TiO2/Ni-Sb-SnO2 bifunctional photoanode and activated carbon fiber cathode
Eivazihollagh et al. Electrochemical recovery of copper complexed by DTPA and C12‐DTPA from aqueous solution using a membrane cell
EP1633906A1 (en) Method for regenerating etching solutions containing iron for the use in etching or pickling copper or copper alloys and an apparatus for carrying out said method
Juang et al. Simultaneous recovery of EDTA and lead (II) from their chelated solutions using a cation exchange membrane
JP2005076103A (en) Method of treating plating waste liquid
Idhayachander et al. Electrolytic recovery of nickel from spent electroless nickel bath solution
JP3338435B2 (en) Method for producing liquid in which hydrogen ion or hydroxide ion and redox substance coexist by electrolysis of pure water
Ho et al. Electrochemical treatment of effluents: A preliminary study of anodic oxidation of simple sugars using lead dioxide‐coated titanium anodes
JP4071980B2 (en) Method and apparatus for cleaning electronic parts
KR101734770B1 (en) Method for removing perchlorate ion using electrodeposited Hg or Bi thin-layer electrode
JP4053805B2 (en) Functional water, production method and production apparatus thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070523

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081215

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100216

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100413

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100511

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100614

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100706

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150