JPH0775780A - Ultrapure water manufacturing device - Google Patents

Ultrapure water manufacturing device

Info

Publication number
JPH0775780A
JPH0775780A JP5222502A JP22250293A JPH0775780A JP H0775780 A JPH0775780 A JP H0775780A JP 5222502 A JP5222502 A JP 5222502A JP 22250293 A JP22250293 A JP 22250293A JP H0775780 A JPH0775780 A JP H0775780A
Authority
JP
Japan
Prior art keywords
pure water
ultraviolet
ion exchange
water system
ultraviolet rays
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP5222502A
Other languages
Japanese (ja)
Other versions
JP3539992B2 (en
Inventor
Senri Kojima
泉里 小島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nomura Micro Science Co Ltd
Original Assignee
Nomura Micro Science Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nomura Micro Science Co Ltd filed Critical Nomura Micro Science Co Ltd
Priority to JP22250293A priority Critical patent/JP3539992B2/en
Publication of JPH0775780A publication Critical patent/JPH0775780A/en
Application granted granted Critical
Publication of JP3539992B2 publication Critical patent/JP3539992B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To increase the irradiation effect of ultraviolet rays and to reduce cost by installing a combination of an ultraviolet rays irradiating device for irradiating ultraviolet rays of a specified wavelength and a mix bed ion exchange device in a primary pure water system and a secondary pure water system along the flow passage. CONSTITUTION:A primary pure water system A1 using raw water having relatively a little turbid matter and a secondary pure water system A2 using raw water having relatively much turbid matter are combined and used. In these systems, an ultraviolet rays irradiating device 5 having low voltage lamps irradiating ultraviolet rays of 180-190nm and a mix bed ion exchange device 6 of automatic regeneration type are arranged in order along the flow passage. Then since organic matter of low molecular weight is decomposed mainly into organic matter, the efficiency of the mix bed ion exchange device is remarkably improved and initial cost and running cost are reduced.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、低圧紫外線ランプから
発生する特定波長の紫外線を照射して水中の有機物を分
解イオン化することにより除去するようにした超純水製
造装置において、紫外線の照射効率を改善し、装置のイ
ニシャルコスト、ランニングコストを低減させた超純水
製造装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an ultrapure water producing apparatus which removes organic matter in water by decomposing and ionizing it by irradiating it with ultraviolet rays of a specific wavelength generated from a low-pressure ultraviolet ray lamp. The present invention relates to an ultrapure water production system in which the initial cost and running cost of the system are reduced.

【0002】[0002]

【従来の技術】従来から、超純水中の有機物濃度を減少
させるための処理方法として、イオン交換処理や逆浸透
膜処理の施された一次純水に、紫外線を照射して混床式
イオン交換装置で仕上げ処理する方法が知られている。
2. Description of the Related Art Conventionally, as a treatment method for reducing the concentration of organic substances in ultrapure water, primary pure water that has been subjected to ion exchange treatment or reverse osmosis membrane treatment is irradiated with ultraviolet rays and mixed bed type ions are used. A method of finishing with an exchange device is known.

【0003】また、有機物の分解イオン化処理に使用す
る紫外線ランプとして、180〜190nm(特に18
4.9nm)の紫外線を発生する低圧紫外線ランプを用
いることにより、効率的に有機物の分解イオン化を行う
ことも知られている(特開平1-164488号公報)。
Further, as an ultraviolet lamp used for the decomposition and ionization treatment of organic substances, 180 to 190 nm (particularly 18 nm) is used.
It is also known to efficiently decompose and ionize organic substances by using a low-pressure ultraviolet lamp that generates (4.9 nm) ultraviolet rays (Japanese Patent Laid-Open No. 1-164488).

【0004】ところで、低圧紫外線ランプによる有機物
の分解イオン化は、一般に、図2に示すごとく、ステン
レス材料で構成された紫外線照射装置17の一端には被
処理水の入口12および出口13が設けてある。また、
装置本体17の内面は紫外線反射が効率よく行われるよ
うに研磨されており、14は紫外線透過率の良い材料
で、例えば高純度石英ガラスにより構成去れた筒状管で
あり、紫外線が効率よく水中に到達するように30〜4
0mm間隔で複数本が配置されている。なお、じゃま板1
6が水の流路に設けられており被処理水は乱流が起きて
均等に紫外線が照射されるようになっている。なお、図
中15は低圧紫外線ランプを示す。
By the way, in decomposition and ionization of organic substances by a low-pressure ultraviolet lamp, generally, as shown in FIG. 2, an inlet 12 and an outlet 13 of water to be treated are provided at one end of an ultraviolet irradiator 17 made of a stainless material. . Also,
The inner surface of the device body 17 is polished to efficiently reflect ultraviolet rays, and 14 is a material having a high ultraviolet transmittance, for example, a cylindrical tube made of high-purity quartz glass that has been removed. 30 to 4 to reach
Multiple pieces are arranged at 0 mm intervals. In addition, baffle board 1
A turbulent flow occurs in the water to be treated so that the ultraviolet rays are evenly irradiated. Reference numeral 15 in the figure denotes a low-pressure ultraviolet lamp.

【0005】これまで、低圧紫外線ランプの照射量は被
処理水流量を低下させたり、ランプ本数を増やすなどし
て高くしていたが、それでも全く紫外線に曝露されずに
有機物がそのまま通過してしまう部分もあって効果が不
十分である上に、高エネルギーの紫外線により有機物の
酸化分解が過度に行われてしまい混床式イオン交換装置
に対する負荷が増大するという新たな問題が見出だされ
た。
Up to now, the irradiation amount of the low-pressure ultraviolet lamp has been increased by decreasing the flow rate of the water to be treated or increasing the number of lamps, but even then, the organic substances pass through without being exposed to ultraviolet rays. In addition to the fact that the effect is insufficient due to some parts, a new problem was found that the oxidative decomposition of organic matter is excessively performed by high-energy ultraviolet rays and the load on the mixed bed type ion exchange device increases. .

【0006】すなわち、通常、紫外線照射装置は、高分
子量の有機物を除去するための逆浸透膜装置の次段に配
置されており、逆浸透膜装置で除去されなかった低分子
量の有機物だけが紫外線照射装置で紫外線照射されるこ
とになるが、例えば、炭素数4の有機物が180〜19
0nmの紫外線照射により酸化分解するときには、低出
力の低圧紫外線ランプでは1モルの有機物から2モルの
酢酸が生成する反応が主として行われ、混床式イオン交
換装置に対して2モル分の負荷となるのに対して、高出
力の低圧紫外線ランプを使用した場合には、酸化分解が
過度に進行する結果、1モルの有機物から4モルの炭酸
ガスが生成する反応が主として行われようになり、混床
式イオン交換装置に対して4モル分の負荷が生じること
になり、混床式イオン交換装置の処理能力を低下させて
しまうという問題が生じたのである。
That is, usually, the ultraviolet irradiation device is arranged at the next stage of the reverse osmosis membrane device for removing high molecular weight organic substances, and only the low molecular weight organic substances which are not removed by the reverse osmosis membrane device are irradiated with ultraviolet rays. It will be irradiated with ultraviolet rays by the irradiation device.
When it is oxidatively decomposed by 0 nm UV irradiation, a low-power low-pressure UV lamp mainly produces a reaction of 2 mol of acetic acid from 1 mol of an organic substance, which imposes a load of 2 mol on the mixed bed type ion exchange device. On the other hand, when a high-output low-pressure ultraviolet lamp is used, as a result of excessive progress of oxidative decomposition, a reaction in which 4 mol of carbon dioxide gas is produced from 1 mol of organic matter is mainly performed, A load of 4 mol is generated on the mixed bed ion exchange device, which causes a problem that the processing capacity of the mixed bed ion exchange device is lowered.

【0007】なお、二次純水システムにおいて、254
nm付近の紫外線ランプと逆浸透膜装置の組合せと18
5nmの紫外線ランプと混床式イオン交換装置の組合せ
とを設置して、殺菌と有機物の分解除去を紫外線照射に
より行うようにした超純水製造装置も提案されているが
(特開平5-138167号公報)、このような装置において
は、254nm付近の紫外線ランプと逆浸透膜装置の組
合せによっては有機物の分解イオン化はほとんど行われ
ず、185nmの紫外線ランプと混床式イオン交換装置
の組合せによることで効率的に有機物の分解イオン化が
行われて混床式イオン交換装置による除去が可能となる
ので、この装置においても同様の問題が生ずる。
In the secondary pure water system, 254
18nm UV lamp and reverse osmosis membrane device combination
There is also proposed an ultrapure water production system in which a 5 nm ultraviolet lamp and a combination of a mixed bed type ion exchange device are installed, and sterilization and decomposition and removal of organic substances are performed by ultraviolet irradiation (Japanese Patent Laid-Open No. 5-138167). In such a device, the decomposition and ionization of organic substances is hardly performed depending on the combination of the ultraviolet lamp of around 254 nm and the reverse osmosis membrane device, and the combination of the ultraviolet lamp of 185 nm and the mixed bed type ion exchange device is used. Since the decomposition and ionization of the organic matter is efficiently performed and the removal by the mixed bed type ion exchange device is possible, the same problem occurs in this device.

【0008】[0008]

【発明が解決しようとする課題】上述した通り、従来の
超純水製造装置における低圧紫外線ランプによる有機物
の分解イオン化除去方法では180〜190nmの紫外
線の純水中における照射は超純水製造装置内の1ケ所で
かつ高照射量であったため、被処理水を紫外線照射装置
に通過させても、低圧紫外線ランプから離れた位置を通
過する被処理水は紫外線に曝露されずに通過してしま
い、また、紫外線の十分照射された被処理水は、かえっ
て有機物の酸化が過度に進んで炭酸ガスにまで分解され
てしまい、イオンの発生モル数が増加して後段の混床式
イオン交換装置の負荷を増大させてしまうという問題が
あった。
As described above, according to the conventional method for decomposing and ionizing organic substances by the low-pressure ultraviolet lamp in the ultrapure water production system, irradiation of ultraviolet rays of 180 to 190 nm in pure water is performed in the ultrapure water production system. Since it was a single place and the irradiation amount was high, even if the water to be treated was passed through the ultraviolet irradiation device, the water to be treated passing through a position away from the low-pressure ultraviolet lamp passed without being exposed to the ultraviolet rays, In addition, the water to be treated, which has been sufficiently irradiated with ultraviolet rays, on the contrary, is excessively oxidized to decompose into carbon dioxide gas, which increases the number of moles of ions generated and increases the load on the mixed bed ion exchange device in the subsequent stage. There was a problem of increasing.

【0009】そして、紫外線照射により有機物を分解す
る超純水製造装置においては、システム中に占める低圧
紫外線ランプの設備コスト及び照射コストが非常に高い
ため、これらの問題は、超純水製造装置のイニシャルコ
スト及びランニングコストを上昇させる大きな要因とな
っていた。
In the ultrapure water producing apparatus for decomposing organic substances by ultraviolet irradiation, the equipment cost and irradiation cost of the low-pressure ultraviolet lamp in the system are very high. Therefore, these problems occur in the ultrapure water producing apparatus. It was a major factor in increasing the initial cost and running cost.

【0010】本発明は、かかる従来の問題を解消すべく
なされたもので、紫外線により有機物を分解する超純水
製造装置において、紫外線の照射効率を高めるととも
に、イニシャルコスト及びランニングコストを低減させ
ることを目的とする。
The present invention has been made to solve such a conventional problem, and in an ultrapure water producing apparatus for decomposing organic substances by ultraviolet rays, it is possible to increase the irradiation efficiency of ultraviolet rays and reduce the initial cost and running cost. With the goal.

【0011】[0011]

【課題を解決するための手段とその作用】本発明の超純
水製造装置は、前処理システム、一次純水システムと二
次純水システムからなる超純水製造装置において、前記
一次純水システムと二次純水システムに、それぞれ、1
80〜190nmの波長を含む紫外線を照射する低圧紫
外線ランプを備えた紫外線照射装置と混床式イオン交換
装置の組合せを流路に沿って少くとも1組設けたことを
特徴とする。
The ultrapure water producing system of the present invention is an ultrapure water producing system comprising a pretreatment system, a primary pure water system and a secondary pure water system. And secondary pure water system, 1
At least one combination of an ultraviolet irradiation device equipped with a low-pressure ultraviolet lamp that irradiates ultraviolet rays having a wavelength of 80 to 190 nm and a mixed bed ion exchange device is provided along the flow path.

【0012】本発明に使用される低圧紫外線ランプは、
180〜190nm、とりわけ184.9nmの紫外線
を発生するものであるが、これらの紫外線のみを発生す
るものである必要はなく、254nm,450nm,5
50nm等の波長の紫外線も同時に発生するものが通常
使用される。ちなみに、市販のものでは184.9nm
の波長の紫外線は、254nmの紫外線の10%程度しか
発生しない。
The low-pressure ultraviolet lamp used in the present invention is
It emits ultraviolet rays of 180 to 190 nm, especially 184.9 nm, but it is not necessary to emit only these ultraviolet rays, and 254 nm, 450 nm, 5
The one that also simultaneously generates ultraviolet rays having a wavelength of 50 nm or the like is used. By the way, the commercially available one is 184.9 nm
Only about 10% of the 254 nm ultraviolet light is emitted.

【0013】低圧紫外線ランプの照射量としては、0.
1〜2kW・h/m3 、好ましくは0.2〜1kW・h
/m3 である。低圧紫外線ランプの出力が2kW・h/
3を越えると有機物の分解は促進されるが消費電力が
上昇しかつ炭酸ガスにまで分解される比率が高くなり、
混床式イオン交換装置の容量負荷を大きくするので好ま
しくない。0.1kW・h/m3 以下では、照射量が少
なく、有機物が分解されない。
The irradiation amount of the low-pressure ultraviolet lamp is 0.
1-2 kW · h / m 3 , preferably 0.2-1 kW · h
/ M 3 . The output of the low-pressure ultraviolet lamp is 2kW ・ h /
When it exceeds m 3 , the decomposition of organic matter is promoted, but the power consumption increases and the ratio of decomposition to carbon dioxide increases,
It is not preferable because the capacity load of the mixed bed type ion exchange device is increased. When it is 0.1 kW · h / m 3 or less, the irradiation amount is small and organic substances are not decomposed.

【0014】また、低圧紫外線ランプを点灯させる電源
としては、高周波電子安定器により周波数20〜80k
Hzとした高周波電源が適している。
As a power source for lighting the low-pressure ultraviolet lamp, a high-frequency electronic ballast is used for a frequency of 20 to 80 k.
A high frequency power supply of Hz is suitable.

【0015】従来、電磁安定器が低圧紫外線ランプの電
源に用いられていたが、電磁安定器は、銅損、鉄損によ
る電力損失が大きく消費電力に対するランプ電力の割合
が小さいものとなる。これに対して、高周波電子安定器
は、交流をダイオードブリッジ回路で全波整流し、さら
に定電流プッシュプルインバータで周波数20〜80k
Hzの高周波電圧にして低圧紫外線ランプに供給するの
で、回路損失が少なく効率が高い上に、低圧紫外線ラン
プの点灯時間による出力減衰が非常に少なくなるという
利点がある。
Conventionally, an electromagnetic ballast has been used as a power source for a low-pressure ultraviolet lamp, but the electromagnetic ballast has a large power loss due to copper loss and iron loss and a small ratio of lamp power to power consumption. On the other hand, the high-frequency electronic ballast performs full-wave rectification of alternating current with a diode bridge circuit, and further with a constant current push-pull inverter at a frequency of 20-80 k
Since the high-frequency voltage of Hz is supplied to the low-pressure ultraviolet lamp and supplied to the low-pressure ultraviolet lamp, there is an advantage that the circuit loss is small and the efficiency is high, and the output attenuation due to the lighting time of the low-pressure ultraviolet lamp is very small.

【0016】本発明においては、一次純水システムの紫
外線照射装置の前段に、比較的高分子量の有機物を除去
するために逆浸透膜装置を配置することが望ましい。
In the present invention, it is desirable to dispose a reverse osmosis membrane device in front of the ultraviolet irradiation device of the primary pure water system in order to remove relatively high-molecular weight organic substances.

【0017】一次純水システムは、比較的濁質の少い原
水を用いる場合には、逆浸透膜装置を2段に配置するこ
とが好ましく、比較的濁質の多い原水を使用する場合に
は、濁質に強い2床3塔型イオン交換装置を逆浸透膜装
置の前段に配置することが望ましい。
In the primary deionized water system, it is preferable to arrange the reverse osmosis membrane device in two stages when raw water having a relatively low turbidity is used, and when raw water having a relatively high turbidity is used. It is desirable to dispose a two-bed, three-column type ion exchange device that is resistant to turbidity in front of the reverse osmosis membrane device.

【0018】本発明の超純水製造装置においては、一次
純水システムと二次純水システムに、それぞれ、180
〜190nmの波長を含む紫外線を照射する低圧紫外線
ランプを備えた紫外線照射装置と混床式イオン交換装置
の組合せを流路に沿って設けたので、各低圧紫外線ラン
プの負荷が軽減され、このため各低圧紫外線ランプの出
力を低くして有機物の分解を有機酸までで止めることが
できる。したがって、混床式イオン交換装置の負荷が軽
減され、ランニングコストの低減をはかることができ
る。また、電源として電子安定器により20〜80kH
zとされた高周波電源を用いた場合には、従来の50H
z(50 C/S)の場合と比べて効率が向上し、その分1
84.9nm波長の紫外線出力を増大させることができ
るようになり、またランプの寿命も延ばすことができ
る。
In the ultrapure water producing system of the present invention, the primary pure water system and the secondary pure water system are each provided with 180
Since a combination of an ultraviolet irradiation device equipped with a low-pressure ultraviolet lamp that irradiates ultraviolet rays containing a wavelength of ~ 190 nm and a mixed bed type ion exchange device was provided along the flow path, the load of each low-pressure ultraviolet lamp was reduced, and therefore, The output of each low-pressure UV lamp can be lowered to stop the decomposition of organic substances up to organic acids. Therefore, the load on the mixed bed type ion exchange device is reduced, and the running cost can be reduced. Also, as a power source, an electronic ballast is used for 20 to 80 kHz.
When using a high frequency power supply of z, the conventional 50H
Efficiency is improved compared to the case of z (50 C / S), and 1
It becomes possible to increase the ultraviolet output of the 84.9 nm wavelength, and also to extend the life of the lamp.

【0019】[0019]

【実施例】以下に、本発明の実施例を第1図を参照にし
ながら詳細に説明する。
Embodiments of the present invention will be described below in detail with reference to FIG.

【0020】図1は、本発明の超純水製造装置の実施例
のフローチャートであり、一次純水システムは、比較的
濁質の少い原水を用いる場合の第1の一次純水システム
A1と、比較的濁質の多い原水を用いる場合の第2の一
次純水システムA2 とを並列的に示してある。実際の超
純水製造装置としては、比較的濁質の少い原水を用いる
場合には、第1の一次純水システムA1 に二次純水シス
テムBを接続した装置として構成され、比較的濁質の多
い原水を用いる場合には、第2の一次純水システムA2
. に二次純水システムBを接続した装置として構成さ
れる。
FIG. 1 is a flow chart of an embodiment of the ultrapure water production system of the present invention. The primary pure water system is the first primary pure water system A1 when raw water with a relatively small amount of turbidity is used. , A second primary pure water system A2 in the case of using raw water with relatively high turbidity is shown in parallel. In the case of using raw water with relatively low turbidity, the actual ultrapure water producing apparatus is configured as an apparatus in which the secondary pure water system B is connected to the first primary pure water system A1 and is relatively turbid. When using high quality raw water, the second primary pure water system A2
It is configured as a device in which the secondary pure water system B is connected to.

【0021】第1の一次純水システムA1 は、前処理装
置1、前処理タンク2、2段に設置された逆浸透膜装置
3,4、180〜190nmの紫外線を放射する低圧紫
外線ランプを有する紫外線照射装置5、自動再生式の混
床式イオン交換装置6を流路に沿って順に配置して構成
されており、第2の一次純水システムA2 は、前処理装
置1′、前処理タンク2′、2床3塔型イオン交換装置
3′、逆浸透膜装置4′、180〜190nmの紫外線
を放射する低圧紫外線ランプを有する紫外線照射装置
5′、自動再生式の混床式イオン交換装置6′を流路に
沿って順に配置して構成されている。
The first primary deionized water system A1 has a pretreatment device 1, a pretreatment tank 2, two reverse osmosis membrane devices 3, 4 installed in two stages, and a low-pressure ultraviolet lamp for emitting ultraviolet rays of 180 to 190 nm. The ultraviolet irradiation device 5 and the automatic regeneration type mixed bed type ion exchange device 6 are arranged in this order along the flow path. The second primary pure water system A2 includes a pretreatment device 1'and a pretreatment tank. 2 ', 2 bed 3 tower type ion exchange device 3', reverse osmosis membrane device 4 ', UV irradiation device 5'having low-pressure UV lamp for emitting UV light of 180 to 190 nm, mixed bed type ion exchange device of automatic regeneration type. 6'is arranged in order along the flow path.

【0022】二次純水システムBは、一次純水タンク
7、180〜190nmの紫外線を放射する低圧紫外線
ランプを有する紫外線照射装置8、非再生型の混床式イ
オン交換装置(ポリッシャー)9、限外濾過膜装置10
及びユースポイント11から構成されている。
The secondary pure water system B includes a primary pure water tank 7, an ultraviolet irradiation device 8 having a low-pressure ultraviolet lamp that emits ultraviolet rays of 180 to 190 nm, a non-regenerating type mixed bed ion exchange device (polisher) 9, Ultrafiltration membrane device 10
And a use point 11.

【0023】図示を省略したが、180〜190nmの
紫外線を放射する低圧紫外線ランプを有する紫外線照射
装置5,5′,8としては、0.25kW・h/m3
照射量のもの(千代田工販株式会社、低圧UV酸化用ラ
ンプ)が使用され、低圧紫外線ランプを点灯させる電源
としては、高周波電子安定器(千代田工販株式会社、電
子安定器)により周波数50kHzとした高周波電源が
用いられている。なお、混床式イオン交換装置5,5′
は、自動再生型の装置に限るものではなく、小規模装置
の場合には非再生型のカラムタイプのものを使用しても
差し支えない。
Although not shown, the ultraviolet irradiation devices 5, 5 ', 8 having low-pressure ultraviolet lamps for emitting ultraviolet rays of 180 to 190 nm have an irradiation amount of 0.25 kW · h / m 3 (Chiyoda Engineering Co., Ltd.). Sales Co., Ltd., a low-voltage UV oxidation lamp) is used, and a high-frequency power supply having a frequency of 50 kHz by a high-frequency electronic ballast (Chiyoda Kogyo Co., Ltd., electronic ballast) is used as a power source for lighting the low-pressure ultraviolet lamp. There is. In addition, mixed bed type ion exchange device 5, 5 '
Is not limited to the automatic regeneration type device, and a non-regeneration type column type device may be used in the case of a small-scale device.

【0024】次に、この実施例の装置の操作について説
明する。
Next, the operation of the apparatus of this embodiment will be described.

【0025】この実施例では、濁質の少ない原水を使用
する場合には第1の一次純水システムA1 と二次純水シ
ステムBとの組合わせからなる超純水製造装置を使用
し、濁質の多い原水を使用する場合には第2の一次純水
システムA1 と二次純水システムBとの組合わせからな
る超純水製造装置を使用している。
In this embodiment, when raw water with little turbidity is used, an ultrapure water production system comprising a combination of a first primary pure water system A1 and a secondary pure water system B is used to produce turbidity. When high quality raw water is used, an ultrapure water production system comprising a combination of a second primary pure water system A1 and a secondary pure water system B is used.

【0026】まず、濁質の少ない市水、工業用水、井水
などの原水を用いる場合には、これらの原水は、第1の
一次純水システムA1 の前処理システム1を経て前処理
水タンク2に貯溜される。次いで、2段の逆浸透膜装置
3,4によって原水中の比較的高分子量の有機物、微粒
子あるいはイオンが除去される。そして残存した比較的
低分子量の有機物は、紫外線照射装置5を経て原水中の
低分子量の有機物が分解されて主として有機酸に分解さ
れ、混床式イオン交換装置6に入り、ここで生成した有
機酸が吸着除去されて比抵抗が上昇する。一次純水シス
テムA1 で処理された1次純水は、一次純水タンク7へ
貯留される。
First, in the case of using raw water such as city water, industrial water, and well water having low turbidity, the raw water is passed through the pretreatment system 1 of the first primary pure water system A1 to the pretreatment water tank. It is stored in 2. Next, relatively high molecular weight organic substances, fine particles or ions in the raw water are removed by the two-stage reverse osmosis membrane devices 3 and 4. Then, the remaining relatively low-molecular weight organic matter is decomposed into low-molecular-weight organic matter in the raw water through the ultraviolet irradiation device 5, and is mainly decomposed into an organic acid, and enters the mixed bed type ion exchange device 6 to generate the organic matter generated here. Acid is adsorbed and removed to increase the specific resistance. The primary pure water processed by the primary pure water system A1 is stored in the primary pure water tank 7.

【0027】二次純水システムBにおいては、紫外線照
射装置8において180〜190nmの紫外線が照射さ
れ、一次純水システムA1 において分解されずに通過し
た微量かつ低分子量域の有機物が有機酸にまで分解さ
れ、この有機酸は次段のポリッシャーと呼ばれる非再生
型の混床式イオン交換装置9で除去され、限外濾過装置
10で最終的に微粒子が取り除かれた後ユースポイント
11へ送られる。
In the secondary pure water system B, ultraviolet rays of 180 to 190 nm are radiated in the ultraviolet radiating device 8, and the trace amount of low-molecular-weight organic substances which have passed through the primary pure water system A1 without being decomposed are converted to organic acids. This organic acid is decomposed and removed by a non-regeneration type mixed bed type ion exchange device 9 called a polisher in the next stage, and finally particles are removed by an ultrafiltration device 10 and then sent to a use point 11.

【0028】ユースポイント11で使用されなかった超
純水はユースリターン配管を通じて1次純水タンク7へ
戻される。
The ultrapure water not used at the use point 11 is returned to the primary pure water tank 7 through the use return pipe.

【0029】濁質の原水を使用する場合には、第2の一
次純水システムA2 が用いられ、同様の処理が行われ
る。ただし、第2の一次純水システムの場合には、逆浸
透膜装置3の代わりに濁質に強い2床3塔型イオン交換
装置3′が配置されているので、ここで原水中の比較的
高分子量の有機物と、濁質の微粒子あるいはイオンが除
去される。
When turbid raw water is used, the second primary pure water system A2 is used and the same treatment is carried out. However, in the case of the second primary deionized water system, a two-bed, three-column type ion exchange device 3'which is resistant to turbidity is arranged in place of the reverse osmosis membrane device 3, so that here in the raw water, High molecular weight organics and suspended particulates or ions are removed.

【0030】この実施例で使用した原水及び得られた純
水、並びに各部の処理水のTOC濃度は次の通りであっ
た。 紫外線照射装置5,5′入口 50 TOC(μgc/
g) 混床式イオン交換装置6出口 9 紫外線照射装置8入口 9 混床式イオン交換装置9出口 1 なお、実施例の紫外線照射装置の電源として用いた電子
安定器を電磁安定器に代えて同一条件で行ったところ、
結果は次の通りであった。 紫外線照射装置I 入口 50 TOC(μgc/g) 混床式イオン交換装置出口 11 紫外線照射装置8入口 11 混床式イオン交換装置9出口 4 また、比較のために、一次純水システムにのみ0.5k
W・h/m3 の低圧紫外線ランプを有する紫外線照射装
置(電子安定器付き)を配置し、二次純水システムには
紫外線照射装置を用いずに実験を行ったところ、次の結
果が得られた。 紫外線照射装置入口 50 TOC(μgc/
g) 混床式イオン交換装置9出口 6
The TOC concentrations of the raw water used in this example, the pure water obtained, and the treated water in each part were as follows. Ultraviolet irradiation device 5, 5'inlet 50 TOC (μgc /
g) Mixed bed type ion exchange device 6 outlet 9 Ultraviolet irradiation device 8 inlet 9 Mixed bed type ion exchange device 9 outlet 1 The electronic ballast used as the power source of the ultraviolet ray irradiation device of the example is the same as the electromagnetic ballast. When I went under the conditions,
The results were as follows. Ultraviolet irradiation device I Inlet 50 TOC (μgc / g) Mixed bed type ion exchange device outlet 11 Ultraviolet irradiation device 8 inlet 11 Mixed bed type ion exchange device 9 Outlet 4 For comparison, only the primary pure water system 0. 5k
An ultraviolet irradiation device (with an electronic ballast) equipped with a low-pressure ultraviolet lamp of Wh / m 3 was placed, and an experiment was conducted without using the ultraviolet irradiation device in the secondary pure water system, and the following results were obtained. Was given. Ultraviolet irradiation device inlet 50 TOC (μgc /
g) Mixed bed type ion exchanger 9 outlet 6

【0031】[0031]

【発明の効果】以上、説明したように、本発明の超純水
製造装置は、一次純水システムと二次純水システムに、
それぞれ、180〜190nmの波長を含む紫外線を照
射する低圧紫外線ランプを備えた紫外線照射装置と混床
式イオン交換装置の組合せを流路に沿って設けたので、
低分子量の有機物は主として有機物にまで分解されるこ
とになり、混床式イオン交換装置の効率を著しく向上さ
せ、イニシャルコスト及びランニングコストを低減させ
ることができる。
As described above, the apparatus for producing ultrapure water according to the present invention includes a primary pure water system and a secondary pure water system.
Since a combination of an ultraviolet irradiation device equipped with a low-pressure ultraviolet lamp for irradiating ultraviolet rays containing a wavelength of 180 to 190 nm and a mixed bed type ion exchange device was provided along the flow path,
The low molecular weight organic matter is mainly decomposed into organic matter, so that the efficiency of the mixed bed type ion exchange device can be remarkably improved, and the initial cost and the running cost can be reduced.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例の超純水製造装置の構成を概
略的に示す図。
FIG. 1 is a diagram schematically showing the configuration of an ultrapure water production system according to an embodiment of the present invention.

【図2】従来の装置の構成の説明図。FIG. 2 is an explanatory diagram of a configuration of a conventional device.

【符号の説明】[Explanation of symbols]

1,1′…前処理システム 2,2′…前処理タンク 3,4,4′…逆浸透膜装置 3′……2床3塔型イオン交換装置 5,5′,8…紫外線照射装置 6,6′…再生型混床式イオン交換装置 7………1次純水タンク 9………非再生型混床式イオン交換装置 10………限外濾過膜装置 11………ユースポイント A1 ,A2 …一次純水システム B………二次純水システム 1, 1 '... Pretreatment system 2, 2' ... Pretreatment tank 3, 4, 4 '... Reverse osmosis membrane device 3' ... 2 bed 3 tower type ion exchange device 5, 5 ', 8 ... UV irradiation device 6 , 6 '... Regeneration type mixed bed type ion exchange device 7 ...... Primary pure water tank 9 ...... Non-regeneration type mixed bed type ion exchange device 10 ...... Ultrafiltration membrane device 11 ...... Use point A1 , A2… Primary pure water system B ……… Secondary pure water system

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 C02F 9/00 502 F 7446−4D G 7446−4D J 7446−4D N 7446−4D 503 B 7446−4D 504 B 7446−4D ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification code Office reference number FI technical display location C02F 9/00 502 F 7446-4D G 7446-4D J 7446-4D N 7446-4D 503 B 7446- 4D 504 B 7446-4D

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 前処理システム、一次純水システムと二
次純水システムからなる超純水製造装置において、前記
一次純水システムと二次純水システムに、それぞれ、1
80〜190nmの波長を含む紫外線を照射する低圧紫
外線ランプを備えた紫外線照射装置と混床式イオン交換
装置の組合わせを流路に沿って少くとも1組設けたこと
を特徴とする超純水製造装置。
1. An ultrapure water production system comprising a pretreatment system, a primary pure water system, and a secondary pure water system, wherein the primary pure water system and the secondary pure water system are respectively provided with 1
Ultrapure water characterized in that at least one combination of an ultraviolet irradiation device equipped with a low-pressure ultraviolet lamp for irradiating ultraviolet rays containing a wavelength of 80 to 190 nm and a mixed bed type ion exchange device is provided along the flow path. Manufacturing equipment.
【請求項2】 前処理システムと、逆浸透膜装置と18
0〜190nmの波長を含む紫外線を照射する低圧紫外
線ランプを備えた紫外線照射装置と混床式イオン交換装
置の組合せを流路に沿って少くとも1組設けた一次純水
システムと、180〜190nmの波長を含む紫外線を
照射する低圧紫外線ランプを備えた紫外線照射装置と混
床式イオン交換装置との組合せを流路に沿って少くとも
1組設け最終段に限外濾過膜装置を設けた二次純水シス
テムとからなることを特徴とする超純水製造装置。
2. A pretreatment system, a reverse osmosis membrane device, and 18
A primary pure water system in which at least one combination of an ultraviolet irradiation device equipped with a low-pressure ultraviolet lamp for irradiating ultraviolet rays containing a wavelength of 0 to 190 nm and a mixed bed type ion exchange device is provided along the flow path, and 180 to 190 nm A combination of an ultraviolet irradiator equipped with a low-pressure ultraviolet lamp for irradiating ultraviolet rays having a wavelength of 1 and a mixed bed type ion exchange device is provided along the flow path, and an ultrafiltration membrane device is provided at the final stage. An ultrapure water production system comprising a next pure water system.
【請求項3】 一次純水システムの逆浸透膜装置は、2
段に設けられていることを特徴とする請求項2記載の超
純水製造装置。
3. The reverse osmosis membrane device of the primary pure water system is 2
The ultrapure water production system according to claim 2, wherein the ultrapure water production system is provided in stages.
【請求項4】 一次純水システムは、2床3塔型イオン
交換装置と逆浸透膜装置と180〜190nmの波長を
含む紫外線を照射する低圧紫外線ランプを備えた紫外線
照射装置と混床式イオン交換装置の組合せを流路に沿っ
て設けてなることを特徴とする請求項2記載の超純水製
造装置。
4. The primary pure water system comprises a two-bed, three-column type ion exchange device, a reverse osmosis membrane device, an ultraviolet irradiation device equipped with a low-pressure ultraviolet lamp for irradiating ultraviolet light having a wavelength of 180 to 190 nm, and a mixed-bed ion. The ultrapure water production system according to claim 2, wherein a combination of exchange devices is provided along the flow path.
【請求項5】 前記紫外線照射装置における紫外線ラン
プの1m3 /h当たりの照射量は、0.1〜2kW・h
/m3 であることを特徴とする請求項1〜3のいずれか
1記載の超純水製造装置。
5. The irradiation amount of the ultraviolet lamp in the ultraviolet irradiation device per 1 m 3 / h is 0.1 to 2 kW · h.
/ Ultrapure water production apparatus according to any one of claims 1 to 3, characterized in that m is 3.
【請求項6】 前記紫外線照射装置における紫外線ラン
プは、電子安定器により20〜80kHzとされた高周
波電源により点灯されることを特徴とする請求項1〜5
のいずれか1記載の超純水製造装置。
6. The ultraviolet lamp in the ultraviolet irradiating device is turned on by a high frequency power source of 20 to 80 kHz by an electronic ballast.
The ultrapure water production system according to any one of 1.
JP22250293A 1993-09-07 1993-09-07 Ultrapure water production equipment Expired - Lifetime JP3539992B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22250293A JP3539992B2 (en) 1993-09-07 1993-09-07 Ultrapure water production equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22250293A JP3539992B2 (en) 1993-09-07 1993-09-07 Ultrapure water production equipment

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2003347413A Division JP3853776B2 (en) 2003-10-06 2003-10-06 Ultrapure water production equipment

Publications (2)

Publication Number Publication Date
JPH0775780A true JPH0775780A (en) 1995-03-20
JP3539992B2 JP3539992B2 (en) 2004-07-07

Family

ID=16783436

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22250293A Expired - Lifetime JP3539992B2 (en) 1993-09-07 1993-09-07 Ultrapure water production equipment

Country Status (1)

Country Link
JP (1) JP3539992B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012210571A (en) * 2011-03-31 2012-11-01 Iwasaki Electric Co Ltd Method for treating fluid of ultraviolet treatment apparatus, and ultraviolet treatment apparatus
JP2014168743A (en) * 2013-03-04 2014-09-18 Nomura Micro Sci Co Ltd Pure water manufacturing method
WO2018105188A1 (en) * 2016-12-05 2018-06-14 栗田工業株式会社 Ultrapure water production apparatus and operation method for ultrapure water production apparatus
US10526226B2 (en) 2014-12-19 2020-01-07 Kurita Water Industries Ltd. Ultrapure water production apparatus and ultrapure water production method

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012210571A (en) * 2011-03-31 2012-11-01 Iwasaki Electric Co Ltd Method for treating fluid of ultraviolet treatment apparatus, and ultraviolet treatment apparatus
JP2014168743A (en) * 2013-03-04 2014-09-18 Nomura Micro Sci Co Ltd Pure water manufacturing method
US10526226B2 (en) 2014-12-19 2020-01-07 Kurita Water Industries Ltd. Ultrapure water production apparatus and ultrapure water production method
WO2018105188A1 (en) * 2016-12-05 2018-06-14 栗田工業株式会社 Ultrapure water production apparatus and operation method for ultrapure water production apparatus
JP2018089587A (en) * 2016-12-05 2018-06-14 栗田工業株式会社 Apparatus for producing ultrapure water and method for operating the same

Also Published As

Publication number Publication date
JP3539992B2 (en) 2004-07-07

Similar Documents

Publication Publication Date Title
TWI460136B (en) Ultraviolet light activated oxidation process for the reduction of organic carbon in semiconductor process water
JP6752693B2 (en) Water treatment method and equipment
JP6752692B2 (en) Water treatment method and equipment
JPH0975993A (en) Treatment of organic matter-containing waste water and device therefor
US5523001A (en) Treatment of electroless plating waste streams
JPH0775780A (en) Ultrapure water manufacturing device
JP3853776B2 (en) Ultrapure water production equipment
JPH1199394A (en) Method for removing organic matter in water
JP3506171B2 (en) Method and apparatus for removing TOC component
JP3560631B2 (en) Water treatment equipment
JPH0440292A (en) Process for simultaneous removal of organic substance and dissolved oxygen
TW570816B (en) Ultraviolet ray irradiation device and operation method thereof
US11814304B2 (en) Ultraviolet treatment method and system
JP2000061459A (en) Treating device of low concentration organic waste water
JPS5924671B2 (en) Complex cyanide processing equipment
JPH1128482A (en) Production of pure water
JP2652493B2 (en) COD removal method for leachate from landfill
JP3704761B2 (en) Water treatment equipment
JPH0889976A (en) Method for removing organic matter in water
JP2537586B2 (en) Advanced treatment method of organic matter and its equipment
JPS6028884A (en) Process and apparatus for treating waste water including electrolysis
JP2002361269A (en) Method for treating water containing phosphorus
JPH09276858A (en) Ultraviolet toc decomposing apparatus
JP3300852B2 (en) Method and apparatus for treating contaminated water
JP3558378B2 (en) Water treatment method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20000831

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20021202

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20030325

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20030523

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20030805

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20031006

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040127

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040217

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040323

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040324

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100402

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110402

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120402

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120402

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130402

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130402

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140402

Year of fee payment: 10