JPH0774403B2 - Refining methods for aluminum and aluminum alloys - Google Patents

Refining methods for aluminum and aluminum alloys

Info

Publication number
JPH0774403B2
JPH0774403B2 JP17618785A JP17618785A JPH0774403B2 JP H0774403 B2 JPH0774403 B2 JP H0774403B2 JP 17618785 A JP17618785 A JP 17618785A JP 17618785 A JP17618785 A JP 17618785A JP H0774403 B2 JPH0774403 B2 JP H0774403B2
Authority
JP
Japan
Prior art keywords
aluminum
slag
molten metal
refining
refining agent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP17618785A
Other languages
Japanese (ja)
Other versions
JPS6237329A (en
Inventor
研治 大隅
俊雄 尾上
晴彦 戸田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP17618785A priority Critical patent/JPH0774403B2/en
Publication of JPS6237329A publication Critical patent/JPS6237329A/en
Publication of JPH0774403B2 publication Critical patent/JPH0774403B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Manufacture And Refinement Of Metals (AREA)

Description

【発明の詳細な説明】 〈産業上の利用分野〉 本発明は、アルミニウム及びアルミニウム合金の精錬法
に関する。
TECHNICAL FIELD The present invention relates to a method for refining aluminum and aluminum alloys.

〈従来の技術〉 アルミニウム及びアルミニウム合金の精錬法としては、
例えばCl2などのハロゲンガス、もしくは少なくともハ
ロゲン化合物を含む精錬剤を用いて、脱ガスや脱介在物
処理を行なう方法が一般的である。この場合、精錬で溶
湯表面に浮上した介在物の除滓を容易にするために、介
在物と共存する溶湯の一部を高温で燃焼させて、かさ比
重が小さく、しかも溶湯との濡れ性の悪い酸化物等に変
化させることが通常行なわれている。
<Prior art> As a refining method for aluminum and aluminum alloys,
For example, a method of performing degassing or treatment of inclusions using a halogen gas such as Cl 2 or a refining agent containing at least a halogen compound is common. In this case, in order to facilitate the removal of inclusions floating on the surface of the molten metal during refining, a part of the molten metal coexisting with the inclusions is burned at a high temperature so that the bulk specific gravity is small and the wettability with the molten metal is small. Changing to a bad oxide or the like is usually performed.

〈発明が解決しようとする問題点〉 除滓を容易にするために上述のような燃焼処理を行なう
と、溶湯を再生不可能な酸化物等に変化させてしまい、
いわゆる溶損を生じて損失が大きくなるという問題点が
ある。
<Problems to be Solved by the Invention> When the above-described combustion treatment is performed in order to facilitate slag removal, the molten metal is changed to a non-renewable oxide or the like,
There is a problem that so-called melting loss occurs and the loss increases.

本発明はこの点に着目し、除滓性がよく、しかも溶損を
少なくして、除滓性と溶損の両方を満足できるようにす
ることを課題としてなされたものである。
The present invention has been made in view of this point, and has an object to achieve good slag removal property and reduce melting loss so as to satisfy both the slag removal property and the melting loss.

〈問題点を解決するための手段〉 上記の課題達成のため、本発明のアルミニウム及びアル
ミニウム合金の精錬法では、分解により酸素と二酸化硫
黄ガスを生成する成分として硫酸カリウムを含む精錬剤
を用い、溶湯表面を二酸化硫黄ガスで覆いながら精錬す
るようにしている。
<Means for Solving Problems> In order to achieve the above objects, in the refining method for aluminum and aluminum alloys of the present invention, a refining agent containing potassium sulfate as a component for generating oxygen and sulfur dioxide gas by decomposition is used, Refining is performed while covering the surface of the molten metal with sulfur dioxide gas.

〈作用〉 二酸化硫黄ガスは空気より重く、溶湯の表面を覆って溶
湯と空気との接触を断ち、しかも溶湯とは高温でもほと
んど反応しないため、溶湯と炉内雰囲気中の酸素や窒素
等との反応が妨げられる。また分解によって生成した酸
素は溶湯燃焼用として作用し、浮上した介在物をかさ比
重が小さく、溶湯との濡れ性の悪い酸化物に変化させる
と推定される。すなわち、除滓性の向上と溶損の低減と
いう2つの要求を満足させるには、必要最少限の燃焼状
態を得るようにすればよいのであるが、炉内雰囲気中の
酸素や窒素によって必要以上に反応が促進されることを
二酸化硫黄ガスが防止し、精錬剤から生成された酸素に
よって必要最小限の反応が行なわれるのである。
<Action> Sulfur dioxide gas is heavier than air, covers the surface of the molten metal and cuts the contact between the molten metal and air, and since it hardly reacts with the molten metal even at high temperatures, it does not react with oxygen and nitrogen in the atmosphere in the furnace. The reaction is hindered. It is also presumed that the oxygen generated by the decomposition acts as a fuel for burning the molten metal and changes the floating inclusions into oxides having a low bulk specific gravity and poor wettability with the molten metal. That is, in order to satisfy the two requirements of improving the slag removal property and reducing the melting loss, it is necessary to obtain the minimum required combustion state. Sulfur dioxide gas prevents the reaction from being accelerated, and oxygen generated from the refining agent causes the minimum necessary reaction.

〈実施例〉 以下、本発明の実施例について述べる。<Examples> Examples of the present invention will be described below.

介在物と共存する溶湯の燃焼を炉内雰囲気中の酸素で行
なうと、反応の制御が困難で溶損が増大するため、本発
明では上述のように溶湯と炉内雰囲気との接触を断ち、
精錬剤から酸素を供給するようにしている。そこで、精
錬剤の成分として酸素を含む化合物を用いるのであり、
該当する化合物としては炭酸塩、硝酸塩、硫酸塩等が挙
げられる。
When the molten metal coexisting with inclusions is burned with oxygen in the furnace atmosphere, it is difficult to control the reaction and melting loss increases, so in the present invention, the contact between the molten metal and the furnace atmosphere is cut off as described above,
Oxygen is supplied from the refining agent. Therefore, a compound containing oxygen is used as a component of the refining agent,
Corresponding compounds include carbonates, nitrates, sulfates and the like.

これらの化合物について検討したところ、炭酸塩は、溶
湯に残留した場合に欠陥の原因となることが発明者らの
実験で判明し、使用を避ける方が望ましいことがわかっ
た。また、硝酸塩は、その化学的性質により配合比によ
っては爆発の危険性があるので、これの使用も避ける方
がよい。そこで硫酸塩について検討したところ、上記の
ような問題点がなく、新たな技術上の大きな問題点も生
じなかったので、溶湯燃焼用の酸素供給源として硫酸塩
を用いることが適切であるとの結論が得られた。
As a result of studying these compounds, it has been found by experiments by the inventors that carbonates cause defects when they remain in the molten metal, and it is preferable to avoid their use. Also, nitrates may explode depending on the compounding ratio due to their chemical properties, so it is better to avoid their use. Therefore, when the sulfate was examined, the above problems did not occur and no major new technical problems occurred. Therefore, it is appropriate to use the sulfate as an oxygen supply source for molten metal combustion. A conclusion was drawn.

更に数種類の硫酸塩についてコスト、反応性等を検討し
たところ、硫酸カリウム(K2SO4)が最適であることが
判明したので、具体的にはK2SO4を用いることとした。
検討結果を表1に示す。
Furthermore, when cost, reactivity, etc. were examined for several types of sulfates, it was found that potassium sulfate (K 2 SO 4 ) was optimal, so K 2 SO 4 was specifically used.
The examination results are shown in Table 1.

次に、本発明では溶湯と炉内雰囲気との接触を断つ手段
として特定のガスで溶湯表面を覆ってシールドしてい
る。そこで、各種のガスについて、その適性を密度、溶
湯との反応性等について検討したところ、二酸化硫黄
(SO2)が最適であることが判明した。検討結果を表2
に示す。
Next, in the present invention, the surface of the molten metal is shielded by covering it with a specific gas as a means for cutting off the contact between the molten metal and the atmosphere in the furnace. Therefore, when various gases were examined for suitability, density, reactivity with molten metal, etc., it was found that sulfur dioxide (SO 2 ) was the most suitable. Table 2 shows the examination results
Shown in.

以上の結果、最適と判断されたSO2は、酸素供給源とし
て最適と判断されたK2SO4の分解で生成させることがで
きる。そこで、通常のアルミニウム及びアルミニウム合
金の精錬剤として用いられる塩化物、弗化物あるいはこ
れらの混合物等にK2SO4を加え、不活性ガス雰囲気中で9
00℃まで加熱し、精錬剤の分解反応を調べた。その結
果、SO2ガスの発生は、精錬剤の種類に関係なく、一定
の温度から生ずることが確認された。また、表3に示す
試験を行ない、除滓性と溶損低減効果を確認し、K2SO4
の効果が認められた。
As a result of the above, SO 2 determined to be optimal can be generated by decomposition of K 2 SO 4 determined to be optimal as an oxygen supply source. Therefore, K 2 SO 4 is added to chloride, fluoride or a mixture thereof which is usually used as a refining agent for aluminum and aluminum alloys, and the mixture is added in an inert gas atmosphere to
After heating to 00 ° C., the decomposition reaction of the refining agent was examined. As a result, it was confirmed that SO 2 gas was generated at a constant temperature regardless of the type of refining agent. In addition, the tests shown in Table 3 were carried out to confirm the slag removal property and the melting loss reducing effect, and then K 2 SO 4
The effect of was confirmed.

次に、精錬剤へのK2SO4の配合率と除滓性及び溶損の関
係について、配合率を変えながらその効果を確認した。
表4に試験条件と結果を示す。
Next, regarding the relationship between the mixing ratio of K 2 SO 4 in the refining agent and the slag removing property and melting loss, the effect was confirmed while changing the mixing ratio.
Table 4 shows the test conditions and results.

この結果、本精錬剤系では、K2SO4が2〜20重量%であ
る場合に除滓性が良好であり、しかも溶損率の低減に効
果があることがわかった。同様に、成分の異なる他の精
錬剤系についても配合率を変えながら試験したところ、
やはりK2SO4の配合率が2〜20重量%の場合に除滓性向
上と溶損低減に効果があることが確認された。
As a result, it was found that this refining agent system has good slag removal property when K 2 SO 4 is in the range of 2 to 20 wt%, and is effective in reducing the erosion rate. Similarly, when other refining agent systems with different components were tested while changing the compounding ratio,
It was also confirmed that when the compounding ratio of K 2 SO 4 was 2 to 20% by weight, it was effective in improving the slag removal property and reducing the melt loss.

次に各種の合金系に対して、普通に用いられる精錬剤系
と、これにK2SO4を配合した場合の結果を表5に示す。
いずれの場合もK2SO4を含む場合の方が、除滓性が向上
し且つ溶損が低減しており、効果が確認された。
Table 5 shows the results of a commonly used refining agent system for various alloy systems and the addition of K 2 SO 4 thereto.
In any case, the case where K 2 SO 4 was contained was found to be more effective because the slag removal property was improved and the melting loss was reduced.

ここで、[表5]中の除滓性とは、溶湯表面からのスラ
グの除去容易性をいい、精錬剤を含む全溶解量に対して
生成されたスラグの量の多,少によって除滓性の悪,良
を評価している。即ち、除滓性が良い場合は、生成され
るスラグ量が少なく、スラグ中のメタル分が容易に十分
に戻るとともに、スラグ中の酸化物の溶湯に対する濡れ
性が悪くなる結果、溶湯と分離しやすくなるので、スラ
グを除去する除滓作業が容易になるとともに、除去され
たスラグ中のメタル含有量(スラグへの溶融金属の付着
量)が少なくなる。逆に、除滓性が悪い場合は、生成さ
れるスラグ量が多く、除滓作業が難しくなるとともに、
除去されたスラグ中のメタル含有量が多くなる。
Here, the slag removal property in [Table 5] refers to the easiness of removing slag from the surface of the molten metal, and the slag removal property depends on the amount of slag produced relative to the total amount of molten slag containing refining agent Evaluating badness and goodness of sex. That is, when the slag removal property is good, the amount of slag generated is small, the metal content in the slag easily returns to sufficient, and the wettability of the oxide in the slag with respect to the molten metal deteriorates, resulting in separation from the molten metal. Since it becomes easier, the slag removing work for removing the slag becomes easier, and the metal content in the removed slag (the amount of the molten metal attached to the slag) becomes smaller. On the other hand, when the slag removal property is poor, the amount of slag produced is large, making the slag removal work difficult and
The metal content in the removed slag increases.

一方、除去されたスラグ量10中のメタル分と酸化物の量
比は、例えば8:2と一定であり、このメタル分のうちの
一定%が回収不能なメタル,つまり溶損分となって捨て
られる。従って、生成されるスラグ量が多い程,メタル
の溶損量も増え、生成されたスラグ量(対全溶解量比)
と溶損率は比例し、除滓性が悪い程,溶損率が大きくな
る。
On the other hand, the amount ratio of the metal content and the oxide content in the removed slag amount 10 is constant, for example, 8: 2, and a certain percentage of this metal content is the unrecoverable metal, that is, the melting loss content. Be thrown away. Therefore, the larger the amount of slag produced, the more the amount of metal erosion and the amount of slag produced (ratio to the total amount of slag).
The erosion rate is proportional to the erosion rate, and the worse the slag removal property, the greater the erosion rate.

以上のことから、[表5]の試験では、各合金系につい
て現行(普通)の精錬剤系を用いた場合に得られた上述
の除滓性(全溶解量に対するスラグ量比)を「普通」と
評価し、K2SO4を配合した場合に得られた除滓性が、上
記除滓性よりも良い(スラグ量比が小さい)場合を「良
好」と評価したのである。この除滓性の評価は、同表の
溶損率の試験結果からも明らかな上述の除滓性が悪い
程,溶損率が大きくなるという事実に合致しており、妥
当性を有する。
From the above, in the test of [Table 5], the above-mentioned slag removal property (ratio of slag to total dissolved amount) obtained when the current (normal) refining agent system was used for each alloy system was "normal". And the case where the slag removing property obtained when K 2 SO 4 was blended was better than the above slag removing property (the slag amount ratio was small) was evaluated as “good”. The evaluation of the slag removal property is appropriate because it is clear from the results of the erosion rate test shown in the same table that the above-mentioned slag removal property is worse, the larger the erosion rate is.

〈発明の効果〉 以上述べたように、本発明は酸素とSO2を生成する成分
として硫酸カリウムを含む精錬剤を用いて精錬するもの
であり、分解により生じた酸素が、溶湯表面に存在する
介在物と共存する溶湯の燃焼に寄与する一方、分解によ
り生じたSO2ガスは燃焼には寄与せず、溶湯表面を覆っ
て炉内雰囲気からシールドする。そしてアルミニウム及
びアルミニウム合金の溶湯は高温でもほとんどSO2ガス
と反応しないため、最少限の反応が精錬剤から供給され
た酸素によって行なわれるものと推定される。この結
果、反応は過不足なく適正に行なわれ、除滓性の向上と
溶損の低減という2つの要求を満足させることが可能と
なるのである。
<Effects of the Invention> As described above, the present invention is for refining using a refining agent containing potassium sulfate as a component for generating oxygen and SO 2 , and oxygen generated by decomposition is present on the surface of the molten metal. While contributing to combustion of molten metal coexisting with inclusions, SO 2 gas generated by decomposition does not contribute to combustion and covers the molten metal surface and shields it from the atmosphere in the furnace. Since molten aluminum and aluminum alloy hardly react with SO 2 gas even at high temperature, it is presumed that the minimum reaction is carried out by oxygen supplied from the refining agent. As a result, the reaction is properly performed without excess or deficiency, and it becomes possible to satisfy the two requirements of improving the slag removal property and reducing the melting loss.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】分解により酸素と二酸化硫黄ガスを生成す
る成分として硫酸カリウムを含む精錬剤を用い、溶湯表
面を二酸化硫黄ガスで覆いながら精錬することを特徴と
するアルミニウム及びアルミニウム合金の精錬法。
1. A method for refining aluminum and aluminum alloys, characterized in that a refining agent containing potassium sulfate as a component for generating oxygen and sulfur dioxide gas by decomposition is used and refining is performed while covering the surface of the molten metal with sulfur dioxide gas.
【請求項2】特許請求の範囲第1項記載のアルミニウム
及びアルミニウム合金の精錬法において、20重量%以下
の硫酸カリウムを精錬剤に配合して用いるアルミニウム
及びアルミニウム合金の精錬法。
2. The refining method for aluminum and aluminum alloys according to claim 1, wherein 20% by weight or less of potassium sulfate is mixed with a refining agent and used.
JP17618785A 1985-08-09 1985-08-09 Refining methods for aluminum and aluminum alloys Expired - Lifetime JPH0774403B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17618785A JPH0774403B2 (en) 1985-08-09 1985-08-09 Refining methods for aluminum and aluminum alloys

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17618785A JPH0774403B2 (en) 1985-08-09 1985-08-09 Refining methods for aluminum and aluminum alloys

Publications (2)

Publication Number Publication Date
JPS6237329A JPS6237329A (en) 1987-02-18
JPH0774403B2 true JPH0774403B2 (en) 1995-08-09

Family

ID=16009167

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17618785A Expired - Lifetime JPH0774403B2 (en) 1985-08-09 1985-08-09 Refining methods for aluminum and aluminum alloys

Country Status (1)

Country Link
JP (1) JPH0774403B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61121409U (en) * 1985-01-16 1986-07-31

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02270924A (en) * 1989-04-13 1990-11-06 Kobe Steel Ltd Method for refining molten aluminum and aluminum alloy
JP3668081B2 (en) * 1998-12-25 2005-07-06 株式会社神戸製鋼所 Method for refining molten aluminum alloy and flux for refining molten aluminum alloy
CN115466871B (en) * 2022-08-25 2023-06-23 江苏立中新材料科技有限公司 Aluminum alloy liquid deslagging and degassing refining system and method under inert gas protection

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61121409U (en) * 1985-01-16 1986-07-31

Also Published As

Publication number Publication date
JPS6237329A (en) 1987-02-18

Similar Documents

Publication Publication Date Title
Lau et al. The sources of oxygen and nitrogen contamination in submerged arc welding using CaO-Al2O3 based fluxes
EP0268841B1 (en) Blanketing atmosphere for molten aluminum-lithium or pure lithium
JPH0521675B2 (en)
US3580748A (en) Welding flux component
JPS63481B2 (en)
JPH0774403B2 (en) Refining methods for aluminum and aluminum alloys
BR0209426B1 (en) protective gas mixture useful for mig brazing of galvanized steel, and process with metal and inert gas (mig) for brazing of galvanized steels.
NO150204B (en) ANALOGY PROCEDURE FOR THE PREPARATION OF HEXA HYDRO-GAMMA CARBOLINE DERIVATIVES WITH SOILING EFFECT
KR101544293B1 (en) Titanium oxide raw material for welding material
US4762555A (en) Process for the production of nodular cast iron
JPS60258406A (en) Synthetic flux for molten steel
JP3473080B2 (en) Flux for treating Al or Al alloy molten metal
JPH07207359A (en) Method for refining molten al or al alloy
JPS6251716B2 (en)
JP2561987B2 (en) Method for melting copper scrap
JP2004204307A (en) Desulfurizing agent for molten steel
JP2577714B2 (en) Cr containing arc welding rod
US3208886A (en) Electric arc welding flux and method of electric arc welding
JPH0457438B2 (en)
JPH07207360A (en) Method for refining molten al or al alloy
SU1632712A1 (en) Flux for soldering aluminium
JPH0244636B2 (en)
SU1532252A1 (en) Ceramic flux for brazing low-alloy steels
WO2023038591A1 (en) Flux composition for copper-based alloys
RU2487174C2 (en) Method to process iron-carbon melt and material for its realisation

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term