JPH0774364B2 - Method for producing fine copper powder - Google Patents

Method for producing fine copper powder

Info

Publication number
JPH0774364B2
JPH0774364B2 JP63182607A JP18260788A JPH0774364B2 JP H0774364 B2 JPH0774364 B2 JP H0774364B2 JP 63182607 A JP63182607 A JP 63182607A JP 18260788 A JP18260788 A JP 18260788A JP H0774364 B2 JPH0774364 B2 JP H0774364B2
Authority
JP
Japan
Prior art keywords
copper
powder
coupling agent
silane coupling
particle size
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP63182607A
Other languages
Japanese (ja)
Other versions
JPH0234708A (en
Inventor
正義 吉武
豊彦 杉戸
茂 木藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fukuda Metal Foil and Powder Co Ltd
Original Assignee
Fukuda Metal Foil and Powder Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fukuda Metal Foil and Powder Co Ltd filed Critical Fukuda Metal Foil and Powder Co Ltd
Priority to JP63182607A priority Critical patent/JPH0774364B2/en
Publication of JPH0234708A publication Critical patent/JPH0234708A/en
Publication of JPH0774364B2 publication Critical patent/JPH0774364B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、電子回路の厚膜導体を成形するための銅塗料
として、特に有用な粒子が単分散した球状の銅微粉末の
製造方法に関するものである。
Description: TECHNICAL FIELD The present invention relates to a method for producing spherical copper fine powder in which particles are monodispersed, which is particularly useful as a copper coating material for forming a thick film conductor of an electronic circuit. It is a thing.

〔従来の技術〕[Conventional technology]

銅塗料は、電子回路の厚膜導体を形成するのに現在使用
されている銀あるいはパラジウム塗料の代替品として、
最近注目され始めている。この銅塗料には通常0.2μm
〜10μmの銅微粉末が用いられているが、塗料を焼付け
たときの緻密な銅の導体膜を得るためには粒子が単分散
した凝集のない、不純物の少ない球状銅微粉末が望まれ
ている。また、緻密な銅の導体膜を得るため、最密充て
んとなるように、2種〜3種の粒度分布巾の狭い粉末を
混合して用いることも行われ、これに用いる銅粉は、球
状であるとともに粒径の揃った単分散した粉末であるこ
とが要求される。
Copper paint is an alternative to the silver or palladium paints currently used to form thick film conductors in electronic circuits.
Recently, it has begun to attract attention. This copper paint is usually 0.2 μm
Copper fine powder having a particle size of up to 10 μm is used, but in order to obtain a dense copper conductor film when a paint is baked, spherical fine copper powder with monodispersed particles and less impurities is desired. There is. Further, in order to obtain a dense copper conductor film, two or three kinds of powders having a narrow particle size distribution width may be mixed and used so as to be the closest packing, and the copper powder used for this is spherical. In addition, the powder is required to be a monodispersed powder having a uniform particle size.

従来、銅微粉末の製造方法としては種々提案されている
が、0.2μm〜10μmの粒径の銅粉末を製造できる方法
としては、 炭酸銅を含む銅含有溶液とヒドラジンあるいはヒドラ
ジン化合物と混合し、これを加熱することにより銅粉末
を還元析出せしめる方法。(特開昭57−155302号) 酸化銅を保護コロイドを含む水性媒体中でヒドラジン
及び/又はヒドラジン化合物で還元する方法。(特公昭
61−55562号) 還元剤としてヒドラジンを用いて硫酸銅水溶液を還元
して銅微粒子を製造する方法において、反応溶液中に界
面活性剤を添加することによって単分散した銅微粒子を
得る方法。(特開昭62−27508号,特開昭62−40302号,
特開昭62−77407号,特開昭62−77408号) 等がある。しかしながら、これら従来の方法では(a)
粒径が揃っている、(b)単分散している、(c)不純
物が少ない、(d)球状である、の条件を全て満足する
銅粉末は得られない。
Conventionally, various methods have been proposed as a method for producing fine copper powder, but as a method capable of producing a copper powder having a particle size of 0.2 μm to 10 μm, a copper-containing solution containing copper carbonate is mixed with hydrazine or a hydrazine compound, A method in which copper powder is reduced and precipitated by heating this. (JP-A-57-155302) A method of reducing copper oxide with hydrazine and / or a hydrazine compound in an aqueous medium containing a protective colloid. (Special public relations
61-55562) A method for producing copper fine particles by reducing an aqueous solution of copper sulfate using hydrazine as a reducing agent, which is a method of obtaining monodispersed copper fine particles by adding a surfactant to a reaction solution. (JP-A-62-27508, JP-A-62-40302,
JP-A-62-77407 and JP-A-62-77408). However, in these conventional methods (a)
A copper powder that satisfies all the conditions of uniform particle size, (b) monodispersed, (c) few impurities, and (d) spherical shape cannot be obtained.

即ち、前記の炭酸銅をヒドラジンで還元する方法で
は、析出中に銅粉が凝集するため形状が不規則となる。
また、の酸化銅を保護コロイドを含む水性媒体中で還
元する方法では、保護コロイドにより銅粉の凝集につい
てある程度防止されるものの満足できるものではない。
本発明者等の実験では、平均粒径1.5μmの粉末をこの
方法で製造した場合、0.7μm〜8μmの範囲を粒径を
有する粉末が得られる。さらにこの方法で問題となるの
は保護コロイド、即ちアラビアゴム等の有機化合物が銅
粉中に残留すると、厚膜導体の焼成時に焼成雰囲気を悪
くし厚膜形成上好ましくない。またの硫酸銅水溶液を
界面活性剤の存在下にヒドラジンで還元する方法では水
溶性銅化合物から銅を析出させるために、析出時の粒径
にばらつきを生じ、例えば平均粒径が2.5μmのもので
0.5μm〜8μmまでの粒径の粉末が混入している。
That is, in the above-mentioned method of reducing copper carbonate with hydrazine, the copper powder agglomerates during precipitation, resulting in an irregular shape.
Further, the method of reducing copper oxide in an aqueous medium containing a protective colloid can prevent aggregation of copper powder to some extent by the protective colloid, but is not satisfactory.
In the experiments conducted by the present inventors, when a powder having an average particle size of 1.5 μm was produced by this method, a powder having a particle size in the range of 0.7 μm to 8 μm was obtained. Further, a problem with this method is that if a protective colloid, that is, an organic compound such as gum arabic remains in the copper powder, the firing atmosphere is deteriorated during firing of the thick film conductor, which is not preferable for forming a thick film. Further, in the method of reducing an aqueous solution of copper sulfate with hydrazine in the presence of a surfactant, copper is deposited from a water-soluble copper compound, so that the grain size at the time of deposition varies, for example, an average grain size of 2.5 μm so
Powder with a particle size of 0.5 μm to 8 μm is mixed.

〔本発明が解決しようとする問題点〕[Problems to be Solved by the Present Invention]

本発明は、まず製造コストの有利性から水溶液中で銅化
合物を還元する製造方法であって、反応時間によって粒
形が影響されることなく短時間でも単分散した球状銅微
粉末が得られ、さらに粒度分布巾が狭く、かつ粒度もあ
る程度自由に変えられる銅微粉末の製造方法を種々研究
した結果、酸化銅をあらかじめシランカップリング剤で
表面処理してヒドラジンを含む水溶液で還元すれば解決
することを見出し本発明を完成したものである。
The present invention is a production method of reducing a copper compound in an aqueous solution from the advantage of production cost, to obtain spherical copper fine powder monodispersed even in a short time without affecting the particle shape by the reaction time, Furthermore, as a result of various researches on a method for producing a fine copper powder having a narrow particle size distribution range and a particle size that can be freely changed to a certain extent, the problem can be solved by pre-treating copper oxide with a silane coupling agent and reducing it with an aqueous solution containing hydrazine. The inventors have found that and completed the present invention.

〔問題点を解決するための手段〕[Means for solving problems]

即ち、本発明は、酸化銅粉末の表面をシランカップリン
グ剤で被覆した後、該酸化銅粉末をヒドラジンにより還
元することを特徴とする銅微粉末の製造方法である。
That is, the present invention is a method for producing a fine copper powder, which comprises coating the surface of a copper oxide powder with a silane coupling agent and then reducing the copper oxide powder with hydrazine.

〔作用〕[Action]

本発明の出発原料の銅化合物は酸化銅であることが必要
であり、酸化銅としては酸化第一銅、酸化第二銅のいず
れも使用でき、ほとんど同じ結果を与える。
The starting copper compound of the present invention must be copper oxide, and as the copper oxide, either cuprous oxide or cupric oxide can be used, and almost the same results are obtained.

酸化銅以外の硫酸銅、硝酸銅、酢酸銅などの銅塩を出発
原料とすると、球状でない銅微粉末が多く析出しよくな
い。また、水酸化銅、炭化銅を出発原料とすると銅塩を
用いたものより球状化するが、酸化銅を用いた場合より
も不規則状粉を多く含み粒度分布巾も広いものとなりよ
くない。
If a copper salt other than copper oxide, such as copper sulfate, copper nitrate, or copper acetate, is used as a starting material, a large amount of non-spherical fine copper powder is deposited, which is not good. Further, when copper hydroxide or copper carbide is used as a starting material, it is more spheroidized than that using a copper salt, but it is not good because it contains a larger amount of irregular powder and has a wider particle size distribution than when copper oxide is used.

粒度分布巾の狭い球状銅微粉末を製造するためには出発
原料として酸化銅を用いる必要があるが、さらに酸化銅
を用いると銅微粉末の粒度(平均粒径とも言う)もある
程度自由に変えることができる。すなわち酸化銅の粉末
の粒度と析出する銅微粉末の粒度はある程度相関性があ
り、酸化銅の粉末粒度が大きいと銅微粉末も大きくな
り、酸化銅の粉末粒度を小さくすると銅微粉末も小さく
なる。
In order to produce spherical copper fine powder with a narrow particle size distribution, it is necessary to use copper oxide as a starting material, but if copper oxide is further used, the particle size of copper fine powder (also called average particle size) can be changed to some extent. be able to. That is, there is a certain degree of correlation between the particle size of the copper oxide powder and the particle size of the precipitated copper fine powder.If the copper oxide powder particle size is large, the copper fine powder also becomes large, and if the copper oxide powder particle size is made small, the copper fine powder also becomes small. Become.

さらに、酸化銅は他の銅化合物に比べ化合物中の銅含有
量が大であり、銅粉を析出する原料としては安価である
特徴も有する。
Further, copper oxide has a large copper content in the compound as compared with other copper compounds, and is also inexpensive as a raw material for depositing copper powder.

本発明では、酸化銅粉末の表面をシランカップリング剤
で被覆する工程を経るが、この工程を経ることにより、
酸化銅の粉末粒度を大きくしても粗大凝集物がなく、ま
た小さい酸化銅の粉末を用いても微細なコロイド状とな
らず、粒度の揃った銅微粉末が得られる。
In the present invention, through the step of coating the surface of the copper oxide powder with a silane coupling agent, by going through this step,
Even if the copper oxide powder particle size is increased, no coarse agglomerates are present, and even if a small copper oxide powder is used, it does not form a fine colloidal form, and a copper fine powder having a uniform particle size can be obtained.

本発明でのシランカップリング剤とは、有機ケイ素化合
物で化学構造式は一般式YRSiX3で表わされるものであ
る。ここでYは有機官能聞でビニル基、アミノ基などで
ある。RはアルキルグループでXで加水分解基でメトキ
シ基、エトキシ基などである。電子回路の厚膜導体を形
成する銅微粉末を製造するために用いるシランカップリ
ング剤としては化学構造上S,Clを含まないもので、水と
の反応が激しくないものが好ましい。
The silane coupling agent in the present invention is an organosilicon compound and has a chemical structural formula represented by the general formula YRSiX 3 . Here, Y is an organic functional group such as a vinyl group or an amino group. R is an alkyl group and X is a hydrolyzable group such as methoxy group and ethoxy group. The silane coupling agent used for producing the fine copper powder forming the thick film conductor of the electronic circuit is preferably one which does not contain S and Cl in its chemical structure and does not react violently with water.

加水分解基でクロル基を有するものは水と激しく反応し
良くない。
A hydrolyzable group having a chloro group reacts violently with water and is not good.

シランカップリング剤としては、 Vinyl−tris(β−methovyethexy)silane. γ−Glycidoxypropyltrimethoxysilane. γ−Aminopropyltriethoxysilane. N−β−(Aminoethyl)−γ−aminopropyl trimethoxy
silane. γ−Ureidopropyltriethoxysilane.などが適する。シラ
ンカップリング剤の量は酸化銅に対して重量で0.5wt%
から効果があり、20wt%までが適量であり、これ以上の
添加は効果も少なく経済的でない。
The silane coupling agent is vinyl-tris (β-methovyethexy) silane. Γ-Glycidoxypropyltrimethoxysilane. Γ-Aminopropyltriethoxysilane. N-β- (Aminoethyl) -γ-aminopropyl trimethoxy.
silane. γ-Ureidopropyltriethoxysilane. and the like are suitable. The amount of silane coupling agent is 0.5 wt% by weight with respect to copper oxide
There is an effect, and up to 20 wt% is an appropriate amount, and addition of more than this is not effective and is not economical.

酸化銅をシランカップリング剤で被覆する方法は、酸化
銅にシランカップリング剤を直接又はシランカップリン
グ剤の水溶液あるいはアルコール溶液を加え、攪拌混合
あるいは粉砕すればよい。
As a method of coating copper oxide with a silane coupling agent, the silane coupling agent may be directly added to copper oxide or an aqueous solution or alcohol solution of the silane coupling agent may be added, followed by stirring, mixing or pulverizing.

シランカップリング剤を水溶液あるいはアルコール溶液
にして使用すると、酸化銅粉末の表面を早く均一に被覆
することができる。しかし水あるいはアルコール溶液中
のシランカップリング剤の濃度が少ないとシランカップ
リング剤の効果が少なくなるため、水あるいはアルコー
ル溶液にする場合、20wt%以上シランカップリング剤を
加えるのが好ましい。
When the silane coupling agent is used as an aqueous solution or an alcohol solution, the surface of the copper oxide powder can be quickly and uniformly coated. However, if the concentration of the silane coupling agent in the water or alcohol solution is low, the effect of the silane coupling agent decreases. Therefore, when making the water or alcohol solution, it is preferable to add 20 wt% or more of the silane coupling agent.

攪拌混合の場合の混合機としては、通常のミキサー、ニ
ーダなどが使用できる。粉砕しながら行う場合は、ボー
ルミル、アトライター、振動ミルなどボールを粉砕媒体
とする、粉砕機を用いると効率よく粉砕、被覆処理をす
ることができる。
As a mixer in the case of stirring and mixing, an ordinary mixer, kneader or the like can be used. When the crushing is performed while crushing, a ball mill, an attritor, a vibration mill, or the like is used as a crushing medium. If a crusher is used, the crushing and coating treatment can be efficiently performed.

本発明において粉砕しながら酸化銅表面にシランカップ
リング剤の被覆を形成することは、粒度の小さい銅微粉
末を製造する場合に重要である。酸化銅の粉末が小さく
なると均一にシランカップリング剤の被覆を形成するこ
とが難しくなり、本発明の効果が十分得られない場合が
ある。特に、小さい酸化銅の粉末を用いて小さく銅微粉
末を得ようとする場合は、大きい酸化銅にシランカップ
リング剤を加え、粉砕しながら均一に被覆処理した小さ
い酸化銅の粉末にしたものを用いる方が粒度の揃った均
一な球状銅微粉末が容易に得られるよい方法である。
In the present invention, forming a coating of a silane coupling agent on the surface of copper oxide while crushing is important in producing fine copper powder having a small particle size. When the copper oxide powder becomes small, it becomes difficult to uniformly form the coating of the silane coupling agent, and the effect of the present invention may not be sufficiently obtained. In particular, when trying to obtain a small copper fine powder using a small copper oxide powder, a silane coupling agent is added to a large copper oxide, and a small copper oxide powder uniformly coated while being crushed is used. It is a good method to easily obtain a uniform spherical copper fine powder having a uniform particle size.

本発明に用いる還元剤はヒドラジン及びヒドラジン水化
物が適し、塩酸ヒドラジン、硫酸ヒドラジンなどのヒド
ラジン化合物も使用できるが、洗浄に問題があり、好ま
しくない。
As the reducing agent used in the present invention, hydrazine and hydrazine hydrate are suitable, and hydrazine compounds such as hydrazine hydrochloride and hydrazine sulfate can also be used, but they are not preferred because of problems in washing.

ヒドラジン以外のの還元剤としてホルムアルデヒド、ブ
ドウ糖、次亜リン酸、水素化ホウ素ナトリウムなどがあ
るが、還元力が弱く酸化銅を金属銅に還元出来なかった
り、例え還元析出しても粒度分布の広い不規則形状の銅
粉しか得られない。還元剤としてのヒドラジンの量は水
溶液の量とも関係するが、基本的には酸化銅の量によっ
て決定される。酸化銅に対するヒドラジン量は重量で10
wt%から還元反応が認められるが50wt%以上加えた方が
早く反応が進み短時間に反応が終了する。なお、ヒドラ
ジン量は多く加えるほど早く反応が進むが200wt%以上
加えても同じとなり経済的でない。
Other reducing agents besides hydrazine include formaldehyde, glucose, hypophosphorous acid, sodium borohydride, etc., but the reducing power is weak and copper oxide cannot be reduced to metallic copper, or even if it is reduced and precipitated, the particle size distribution is wide. Only irregularly shaped copper powder can be obtained. The amount of hydrazine as a reducing agent is also related to the amount of aqueous solution, but it is basically determined by the amount of copper oxide. The amount of hydrazine to copper oxide is 10 by weight
A reduction reaction is observed from wt%, but the reaction proceeds faster and the reaction ends in a short time when 50 wt% or more is added. It should be noted that the reaction proceeds faster as the amount of hydrazine added increases, but it becomes the same even if 200 wt% or more is added, which is not economical.

シランカップリング剤で被覆処理した酸化銅を分散、懸
濁させる水溶液の量は酸化銅がうまく攪拌できる量であ
ればよく、酸化銅容積の約50倍程度が好ましいが、攪拌
操作を行わなかった場合には、特に限定されるものでは
ない。
The amount of the aqueous solution for dispersing and suspending the copper oxide coated with the silane coupling agent should be an amount that allows the copper oxide to be stirred well, and is preferably about 50 times the volume of the copper oxide, but the stirring operation was not performed. The case is not particularly limited.

還元反応は常温でも認められるが反応速度が遅く反応が
終了するまで長時間必要なため60℃以上に加温した方が
よい。
The reduction reaction can be observed at room temperature, but the reaction rate is slow and it takes a long time to complete the reaction, so it is better to heat it to 60 ° C or higher.

短時間に銅微粉末を得るためにはヒドラジン量を多く
し、60℃以上に加温する方法がよく、これによって得ら
れる銅微粉末は不規則形状になることはない。
In order to obtain the copper fine powder in a short time, it is preferable to increase the amount of hydrazine and heat it to 60 ° C. or higher, and the copper fine powder obtained by this does not have an irregular shape.

なお、本発明を実施するために使用する反応槽は、攪拌
装置のついたものが好ましく、反応容器は不純物溶出防
止のためガラス製が好ましいが、ステンレス製あるいは
テフロンなどでコーティングした容器でもよい。
The reaction vessel used for carrying out the present invention is preferably equipped with a stirrer, and the reaction vessel is preferably made of glass to prevent elution of impurities, but may be made of stainless steel or a vessel coated with Teflon.

本発明の方法における銅微粉末の還元過程を説明すれ
ば、シランカップリング剤で被覆処理した酸化銅を水溶
液に分散、懸濁し、攪拌しながらヒドラジンを添加し、
還元反応温度まで徐々に加温すると黒色あるいは赤褐色
の懸濁液がしだいに赤色となり、銅色に変化する。これ
を放置すると下部に銅微粉末が沈降し、上部は無色透明
の液となる。沈降した銅微粉末を取り出し、アルコール
あるいはアセトンなどの有機溶剤で洗浄し、通常の方法
で乾燥すると粒度の揃った10μm以下の単分散した球状
銅微粉末が得られる。
Explaining the reduction process of the copper fine powder in the method of the present invention, copper oxide coated with a silane coupling agent is dispersed in an aqueous solution, suspended, and hydrazine is added with stirring,
When gradually heated to the reduction reaction temperature, the black or reddish brown suspension gradually becomes red and changes to copper color. When this is left to stand, fine copper powder settles in the lower part, and the upper part becomes a colorless and transparent liquid. The precipitated fine copper powder is taken out, washed with an organic solvent such as alcohol or acetone, and dried by an ordinary method to obtain monodispersed spherical fine copper powder having a particle size of 10 μm or less.

シランカップリング剤で被覆処理した酸化銅を用いると
反応速度を早くしても単分散した球状銅微粉末が得られ
ることについては十分解明されていないが、次のように
考えられる。
It has not been fully clarified that monodispersed spherical fine copper powder can be obtained even if the reaction rate is increased by using copper oxide coated with a silane coupling agent, but it is considered as follows.

酸化銅粉末の表面に被覆したシランカップリング剤は加
水分解を受けてシラノールとなり、酸化銅表面にシロキ
サン結合を形成する。
The silane coupling agent coated on the surface of the copper oxide powder is hydrolyzed to silanol and forms a siloxane bond on the surface of the copper oxide.

いままで単分散した球状銅微粉末を得るためには銅イオ
ン濃度を低くして、しかもゆっくり反応を行えば良いと
言われていた。つまり銅イオン濃度を高くしたり、反応
速度を速くすると一度に多くの銅の核が生成し、核同士
が成長段階で凝集し、結果的に不規則形状の銅微粉末と
なる。
Up to now, it has been said that in order to obtain monodisperse spherical fine copper powder, the copper ion concentration should be lowered and the reaction should be carried out slowly. That is, when the copper ion concentration is increased or the reaction rate is increased, many copper nuclei are generated at one time, and the nuclei agglomerate with each other at the growth stage, resulting in irregularly shaped fine copper powder.

酸化銅表面に形成したシロキサン結合は水溶液の接近を
ある程度防止し、還元剤の存在下においても水溶液中の
銅イオン濃度を一定以上にならないように制御している
と考えられる。
It is considered that the siloxane bond formed on the copper oxide surface prevents the aqueous solution from approaching to some extent, and controls the copper ion concentration in the aqueous solution so as not to exceed a certain level even in the presence of the reducing agent.

つまり反応初期から反応終了近くまで水溶液中の銅イオ
濃度を制御し、一度に多くの核が生成し凝集することを
防止していると考えられる。
In other words, it is considered that the concentration of copper ion in the aqueous solution is controlled from the early stage of the reaction to near the end of the reaction to prevent many nuclei from forming and aggregating at once.

核の成長は小さいものほど速く大きくなり、大きいもの
ほど成長はゆっくりであることから、核の生成が反応初
期から反応終了近くまで連続して続いても得られる銅微
粉末の直径は非常に均一で揃ったものとなる。
The smaller the nucleus grows, the faster it grows, and the larger the nucleus grows slower.Therefore, the diameter of the copper fine powder obtained is very uniform even if the nucleation continues continuously from the initial reaction to the end of the reaction. It will be a complete set.

シランカップリング剤は還元析出した銅の微粒子同士が
くっつきあうことを防止するのではなく、反応溶液中の
銅イオン濃度を制御して単分散した球状銅微粉末を得る
効果が有ると考えられる。
It is considered that the silane coupling agent does not prevent the fine particles of copper reduced and precipitated from sticking to each other, but has the effect of controlling the concentration of copper ions in the reaction solution to obtain monodispersed spherical copper fine powder.

〔実施例〕〔Example〕

以下に、本発明の実施例を示す。 Examples of the present invention will be shown below.

実施例(1) 平均粒径10μmの酸化第二銅50gにシランカップリング
剤Vinyl−tris(β−methoxyethoxy)silaneを5g加え、
ミキサーで10分間攪拌混合し、しかる後に全量を500cc
の水溶液に分散、懸濁し、次いで攪拌しながらヒドラジ
ン1水和物を50g添加し、15分後に70℃になるように徐
々に加温した。懸濁液を70℃,15分間保持すると反応が
終了し、銅微粉末が析出した。
Example (1) To 50 g of cupric oxide having an average particle size of 10 μm, 5 g of silane coupling agent Vinyl-tris (β-methoxyethoxy) silane was added,
Stir and mix with a mixer for 10 minutes, then add 500cc
50 g of hydrazine monohydrate was added while stirring and dispersing in an aqueous solution of, and gradually warmed to 70 ° C. after 15 minutes. When the suspension was kept at 70 ° C for 15 minutes, the reaction was completed and copper fine powder was deposited.

アスピレータでろ過後、アセトンで洗浄し、その後20℃
で自然乾燥した。
After filtering with an aspirator, washing with acetone, then at 20 ℃
And dried naturally.

39gの銅微粉末が得られ、電子顕微鏡にて粉末の粒度、
粒形を見ると1μm〜1.5μmの揃った凝集のない単分
散した球状粉末であった。不純物として酸素量を測定し
た結果、0.12%と非常に少なくSi量も0.003%と極微量
であった。
39 g of copper fine powder was obtained, the particle size of the powder under an electron microscope,
As for the grain shape, it was a monodispersed spherical powder having a uniform size of 1 μm to 1.5 μm and no aggregation. As a result of measuring the amount of oxygen as an impurity, it was very small at 0.12% and the amount of Si was also extremely small at 0.003%.

実施例(2) 実施例(1)と同じ酸化第二銅を用い、酸化第二銅を表
面処理するシランカップリング剤のみγ−Glycidoxypro
pyltrimethoxysilaneに変えた以外は実施例(1)と同
様にして銅微粉末を得た。
Example (2) Using the same cupric oxide as in Example (1), only a silane coupling agent for surface-treating cupric oxide was used. Γ-Glycidoxypro
Fine copper powder was obtained in the same manner as in Example (1) except that pyltrimethoxysilane was used instead.

39gの銅微粉末が得られ、電子顕微鏡にて粉末の粒度、
粒形を見ると1μm〜1.5μmの揃った凝集のない単分
散した球状粉末であり、酸素量も0.13%と非常に少ない
ものであった。
39 g of copper fine powder was obtained, the particle size of the powder under an electron microscope,
As for the grain shape, it was a monodispersed spherical powder having a uniform particle size of 1 μm to 1.5 μm and no aggregation, and the oxygen content was 0.13%, which was very small.

実施例(3) 実施例(1)と同じ酸化第二銅を用い、酸化第二銅を表
面処理するシランカップリング剤のみγ−Aminopropylt
riethoxysilaneに変えた以外は実施例(1)と同様にし
て銅微粉末を得た。
Example (3) Using the same cupric oxide as in Example (1), only the silane coupling agent for surface-treating cupric oxide was γ-Aminopropylt.
Fine copper powder was obtained in the same manner as in Example (1) except that riethoxysilane was used.

39gの銅微粉末が得られ、電子顕微鏡にて粉末の粒度、
粒形を見ると1μm〜1.5μmの揃った凝集のない単分
散した球状粉末であり、酸素量も0.14%と非常に少ない
ものであった。
39 g of copper fine powder was obtained, the particle size of the powder under an electron microscope,
As for the grain shape, the particles were 1 μm to 1.5 μm, which were uniform and non-aggregated monodispersed spherical powders, and the oxygen content was 0.14%, which was very small.

実施例(4) 実施例(1)と同じ酸化第二銅を用い、酸化第二銅を表
面処理するシランカップリング剤のみN−β−(Aminoe
thyl)−γ−aminopropyltrimethoyxsilaneに変えた以
外は実施例(1)と同様にして銅微粉末を得た。
Example (4) The same cupric oxide as in Example (1) was used, and only the silane coupling agent for surface-treating cupric oxide was N-β- (Aminoe
Fine copper powder was obtained in the same manner as in Example (1) except that thyl) -γ-aminopropyltrimethoyxsilane was used.

39gの銅微粉末が得られ、電子顕微鏡にて粉末の粒度、
粒形を見ると1μm〜1.5μmの揃った凝集のない単分
散した球状粉末であり、酸素量も0.13%と非常に少ない
ものであった。
39 g of copper fine powder was obtained, the particle size of the powder under an electron microscope,
As for the grain shape, it was a monodispersed spherical powder having a uniform particle size of 1 μm to 1.5 μm and no aggregation, and the oxygen content was 0.13%, which was very small.

実施例(5) 実施例(1)と同じ酸化第二銅を用い、酸化第二銅を表
面処理するシランカップリング剤のみγ−Ureidopropyl
triethoxysilaneに変えた以外は実施例(1)と同様に
して銅微粉末を得た。
Example (5) Using the same cupric oxide as in Example (1), only the silane coupling agent for surface-treating cupric oxide is γ-Ureidopropyl.
Fine copper powder was obtained in the same manner as in Example (1) except that triethoxysilane was used.

39gの銅微粉末が得られ、電子顕微鏡にて粉末の粒度、
粒形を見ると1μm〜1.5μmの揃った凝集のない単分
散した球状粉末であり、酸素量も0.14%と非常に少ない
ものであった。
39 g of copper fine powder was obtained, the particle size of the powder under an electron microscope,
As for the grain shape, the particles were 1 μm to 1.5 μm, which were uniform and non-aggregated monodispersed spherical powders, and the oxygen content was 0.14%, which was very small.

実施例(6) 実施例(1)と同じ平均粒径10μmの酸化第二銅100gを
用い、シランカップリング剤γ−Aminopropyltriethoxy
silaneを0.5g加え、5mmφのステンレスボールを粉砕媒
体としたアトライダーで30分間粉砕した、粉砕後の酸化
第二銅の平均粒径は5μmであった。
Example (6) Using 100 g of cupric oxide having the same average particle size of 10 μm as in Example (1), a silane coupling agent γ-Aminopropyltriethoxy was used.
0.5 g of silane was added, and the particles were crushed for 30 minutes with an attritor using a 5 mmφ stainless ball as a crushing medium. The average particle size of the crushed cupric oxide was 5 μm.

このように粉砕しながら表面処理した平均粒径5μmの
酸化第二銅50gを500ccの水溶液に分散、懸濁し、次いで
攪拌しながらヒドラジン1水和物を50g添加し、15分後
に70℃になるように徐々に加温した。懸濁液を70℃,15
分間保持すると反応が終了し、銅微粉末が析出した。ア
スピレータでろ過後、アセトンで洗浄し、その後20℃で
自然乾燥した。
In this way, 50 g of cupric oxide having an average particle size of 5 μm, which has been surface-treated while being pulverized, is dispersed and suspended in 500 cc of an aqueous solution, and then 50 g of hydrazine monohydrate is added with stirring. After 15 minutes, the temperature reaches 70 ° C. It was gradually heated. Suspension at 70 ℃, 15
After holding for a minute, the reaction was completed and copper fine powder was deposited. It was filtered with an aspirator, washed with acetone, and then naturally dried at 20 ° C.

39gの銅微粉末が得られ、電子顕微鏡にて粉末の粒度、
粒形を見ると0.5μm〜0.8μmの揃った凝集のない単分
散した球状粉末であった。不純物として酸素量を測定し
た結果0.19%と非常に少ないものであった。
39 g of copper fine powder was obtained, the particle size of the powder under an electron microscope,
As for the grain shape, it was a monodispersed spherical powder having a uniform particle size of 0.5 μm to 0.8 μm and no aggregation. As a result of measuring the amount of oxygen as an impurity, it was a very small amount of 0.19%.

実施例(7) 実施例(1)と同じ平均粒径10μmの酸化第二銅100gを
用い、シランカップリング剤γ−Aminopropyltriethoxy
silaneを5g加え、5mmφのステンレスボールを粉砕媒体
としたアトライターで180分間粉砕した。粉砕後の酸化
第二銅の平均粒径は0.5μmであった。
Example (7) Using 100 g of cupric oxide having the same average particle size of 10 μm as in Example (1), a silane coupling agent γ-Aminopropyltriethoxy was used.
5 g of silane was added and crushed for 180 minutes with an attritor using a 5 mmφ stainless ball as a crushing medium. The average particle size of the cupric oxide after pulverization was 0.5 μm.

このように粉砕しながら表面処理した平均粒径0.5μm
の酸化第二銅50gを500ccの水溶液に分散、懸濁し、次い
で攪拌しながらビドラジン1水和物を50g添加し、20分
後に60℃になるように徐々に加温した。懸濁液を60℃,2
0分間保持すると反応が終了し、銅微粉末が析出した。
アスピレータでろ過後、アセトンで洗浄し、その後20℃
で自然乾燥した。
An average particle size of 0.5 μm, which was surface-treated while being crushed in this way
50 g of cupric oxide was dispersed and suspended in a 500 cc aqueous solution, and then 50 g of vidrazine monohydrate was added with stirring, and after 20 minutes, the mixture was gradually heated to 60 ° C. Suspension at 60 ℃, 2
After holding for 0 minutes, the reaction was completed and copper fine powder was deposited.
After filtering with an aspirator, washing with acetone, then at 20 ℃
And dried naturally.

37gの銅微粉末が得られ、電子顕微鏡にて粉末の粒度、
粒形を見ると0.3μm〜0.5μmの揃った凝集のない単分
散した球状粉末であった。不純物として酸素量を測定し
た結果0.19%と非常に少ないものであった。
37 g of copper fine powder was obtained, the particle size of the powder under an electron microscope,
As for the grain shape, it was a monodispersed spherical powder having a uniform size of 0.3 μm to 0.5 μm and no aggregation. As a result of measuring the amount of oxygen as an impurity, it was a very small amount of 0.19%.

実施例(8) 平均粒径10μmの酸化第一銅50gに、シランカップリン
グ剤Vinyl−tris(β−methoxyethoxy)silaneを5g加
え、ミキサーで10分間攪拌混合し、しかる後に全量500c
cの水溶液に分散、懸濁し、次いで攪拌しながらビドラ
ジン1水和物を50g添加し、15分後に60℃になるように
徐々に加温した。懸濁液を60℃,15分間保持すると反応
が終了し、銅微粉末が析出した。アスピレータでろ過
後、アセトンで洗浄し、その後20℃で自然乾燥した。
Example (8) 5 g of silane coupling agent Vinyl-tris (β-methoxyethoxy) silane was added to 50 g of cuprous oxide having an average particle size of 10 μm, and the mixture was stirred and mixed with a mixer for 10 minutes.
After dispersing and suspending in an aqueous solution of c, 50 g of vidrazine monohydrate was added with stirring, and after 15 minutes, the mixture was gradually heated to 60 ° C. When the suspension was kept at 60 ° C for 15 minutes, the reaction was completed and copper fine powder was deposited. It was filtered with an aspirator, washed with acetone, and then naturally dried at 20 ° C.

44gの銅微粉末が得られ、電子顕微鏡にて粉末の粒度、
粒形を見ると2μm〜2.5μmの揃った凝集のない単分
散した球状粉末であった。不純物として酸素量を測定し
た結果0.11%と非常に少ないものであった。
44 g of copper fine powder was obtained, the particle size of the powder under an electron microscope,
As for the grain shape, it was a monodispersed spherical powder having a uniform size of 2 μm to 2.5 μm and no aggregation. As a result of measuring the amount of oxygen as an impurity, it was a very small amount of 0.11%.

実施例(9) 平均粒径10μmの酸化第一銅50gに、シランカップリン
グ剤γ−Aminopropyltriethoxysilaneを5g加え、ミキサ
ーで10分間攪拌混合し、しかる後に全量500ccの水溶液
に分散、懸濁し、次いで攪拌しながらビドラジン1水和
物を25g添加し、15分後に60℃になるように徐々に加温
した。懸濁液が40℃以上になると徐々に反応が開始し、
60℃になると明らかに銅の析出が認められ、30分後に反
応が終了し、銅微粉末が析出した。アスピレータでろ過
後、アセトンで洗浄し、その後20℃で自然乾燥した。
Example (9) To 50 g of cuprous oxide having an average particle size of 10 μm, 5 g of a silane coupling agent γ-Aminopropyltriethoxysilane was added and mixed by stirring for 10 minutes with a mixer, and then dispersed and suspended in an aqueous solution of 500 cc in total amount and then stirred. While adding 25 g of vidrazine monohydrate, 15 minutes later, the mixture was gradually heated to 60 ° C. The reaction starts gradually when the temperature of the suspension rises above 40 ° C,
Precipitation of copper was clearly observed at 60 ° C, and the reaction was completed after 30 minutes, and fine copper powder was precipitated. It was filtered with an aspirator, washed with acetone, and then naturally dried at 20 ° C.

44gの銅微粉末が得られ、電子顕微鏡にて粉末の粒度、
粒形を見ると4μm〜5μmの揃った凝集のない単分散
した球状粉末であった。不純物として酸素量を測定した
結果0.10%と非常に少ないものであった。
44 g of copper fine powder was obtained, the particle size of the powder under an electron microscope,
As for the grain shape, it was a monodispersed spherical powder having a uniform size of 4 μm to 5 μm and no aggregation. As a result of measuring the amount of oxygen as an impurity, it was a very small amount of 0.10%.

実施例(10) 平均粒径10μmの酸化第二銅50gにシランカップリング
剤Vinyl−tris(β−methoxyethoxy)silane2gと水3gの
混合溶液を加え、ミキサーで10分間攪拌混合し、しかる
後に全量を500ccの水溶液に分散、懸濁し、次いで攪拌
しながらヒドラジン1水和物を50g添加し、15分後に70
℃になるように徐々に加温した。懸濁液を70℃,15分間
保持すると反応が終了し、銅微粉末が析出した。
Example (10) To 50 g of cupric oxide having an average particle size of 10 μm, a mixed solution of silane coupling agent Vinyl-tris (β-methoxyethoxy) silane 2 g and water 3 g was added, and mixed by stirring for 10 minutes with a mixer, and then the whole amount was added. Disperse and suspend in 500 cc of aqueous solution, then add 50 g of hydrazine monohydrate with stirring, and after 15 minutes, add 70
The mixture was gradually warmed up to ℃. When the suspension was kept at 70 ° C for 15 minutes, the reaction was completed and copper fine powder was deposited.

アスピレータでろ過後、アセトンで洗浄し、その後20℃
で自然乾燥した。
After filtering with an aspirator, washing with acetone, then at 20 ℃
And dried naturally.

39gの銅微粉末が得られ、電子顕微鏡にて粉末の粒度、
粒形を見ると1μm〜1.5μmの揃った凝集のない単分
散した球状粉末であった。不純物として酸素量を測定し
た結果、0.13%と非常に少ないものであった。
39 g of copper fine powder was obtained, the particle size of the powder under an electron microscope,
As for the grain shape, it was a monodispersed spherical powder having a uniform size of 1 μm to 1.5 μm and no aggregation. As a result of measuring the amount of oxygen as an impurity, it was a very small amount of 0.13%.

実施例(10) 実施例(10)と同じ酸化第二銅を用い、酸化第二銅を表
面処理するシランカップリング剤のみγ−Glycidoxypro
pyltrimethoxysilane 2gとエタノール3gの混合溶液に変
えた以外は実施例(10)と同様にして銅微粉末を得た。
Example (10) The same cupric oxide as in Example (10) was used, and only the silane coupling agent for surface-treating cupric oxide was γ-Glycidoxypro.
Fine copper powder was obtained in the same manner as in Example (10) except that a mixed solution of 2 g of pyltrimethoxysilane and 3 g of ethanol was used.

39gの銅微粉末が得られ、電子顕微鏡にて粉末の粒度、
粒形を見ると1μm〜1.5μmの揃った凝集のない単分
散した球状粉末であり、酸素量も0.14%と非常に少ない
ものであった。
39 g of copper fine powder was obtained, the particle size of the powder under an electron microscope,
As for the grain shape, the particles were 1 μm to 1.5 μm, which were uniform and non-aggregated monodispersed spherical powders, and the oxygen content was 0.14%, which was very small.

実施例(12) 実施例(10)と同じ酸化第二銅を用い、酸化第二銅を表
面処理するシランカップリング剤のみγ−Aminopropylt
riethoxysilane 2gとエチレングリコール3gの混合溶液
に変えた以外は実施例(10)と同様にして銅微粉末を得
た。
Example (12) Using the same cupric oxide as in Example (10), only a silane coupling agent for surface-treating cupric oxide was used. Γ-Aminopropylt
Fine copper powder was obtained in the same manner as in Example (10) except that the mixed solution of 2 g of riethoxysilane and 3 g of ethylene glycol was used.

39gの銅微粉末が得られ、電子顕微鏡にて粉末の粒度、
粒形を見ると1μm〜1.5μmの揃った凝集のない単分
散した球状粉末であり、酸素量も0.15%と非常に少ない
ものであった。
39 g of copper fine powder was obtained, the particle size of the powder under an electron microscope,
As for the grain shape, it was a monodispersed spherical powder having a uniform size of 1 μm to 1.5 μm and no aggregation, and the oxygen content was 0.15%, which was very small.

〔発明の効果〕〔The invention's effect〕

このように本発明によれば、粒度分布巾の狭い、単分散
した球状銅微粉末を短時間にしかも安価に製造すること
ができる。
As described above, according to the present invention, monodispersed spherical copper fine powder having a narrow particle size distribution width can be produced in a short time and at low cost.

本発明によって得られる球状銅微粉末は、より緻密な厚
膜導体を形成する銅塗料に特に適し、また高純度である
ことから、各種触媒用としても有用なものである。
The spherical copper fine powder obtained by the present invention is particularly suitable for a copper coating which forms a denser thick-film conductor, and has high purity, so that it is also useful for various catalysts.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】酸化銅粉末の表面をシランカップリング剤
で被覆した後、該酸化銅粉末をヒドラジンにより還元す
ることを特徴とする銅微粉末の製造方法。
1. A method for producing a fine copper powder, which comprises coating the surface of a copper oxide powder with a silane coupling agent and then reducing the copper oxide powder with hydrazine.
【請求項2】酸化銅粉末とシランカップリング剤又はシ
ランカップリング剤の水溶液あるいはアルコール溶液を
混合機又は粉砕機に装入し、混合又は粉砕操作を行うこ
とにより酸化銅粉末の表面をシランカップリング剤で被
覆することを特徴とする特許請求の範囲第1項に記載の
銅微粉末の製造方法。
2. The surface of the copper oxide powder is charged into a silane cup by charging a copper oxide powder and a silane coupling agent or an aqueous solution or an alcohol solution of the silane coupling agent into a mixer or a pulverizer and performing a mixing or pulverizing operation. The method for producing a fine copper powder according to claim 1, characterized in that the fine copper powder is coated with a ring agent.
【請求項3】シランカップリング剤で被覆された酸化銅
粉末を水中に分散した状態で、攪拌しながらヒドラジン
又はヒドラジン水溶液を添加することにより該酸化銅粉
末を還元することを特徴とする特許請求の範囲第1項も
しくは第2項に記載の銅微粉末の製造方法。
3. A copper oxide powder coated with a silane coupling agent is dispersed in water, and the hydrazine or hydrazine aqueous solution is added to the copper oxide powder while stirring to reduce the copper oxide powder. 2. The method for producing a fine copper powder according to item 1 or 2.
【請求項4】シランカップリング剤で被覆された酸化銅
粉末を水中に分散した状態で、攪拌しながらヒドラジン
又はヒドラジン水溶液を添加し、次いでこの混合懸濁液
を加熱することにより該酸化銅粉末を還元することを特
徴とする特許請求の範囲第3項に記載の銅微粉末の製造
方法。
4. A copper oxide powder coated with a silane coupling agent in a state of being dispersed in water, hydrazine or an aqueous solution of hydrazine is added with stirring, and then the mixed suspension is heated to give the copper oxide powder. The method for producing a fine copper powder according to claim 3, wherein the copper fine powder is reduced.
JP63182607A 1988-07-21 1988-07-21 Method for producing fine copper powder Expired - Fee Related JPH0774364B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63182607A JPH0774364B2 (en) 1988-07-21 1988-07-21 Method for producing fine copper powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63182607A JPH0774364B2 (en) 1988-07-21 1988-07-21 Method for producing fine copper powder

Publications (2)

Publication Number Publication Date
JPH0234708A JPH0234708A (en) 1990-02-05
JPH0774364B2 true JPH0774364B2 (en) 1995-08-09

Family

ID=16121247

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63182607A Expired - Fee Related JPH0774364B2 (en) 1988-07-21 1988-07-21 Method for producing fine copper powder

Country Status (1)

Country Link
JP (1) JPH0774364B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006019144A1 (en) * 2004-08-20 2006-02-23 Ishihara Sangyo Kaisha, Ltd. Copper microparticle and process for producing the same

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5925905A (en) * 1982-08-02 1984-02-10 Chisso Corp Production of acicular ferrous ferromagnetic metallic powder
JPS59116303A (en) * 1982-12-22 1984-07-05 Shoei Kagaku Kogyo Kk Manufacture of fine copper powder

Also Published As

Publication number Publication date
JPH0234708A (en) 1990-02-05

Similar Documents

Publication Publication Date Title
JP5451074B2 (en) Core-shell type nanoparticles and method for producing the same
US5707552A (en) Zinc antimonate anhydride and method for producing same
JP2010513718A (en) Method for producing monodisperse and stable nanometallic silver and product obtained by said method
US5906679A (en) Coating compositions employing zinc antimonate anhydride particles
JP2508847B2 (en) Method for producing silver-coated glass flakes with SiO2 coating
JPS59116303A (en) Manufacture of fine copper powder
JP6238440B2 (en) Silica-coated metal nitride particles and method for producing the same
JPH07500379A (en) Method for producing fine silver metal particles
JPH0920903A (en) Production of monodisperse gold grain powder
JPH1121124A (en) Yttria/alumina mixed particulates and its production
JP2016073919A (en) Granule manufacturing method
JPH0774364B2 (en) Method for producing fine copper powder
JPH08176620A (en) Production of silver powder
JPH10265812A (en) Production of superfine silver particle
JPH083605A (en) Production of monodispersive noble metal powder and the same noble metal powder
JPH08503999A (en) Method for producing metallic cobalt powder
JPH0784605B2 (en) Method for producing fine copper powder
JPS5855204B2 (en) Method for producing platinum powder for printing paste
JP3746301B2 (en) Method for producing spherical silica particles
JPS622003B2 (en)
JPS62241827A (en) Production of ferromagnetic fine powder for magnetic recording
JP3888728B2 (en) Method for producing high purity spherical silica
US5766512A (en) Zinc antimonate anhydride and method for producing same
US3846118A (en) Process for making small particles
JP2004084069A (en) Inorganic oxide coated metal powder and its manufacturing method

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees