JPH0775717A - Method for reducing nox in waste combustion gas - Google Patents
Method for reducing nox in waste combustion gasInfo
- Publication number
- JPH0775717A JPH0775717A JP5160999A JP16099993A JPH0775717A JP H0775717 A JPH0775717 A JP H0775717A JP 5160999 A JP5160999 A JP 5160999A JP 16099993 A JP16099993 A JP 16099993A JP H0775717 A JPH0775717 A JP H0775717A
- Authority
- JP
- Japan
- Prior art keywords
- gas
- nitrogen oxides
- bypass
- exhaust gas
- ammonia reduction
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Exhaust Gas Treatment By Means Of Catalyst (AREA)
- Treating Waste Gases (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明はガスタービンあるいはボ
イラ等の燃焼装置から出る燃焼排ガス中の窒素酸化物を
低減させる方法に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for reducing nitrogen oxides in flue gas discharged from a combustion device such as a gas turbine or a boiler.
【0002】[0002]
【従来の技術】従来、ガスタービンやボイラ等の燃焼装
置から出る燃焼排ガス中の窒素酸化物を低減させる方法
としてはアンモニアを還元剤として、バナジウムなどの
触媒を用いて窒素酸化物を窒素と水に分解し無公害化す
るアンモニア還元脱硝装置を使用する方法が一般的であ
る。この方法は250〜400℃程度の温度域において
は触媒活性も高く、効率的な脱硝方法で大型装置まで実
用化されており、実績も多い。しかしながら、この方法
の場合200℃以下の低温域では触媒の活性が極めて小
さく実用的な脱硝率は得られない。一方、ガスタービン
やボイラ等の燃焼装置の起動直後には、温度が低くしか
もかなり高い濃度の窒素酸化物を含有する燃焼排ガスが
発生し、アンモニア還元脱硝装置が十分に機能する25
0度以上の温度に達するまでには約30分〜約1時間の
時間を必要とする。2. Description of the Related Art Conventionally, as a method for reducing nitrogen oxides in flue gas discharged from a combustion apparatus such as a gas turbine or a boiler, ammonia is used as a reducing agent and a catalyst such as vanadium is used to remove the nitrogen oxides from nitrogen and water. A general method is to use an ammonia reduction denitration device that decomposes into water and becomes pollution-free. This method has a high catalytic activity in a temperature range of about 250 to 400 ° C., has been practically used in a large-scale apparatus by an efficient denitration method, and has a lot of achievements. However, in the case of this method, the activity of the catalyst is extremely small in a low temperature range of 200 ° C. or lower, and a practical denitration rate cannot be obtained. On the other hand, immediately after starting a combustion device such as a gas turbine or a boiler, combustion exhaust gas containing a low temperature and a considerably high concentration of nitrogen oxides is generated, and the ammonia reduction denitration device functions sufficiently.
It takes about 30 minutes to about 1 hour to reach the temperature of 0 degree or higher.
【0003】また、低温度域で高い脱硝率が得られる脱
硝方法としては、アルミナや活性炭などの吸着剤により
窒素酸化物を吸着させて除去する方法がある。しかしな
がらこの方法の場合は、燃焼排ガス中に含まれる窒素酸
化物の主成分であるNOはほとんど吸着されないので、
吸着されやすいNO2 又はN2 O5 の形に酸化してやる
必要があり、しかも窒素酸化物の吸着により吸着剤の吸
着能力が低下するため頻繁に吸着剤の再生を行う必要が
あった。Further, as a denitration method capable of obtaining a high denitration rate in a low temperature range, there is a method of adsorbing and removing nitrogen oxides with an adsorbent such as alumina or activated carbon. However, in the case of this method, since NO, which is the main component of nitrogen oxides contained in the combustion exhaust gas, is hardly adsorbed,
It is necessary to oxidize the adsorbent into a form of NO 2 or N 2 O 5 which is easily adsorbed, and moreover, it is necessary to frequently regenerate the adsorbent because the adsorption capacity of the adsorbent is lowered by the adsorption of nitrogen oxides.
【0004】[0004]
【発明が解決しようとする課題】本発明は、前記従来技
術の問題点を解決し、簡易な装置構成で、燃焼装置の起
動直後から定常運転時を通じて効率よい脱硝が可能な、
燃焼排ガス中の窒素酸化物の低減方法を提供することを
目的とする。DISCLOSURE OF THE INVENTION The present invention solves the above-mentioned problems of the prior art, and with a simple device configuration, it is possible to perform efficient denitration immediately after starting the combustion device and during steady operation.
An object is to provide a method for reducing nitrogen oxides in combustion exhaust gas.
【0005】[0005]
【課題を解決するための手段】本発明は (1)燃焼装置から出る燃焼排ガスをアンモニア還元脱
硝装置に通して窒素酸化物を除去する方法において、ア
ンモニア還元脱硝装置から出る処理ガスの流路にオゾン
酸化装置及び窒素酸化物の吸着処理装置が設置されたバ
イパスを設け、燃焼装置の起動直後等のアンモニア還元
脱硝装置が十分機能しない時期には、該脱硝装置から出
る未反応の窒素酸化物を含む処理ガスを前記バイパスに
通し、該処理ガス中のNOをNO2 及び/又はN2 O5
に酸化したのち吸着処理することにより未反応の窒素酸
化物を除去し、アンモニア還元脱硝装置が十分機能する
ようになった時点でバイパスを閉じるようにすることを
特徴とする燃焼排ガス中の窒素酸化物の低減方法。 (2)前記方法において、アンモニア還元脱硝装置が十
分機能し、バイパスが閉鎖されている運転時に、吸着処
理装置に高温の脱着ガスを通して吸着材の再生を行い、
脱離した窒素酸化物を含む脱着ガスを、アンモニア還元
脱硝装置に入る前の燃焼排ガス中に投入することを特徴
とする燃焼排ガス中の窒素酸化物の低減方法である。Means for Solving the Problems The present invention is as follows: (1) In a method of removing nitrogen oxides by passing combustion exhaust gas from a combustion device through an ammonia reduction denitration device, a process gas flow path from the ammonia reduction denitration device is provided. By providing a bypass equipped with an ozone oxidation device and a nitrogen oxide adsorption treatment device, and when the ammonia reduction denitration device is not functioning sufficiently immediately after starting the combustion device, etc., unreacted nitrogen oxides discharged from the denitration device are removed. A processing gas containing the gas is passed through the bypass, and NO in the processing gas is replaced with NO 2 and / or N 2 O 5
Nitrogen oxidation in flue gas, which is characterized by removing unreacted nitrogen oxides by performing adsorption treatment after oxidization into nitrogen, and closing the bypass when the ammonia reduction denitration equipment is fully functional. How to reduce things. (2) In the above-mentioned method, when the ammonia reduction denitration apparatus is fully functioning and the bypass is closed, high temperature desorption gas is passed through the adsorption treatment apparatus to regenerate the adsorbent,
In the method for reducing nitrogen oxides in combustion exhaust gas, a desorption gas containing desorbed nitrogen oxides is introduced into the combustion exhaust gas before entering the ammonia reduction denitration apparatus.
【0006】図1は本発明の1実施態様を示す概略フロ
ー図である。図1においてガスタービンやボイラ等の燃
焼装置からの排ガスは、燃焼排ガス流路1から供給さ
れ、NH3 添加流路2から還元剤であるNH3 を添加さ
れ、バナジウムなどの脱硝触媒の充填されたアンモニア
還元脱硝装置3に導入される。定常運転時には燃焼排ガ
スは250〜400℃の温度を有しているのでアンモニ
ア還元脱硝装置3で十分に脱硝され、処理ガスは熱交換
器4で熱回収されたのち100℃程度の温度で処理ガス
流路7を経て煙突8へ送られ、大気中へ放出される。FIG. 1 is a schematic flow chart showing one embodiment of the present invention. In FIG. 1, exhaust gas from a combustion device such as a gas turbine or a boiler is supplied from a combustion exhaust gas passage 1, is added with NH 3 as a reducing agent from an NH 3 addition passage 2, and is filled with a denitration catalyst such as vanadium. It is also introduced into the ammonia reduction denitration device 3. Since the combustion exhaust gas has a temperature of 250 to 400 ° C. during steady operation, it is sufficiently denitrated by the ammonia reduction denitration device 3, and the treatment gas is heat-recovered by the heat exchanger 4 and is then treated at a temperature of about 100 ° C. It is sent to the chimney 8 via the flow path 7 and discharged into the atmosphere.
【0007】処理ガス流路7には切り換えバルブ(図示
せず)を介して、オゾン発生装置6及び窒素酸化物の吸
着処理装置5が設置されたバイパス9が設けられてい
る。燃焼装置の起動直後等の排ガス温度が250℃程度
より低い場合には、アンモニア還元脱硝装置3での脱硝
効率が悪く、処理ガス中には多量の未反応の窒素酸化物
が含まれており、そのまま大気中に放出することはでき
ない。そのため、切り換えバルブを操作して処理ガスを
バイパス9に導く。バイパス9へ入った処理ガスは、該
ガス中のNOをオゾン発生装置6から供給されるオゾン
により次式に従って酸化し、吸着処理が可能なNO2 又
はN2 O5 としたのち吸着処理装置5に導びかれ、NO
2 やN2 O5 を吸着除去することにより脱硝処理され、
煙突8から大気中に放出される。 NO+O3 →NO2 +O2 (1) 2NO2 +O3 →N2 O5 +O2 (2)A bypass 9 in which an ozone generator 6 and a nitrogen oxide adsorption treatment device 5 are installed is provided in the treatment gas passage 7 through a switching valve (not shown). When the exhaust gas temperature is lower than about 250 ° C. immediately after starting the combustion device, the denitration efficiency in the ammonia reduction denitration device 3 is poor, and the treated gas contains a large amount of unreacted nitrogen oxides. It cannot be released into the atmosphere as it is. Therefore, the process gas is guided to the bypass 9 by operating the switching valve. The processing gas that has entered the bypass 9 oxidizes NO in the gas by the ozone supplied from the ozone generator 6 according to the following equation to form NO 2 or N 2 O 5 that can be adsorbed, and then the adsorption processing device 5 Led to NO
Denitration treatment is performed by adsorbing and removing 2 and N 2 O 5 ,
It is emitted from the chimney 8 into the atmosphere. NO + O 3 → NO 2 + O 2 (1) 2NO 2 + O 3 → N 2 O 5 + O 2 (2)
【0008】吸着処理装置5に充填する吸着剤の例とし
てはアルミナ系吸着剤、活性炭などの炭素系吸着剤、ゼ
オライト系吸着剤などがあげられる。吸着剤としてγ−
アルミナなどの吸着能力の大きい吸着剤を使用する場合
には前記(1)式までの酸化だけでも80〜90%の脱
硝が可能であるが、吸着能力の低い吸着剤を使用する場
合やさらに高い脱硝率が望まれる場合には(2)まで酸
化する割合を多くすることが必要である。Examples of the adsorbent to be filled in the adsorption treatment device 5 include an alumina-based adsorbent, a carbon-based adsorbent such as activated carbon, and a zeolite-based adsorbent. Γ-as an adsorbent
When an adsorbent having a large adsorption capacity such as alumina is used, denitration of 80 to 90% is possible only by the oxidation up to the above formula (1), but when an adsorbent having a low adsorption capacity is used or even higher. When the denitration rate is desired, it is necessary to increase the rate of oxidation up to (2).
【0009】オゾンの添加量は前記(1)およぼ(2)
式からわかるとおり、窒素酸化物1モルに対し1〜1.
5モル程度である。また、オゾンは一般に使用されてい
るオゾナイザなどのオゾン発生装置6を取り付けて供給
するようにすればよいが、燃焼排ガス流路内等にプラズ
マ発生部を設け、そこで放電させて生成させたオゾンを
使用することもできる。The amount of ozone added is the same as in the above (1) and (2).
As can be seen from the formula, 1 to 1.
It is about 5 mol. Further, ozone may be supplied by installing an ozone generator 6 such as a commonly used ozonizer, but a plasma generating portion is provided in the combustion exhaust gas flow path or the like, and ozone generated by discharging there is generated ozone. It can also be used.
【0010】燃焼装置の運転開始から時間が経過し、燃
焼排ガスの温度が250℃程度まで上昇するとアンモニ
ア還元脱硝装置3内の脱硝触媒の活性が十分高くなり、
アンモニア還元脱硝装置3を出た処理ガス中の窒素酸化
物の濃度はそのまま大気中に放出できる程度にまで低下
するので、その時点でバイパス9を閉鎖し、処理済のガ
スは処理ガス流路7を経て煙突8へ送るようにする。通
常、ボイラ等の燃焼装置の起動時の排ガス温度は、常温
近くから上昇を始め、燃焼装置の種類や規模にもよるが
30分から1.5時間程度で250℃付近に上昇する。
バイパス9から処理ガス流路7への切り換えは燃焼排ガ
ス温度がアンモニア還元脱硝装置3が十分機能する25
0℃付近に到達した時点を目安とするが絶対的なもので
はなく、各装置の状況に応じ、燃焼排ガス中の窒素酸化
物の濃度、脱硝触媒の種類、脱硝装置の容量、窒素酸化
物の放出許容濃度などを勘案し、適宜切り換え時期を定
めればよい。When the temperature of the combustion exhaust gas rises to about 250 ° C. with the lapse of time from the start of operation of the combustion device, the activity of the denitration catalyst in the ammonia reduction denitration device 3 becomes sufficiently high,
Since the concentration of nitrogen oxides in the processing gas discharged from the ammonia reduction denitration apparatus 3 decreases to such an extent that it can be released into the atmosphere as it is, the bypass 9 is closed at that point, and the processed gas is processed gas flow path 7 To be sent to the chimney 8. Normally, the exhaust gas temperature at the time of starting a combustion device such as a boiler starts to rise near room temperature and rises to around 250 ° C in about 30 minutes to 1.5 hours depending on the type and scale of the combustion device.
The switching from the bypass 9 to the processing gas flow path 7 is performed so that the temperature of the combustion exhaust gas is sufficient for the ammonia reduction denitration device 3 to function.
The time when the temperature reaches around 0 ° C is used as a guide, but it is not absolute. Depending on the conditions of each device, the concentration of nitrogen oxides in the combustion exhaust gas, the type of denitration catalyst, the capacity of the denitration device, the amount of nitrogen oxides, etc. The switching timing may be set appropriately in consideration of the release allowable concentration and the like.
【0011】吸着処理装置5内の、窒素酸化物を吸着し
た吸着剤は、バイパス9が閉鎖されている通常運転期間
中に簡単に再生することができる。すなわち、吸着処理
装置5内に300〜400℃程度の高温の脱着ガスを通
すか、吸着処理装置5内を減圧にするなどの方法により
吸着された窒素酸化物を脱着させることができる。脱着
後の窒素酸化物を含有するガスは主流の燃焼排ガスに比
較して極めて少量であり、別途脱硝装置付の小型焼却炉
などの処理装置を設けて処理してもよいが、脱硝処理前
の燃焼排ガス中に投入する方法が好ましい。また、図1
に破線で示すように、高温の脱着ガスとしてアンモニア
還元脱硝装置から出た高温の処理ガスの一部を高温脱着
ガス流路10を経て吸着処理装置5に供給して吸着した
窒素酸化物の脱着を行い、脱離した窒素酸化物を含む脱
着ガスは、脱着ガス流路11を通して脱硝処理前の燃焼
排ガス中に投入するようにすれば、全てを同一設備内で
処理することができ、最も簡便で実用的である。The adsorbent that has adsorbed the nitrogen oxides in the adsorption treatment device 5 can be easily regenerated during the normal operation period when the bypass 9 is closed. That is, the adsorbed nitrogen oxides can be desorbed by passing a high-temperature desorption gas of about 300 to 400 ° C. through the adsorption treatment device 5 or by reducing the pressure inside the adsorption treatment device 5. The gas containing nitrogen oxides after desorption is extremely small compared to the mainstream combustion exhaust gas, and it may be treated by separately providing a treatment device such as a small incinerator with a denitration device. A method of introducing the flue gas into combustion exhaust gas is preferable. Also, FIG.
As indicated by a broken line in FIG. 3, a part of the high-temperature processing gas discharged from the ammonia reduction denitration apparatus as the high-temperature desorption gas is supplied to the adsorption processing apparatus 5 through the high-temperature desorption gas flow path 10 to desorb the adsorbed nitrogen oxides. If the desorbed gas containing the desorbed nitrogen oxides is introduced into the combustion exhaust gas before the denitration process through the desorption gas flow channel 11, all of them can be processed in the same facility, which is the simplest method. Is practical.
【0012】本発明の方法によれば、現在有効な手段が
なくその対策が急がれている、ガスタービンやボイラな
どの燃焼装置の起動時などに発生する低温の燃焼排ガス
中の窒素酸化物の低減を容易に行うことができる。According to the method of the present invention, nitrogen oxides in low temperature combustion exhaust gas generated at the time of starting a combustion apparatus such as a gas turbine or a boiler, for which there is no effective means at present and which countermeasures are urgently needed. Can be easily reduced.
【0013】[0013]
【実施例】以下実施例により本発明の方法をさらに具体
的に説明する。 (実施例)図2に示す概略フロー図に従い、本発明で使
用する吸着処理装置の有効性試験を行った。図2(a)
は吸着試験、図2(b)は脱着試験の工程を示す。先ず
図2(a)のフローにより、中央部に吸着剤14(直径
約3mmの粒状活性アルミナ)が充填された石英製の反
応管13(内径24mm)を電気炉22で吸着剤の温度
が100℃となるように加熱ておき、供試ガス導入管1
8からNO 2 :20ppm、CO2 :5%、O2 :18
%、残りN2 に調製した供試ガスを2 N- リットル/分
の流量で供給して吸着処理を行った。吸着剤14の充填
量はSV=5000h-1となるようにした。排出ガスラ
イン15において、化学発光式NOx分析計16を用い
て排出ガス中のNOx(NO2 +NO)含有量を測定し
たところ30分間にわたって2.8ppmを維持してい
た。EXAMPLES The method of the present invention will be described in more detail with reference to the following examples.
To explain. (Example) According to the schematic flow chart shown in FIG.
The effectiveness of the adsorption treatment equipment used was tested. Figure 2 (a)
Shows the process of adsorption test, and FIG. 2 (b) shows the process of desorption test. First
According to the flow of FIG. 2A, the adsorbent 14 (diameter
Made of quartz filled with about 3 mm granular activated alumina)
The temperature of the adsorbent in the reaction tube 13 (inner diameter 24 mm) is set in the electric furnace 22.
Is heated so that the temperature becomes 100 ° C, and the test gas introduction pipe 1
8 to NO 2: 20 ppm, CO2: 5%, O2: 18
%, Remaining N22 N-liter / min of test gas prepared in
The adsorption treatment was performed by supplying at a flow rate of. Filling the adsorbent 14
The amount is SV = 5000h-1So that Exhaust gas
A chemiluminescence type NOx analyzer 16 is used in
NOx (NO2+ NO) content is measured
I kept 2.8ppm for 30 minutes.
It was
【0014】次に図2(b)のフローにより、供試ガス
の導入を止め、吸着剤の温度を350℃に昇温し、脱着
ガス供給ライン17からSV=50h-1となるような量
の空気を60分間導入して脱着処理を行った。このよう
な吸着及び脱着操作を73回繰り返し行ったが、最終試
験まで吸着時の排出ガス中のNO2 含有量は約2.8p
pmを維持しており、良好な脱硝効果を示していた。2 (b), the introduction of the sample gas is stopped, the temperature of the adsorbent is raised to 350 ° C., and the amount of SV = 50 h −1 from the desorption gas supply line 17 is reached. Was introduced for 60 minutes to perform desorption treatment. Such adsorption and desorption operations were repeated 73 times, but the NO 2 content in the exhaust gas during adsorption was about 2.8 p until the final test.
It maintained pm and showed a good denitration effect.
【0015】次に供試ガス中のNO2 :20ppmに代
えて、NO:20ppmを添加して同様の吸着試験を行
ったところ、ほとんど吸着されず、排出ガス中のNOx
(NO2 +NO)は20ppmのままであった。これら
の試験結果から、吸着剤を用いた反応管13ではNOを
吸着除去することはできないが、NO2 の形に変化させ
れば効率よく吸着除去することができ、吸着剤も再生し
て繰り返し使用できることがわかる。Next, when a similar adsorption test was conducted by adding NO: 20 ppm instead of NO 2 : 20 ppm in the test gas, almost no adsorption was observed, and NOx in the exhaust gas was hardly adsorbed.
(NO 2 + NO) remained at 20 ppm. From these test results, it is not possible to adsorb and remove NO in the reaction tube 13 using an adsorbent, but it is possible to adsorb and remove efficiently by changing the form of NO 2 , and the adsorbent is also regenerated and repeatedly You can see that it can be used.
【0016】[0016]
【発明の効果】本発明の方法によれば、現在有効な手段
がなくその対策が急がれている、ガスタービンやボイラ
などの燃焼装置の起動時などに発生する低温の燃焼排ガ
ス中の窒素酸化物の低減を容易に行うことができる。本
発明の方法は、従来のアンモニア還元脱硝装置を用いた
排ガス処理システムに簡単な設備を付加するだけで実施
が可能であり、その産業上の利用価値は極めて大きいも
のである。According to the method of the present invention, there is no effective means at present, and countermeasures against it are urgently needed. Oxides can be easily reduced. The method of the present invention can be carried out simply by adding simple equipment to an exhaust gas treatment system using a conventional ammonia reduction denitration apparatus, and its industrial utility value is extremely great.
【図1】本発明の1実施態様を示す概略フロー図。FIG. 1 is a schematic flowchart showing one embodiment of the present invention.
【図2】実施例で行った吸着処理装置の有効性試験の工
程を示す概略フロー図。FIG. 2 is a schematic flow chart showing the steps of the effectiveness test of the adsorption treatment apparatus performed in the examples.
───────────────────────────────────────────────────── フロントページの続き (72)発明者 村田 正義 長崎県長崎市深堀町五丁目717番1号 三 菱重工業株式会社長崎研究所内 (72)発明者 芹沢 暁 長崎県長崎市飽の浦町1番1号 三菱重工 業株式会社長崎造船所内 (72)発明者 守井 淳 長崎県長崎市飽の浦町1番1号 三菱重工 業株式会社長崎造船所内 (72)発明者 内田 聡 東京都千代田区丸の内二丁目5番1号 三 菱重工業株式会社本社内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Masayoshi Murata 5-717-1, Fukahori-cho, Nagasaki-shi, Nagasaki Sanryo Heavy Industries Ltd. Nagasaki Research Institute (72) Inventor Akira Serizawa 1-1, Akinoura-cho, Nagasaki-shi, Nagasaki No. Mitsubishi Heavy Industries, Ltd. Nagasaki Shipyard (72) Inventor Atsushi Morii 1-1, Atsunoura-machi, Nagasaki-shi, Nagasaki Mitsubishi Heavy Industries Ltd. Nagasaki Shipyard (72) Satoshi Uchida 2-5 Marunouchi, Chiyoda-ku, Tokyo No. 1 Sanryo Heavy Industries Co., Ltd.
Claims (2)
ア還元脱硝装置に通して窒素酸化物を除去する方法にお
いて、アンモニア還元脱硝装置から出る処理ガスの流路
にオゾン酸化装置及び窒素酸化物の吸着処理装置が設置
されたバイパスを設け、燃焼装置の起動直後等のアンモ
ニア還元脱硝装置が十分機能しない時期には、該脱硝装
置から出る未反応の窒素酸化物を含む処理ガスを前記バ
イパスに通し、該処理ガス中のNOをNO2 及び/又は
N2 O5 に酸化したのち吸着処理することにより未反応
の窒素酸化物を除去し、アンモニア還元脱硝装置が十分
機能するようになった時点でバイパスを閉じるようにす
ることを特徴とする燃焼排ガス中の窒素酸化物の低減方
法。1. A method for removing nitrogen oxides by passing flue gas discharged from a combustion device through an ammonia reduction denitration device, wherein an ozone oxidation device and a nitrogen oxide adsorption treatment are performed in a flow path of a processing gas emitted from the ammonia reduction denitration device. A bypass provided with an apparatus is provided, and when the ammonia reduction denitration apparatus is not functioning sufficiently immediately after the start of the combustion apparatus or the like, a processing gas containing unreacted nitrogen oxides, which is discharged from the denitration apparatus, is passed through the bypass, The unreacted nitrogen oxides are removed by oxidizing NO in the process gas to NO 2 and / or N 2 O 5 and then adsorbing it, and bypassing is performed at the time when the ammonia reduction denitration device becomes fully functional. A method for reducing nitrogen oxides in combustion exhaust gas, which comprises closing the exhaust gas.
ニア還元脱硝装置が十分機能し、バイパスが閉鎖されて
いる運転時に、吸着処理装置に高温の脱着ガスを通して
吸着材の再生を行い、脱離した窒素酸化物を含む脱着ガ
スを、アンモニア還元脱硝装置に入る前の燃焼排ガス中
に投入することを特徴とする燃焼排ガス中の窒素酸化物
の低減方法。2. The method according to claim 1, wherein the adsorbent is regenerated by passing a high-temperature desorption gas through the adsorption treatment device during operation when the ammonia reduction denitration device is fully functioning and the bypass is closed. The method for reducing nitrogen oxides in combustion exhaust gas, comprising introducing the desorbed gas containing nitrogen oxides into the combustion exhaust gas before entering the ammonia reduction denitration apparatus.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP16099993A JP3202419B2 (en) | 1993-06-30 | 1993-06-30 | Method for reducing nitrogen oxides in flue gas |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP16099993A JP3202419B2 (en) | 1993-06-30 | 1993-06-30 | Method for reducing nitrogen oxides in flue gas |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH0775717A true JPH0775717A (en) | 1995-03-20 |
JP3202419B2 JP3202419B2 (en) | 2001-08-27 |
Family
ID=15726652
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP16099993A Expired - Fee Related JP3202419B2 (en) | 1993-06-30 | 1993-06-30 | Method for reducing nitrogen oxides in flue gas |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3202419B2 (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6197268B1 (en) * | 1999-07-02 | 2001-03-06 | The Boc Group, Inc. | Reduction of toxic substances in waste gas emissions |
EP2551006A1 (en) * | 2011-07-25 | 2013-01-30 | Linde Aktiengesellschaft | Process for removing contaminants from gas streams |
KR20190134755A (en) | 2017-05-11 | 2019-12-04 | 미츠비시 히타치 파워 시스템즈 가부시키가이샤 | Operation method of combustion exhaust gas purification system |
-
1993
- 1993-06-30 JP JP16099993A patent/JP3202419B2/en not_active Expired - Fee Related
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6197268B1 (en) * | 1999-07-02 | 2001-03-06 | The Boc Group, Inc. | Reduction of toxic substances in waste gas emissions |
EP2551006A1 (en) * | 2011-07-25 | 2013-01-30 | Linde Aktiengesellschaft | Process for removing contaminants from gas streams |
KR20190134755A (en) | 2017-05-11 | 2019-12-04 | 미츠비시 히타치 파워 시스템즈 가부시키가이샤 | Operation method of combustion exhaust gas purification system |
US11441774B2 (en) | 2017-05-11 | 2022-09-13 | Mitsubishi Power, Ltd. | Method for operating flue gas purification system |
Also Published As
Publication number | Publication date |
---|---|
JP3202419B2 (en) | 2001-08-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
AU693966B2 (en) | Regeneration of catalyst/absorber | |
JP4590618B2 (en) | Exhaust gas treatment method and treatment apparatus | |
KR100999635B1 (en) | Diesel oxidation catalyst and exhaust system provided with the same | |
KR100204257B1 (en) | Heat treated activated carbon for denitration process for preparing the same method of denitration using the same and system of denitration using the same | |
KR20010040439A (en) | Regeneration of catalyst/absorber | |
JPH0775717A (en) | Method for reducing nox in waste combustion gas | |
JP3197072B2 (en) | Regeneration method of ammonia adsorbent | |
JP2014151252A (en) | Regenerating apparatus of denitrification catalyst, regenerating method of denitrification catalyst, and exhaust gas treatment apparatus using the same | |
CN103341306B (en) | A kind of method of poor ammonia SNCR reduction and oxidative absorption combined denitration demercuration | |
JPH06233915A (en) | Denitration equipment of combustion exhaust gas | |
JP3272502B2 (en) | Equipment for removing nitrogen oxides from exhaust gas | |
JPH07213859A (en) | Waste gas treating device | |
JPH07136464A (en) | Apparatus and method for treating nitrogen oxide in exhaust gas | |
JPH0824579A (en) | Treatment of low concentration nox containing gas | |
KR20090081866A (en) | Hybrid DeNOx process using Selective Catalytic Reduction and Adsorption | |
JPH07289848A (en) | Equipment for denitrating waste combustion gas | |
JPH07275656A (en) | Gas purifying method | |
JPH05168857A (en) | Method for decreasing nitrogen oxide in combustion exhaust gas | |
JPH08257351A (en) | System and process for treating low concentration nox-containing gas | |
KR20220117529A (en) | Waste Gas Treatment Apparatus For Volatile Organic Compounds Gas containing Nitrogen Compound | |
JPH01224031A (en) | Nitrogen oxide removing device | |
JPH07265668A (en) | Treating device for exhaust gas | |
JPH05277340A (en) | Method for removing nox | |
JPH10211427A (en) | Nitrogen dioxide absorber, and method for removing nitrogen dioxide using this absorber | |
JPH02203920A (en) | Purification of exhaust gas containing nitrogen oxide |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20010522 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090622 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100622 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100622 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110622 Year of fee payment: 10 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110622 Year of fee payment: 10 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120622 Year of fee payment: 11 |
|
LAPS | Cancellation because of no payment of annual fees |