JPH0234708A - Manufacture of copper fine powder - Google Patents

Manufacture of copper fine powder

Info

Publication number
JPH0234708A
JPH0234708A JP18260788A JP18260788A JPH0234708A JP H0234708 A JPH0234708 A JP H0234708A JP 18260788 A JP18260788 A JP 18260788A JP 18260788 A JP18260788 A JP 18260788A JP H0234708 A JPH0234708 A JP H0234708A
Authority
JP
Japan
Prior art keywords
copper
powder
coupling agent
silane coupling
copper oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP18260788A
Other languages
Japanese (ja)
Other versions
JPH0774364B2 (en
Inventor
Masayoshi Yoshitake
正義 吉武
Toyohiko Sugito
杉戸 豊彦
Shigeru Kito
木藤 茂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fukuda Metal Foil and Powder Co Ltd
Original Assignee
Fukuda Metal Foil and Powder Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fukuda Metal Foil and Powder Co Ltd filed Critical Fukuda Metal Foil and Powder Co Ltd
Priority to JP63182607A priority Critical patent/JPH0774364B2/en
Publication of JPH0234708A publication Critical patent/JPH0234708A/en
Publication of JPH0774364B2 publication Critical patent/JPH0774364B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)

Abstract

PURPOSE:To manufacture spherical shaped copper fine powder having monodisperse and narrow particle size distribution in short time at low cost by reducing copper oxide powder with hydrazine after coating the surface of the copper oxide powder with silane coupling agent. CONSTITUTION:The surface of the copper oxide powder having the prescribed particle size is coated with the silane coupling agent. This coating method is desirable to execute dy charging the copper oxide powder and the silane coupling agent, or water solution or alcohol solution of the silane coupling agent into a mixer or a pulverizing machine, and mixing or pulverizing. Successively, this coated copper oxide powder is reduced with the hydrazine. Then, while dispersing and stirring the above silane coupling agent-coated copper oxide powder in the water, the hydrazine or the hydrazine water solution is added to this and if necessary, this mixed suspending solution is desirable to heat at about 60 deg.C. By this method, the spherical copper fine powder having high purity is obtd. in short time at low cost.

Description

【発明の詳細な説明】 〔産業上の利用分腎] 本発明は、電子回路の厚膜導体を成形するための!Ii
i塗料として、特に有用な粒子が単分散した球状の銅微
粉末の製造方法に関するものである。
[Detailed Description of the Invention] [Industrial Application] The present invention is for forming thick film conductors for electronic circuits! Ii
The present invention relates to a method for producing fine spherical copper powder in which particles are monodispersed, which is particularly useful as an i-coating.

〔従来の技術〕[Conventional technology]

vA塗料は、電子回路の厚膜導体を形成するのに現在使
用されている銀あるいはパラジウム塗料の代替品として
、最近注目され始めている。この銅塗料には通常0.2
μm〜10μmの銅微粉末が用いられているが、塗料を
焼付けたとき緻密な銅の導体膜を得るためには粒子が単
分散した凝集のない、不純物の少ない球状銅微粉末が望
まれている。また、緻密な銅の導体膜を得るため、最密
光てんとなるように、2種〜3種の粒度分布中の狭い粉
末を混合して用いることも行われ、これに用いる銅粉は
、球状であるとともに粒径の揃った単分散した粉末であ
ることが要求される。
vA paints have recently gained attention as an alternative to the silver or palladium paints currently used to form thick film conductors in electronic circuits. This copper paint usually has 0.2
Fine copper powder of μm to 10 μm is used, but in order to obtain a dense copper conductor film when the paint is baked, spherical fine copper powder with monodisperse particles, no agglomeration, and few impurities is desired. There is. In addition, in order to obtain a dense copper conductor film, two to three kinds of narrow powders with a narrow particle size distribution are mixed and used in order to obtain the densest optical fiber, and the copper powder used for this is It is required to be a monodispersed powder that is spherical and has a uniform particle size.

従来、銅微粉末の製造方法としては種々提案されている
が、0.2μm−10μmの粒径の銅粉末を製造できる
方法としては、 ■炭酸銅を含む銅含有溶液とヒドラジンあるいはヒドラ
ジン化合物と混合し、これを加熱することにより銅粉末
を還元析出せしめる方法。(特開昭57−155302
号) ■酸化銅を保護コロイドを含む水性媒体中でヒドラジン
及び/又はヒドラジン化合物で還元する方法。 (特公
昭61−55562号) ■還元剤としてヒドラジンを用いて硫酸銅水溶液を還元
して銅微粒子を製造する方法において、反応溶液中に界
面活性剤を添加することによって単分散した銅微粒子を
得る方法。(特開昭62−27508号、特開昭62〜
40302号、特開昭62−77407号、特開昭62
−77408号) 等がある。しかしながら、これら従来の方法では(a)
粒径が揃っている、(b)単分散している、(C)不純
物が少ない、(d)球状である、の条件を全て満足する
銅粉末は得られない。
Conventionally, various methods for producing fine copper powder have been proposed, but the method for producing copper powder with a particle size of 0.2 μm to 10 μm is: ■ Mixing a copper-containing solution containing copper carbonate with hydrazine or a hydrazine compound. This method is then heated to reduce and precipitate copper powder. (Unexamined Japanese Patent Publication No. 57-155302
No.) ■A method of reducing copper oxide with hydrazine and/or a hydrazine compound in an aqueous medium containing a protective colloid. (Japanese Patent Publication No. 61-55562) ■In the method of producing copper fine particles by reducing an aqueous copper sulfate solution using hydrazine as a reducing agent, monodispersed copper fine particles are obtained by adding a surfactant to the reaction solution. Method. (JP-A-62-27508, JP-A-62-27508)
No. 40302, JP-A-62-77407, JP-A-62
-77408) etc. However, these conventional methods (a)
It is not possible to obtain a copper powder that satisfies all of the following conditions: uniform particle size, (b) monodispersion, (C) low impurities, and (d) spherical shape.

即ち、前記■の炭酸銅をヒドラジンで還元する方法では
、析出中に銅粉が凝集するため形状が不規則となる。ま
た、■の酸化銅を保護コロイドを含む水性媒体中で還元
する方法では、保護コロイドにより銅粉の凝集についで
ある程度防止されるものの満足できるものではない。本
発明者等の実験では、平均粒径1.5μmの粉末をこの
方法で製造した場合、0.7μT11〜8μmの範囲の
粒径を有する粉末が得られる。さらにこの方法で問題と
なるのは保護コロイド、即らアラビアゴム等の有機化合
物が銅粉中に残留すると、厚膜導体の焼成時に焼成雰囲
気を悪くし厚膜形成上好ましくない。
That is, in the method (2) of reducing copper carbonate with hydrazine, the copper powder aggregates during precipitation, resulting in irregular shapes. Further, in the method (2) in which copper oxide is reduced in an aqueous medium containing a protective colloid, the agglomeration of copper powder is prevented to some extent by the protective colloid, but it is not satisfactory. In experiments conducted by the present inventors, when a powder with an average particle size of 1.5 μm is produced by this method, a powder having a particle size in the range of 0.7 μT11 to 8 μm is obtained. A further problem with this method is that if a protective colloid, ie, an organic compound such as gum arabic, remains in the copper powder, it will worsen the firing atmosphere during firing of the thick film conductor, which is undesirable for forming a thick film.

また■の硫酸銅水溶液を界面活性剤の存在下にヒドラジ
ンで還元する方法では水溶性銅化合物から銅を析出させ
るために、析出時の粒径にばらつきを生じ、例えば平均
粒径が2.5μmのもので0.5μm〜8μmまでの粒
径の粉末が混入している。
In addition, in the method (2) in which an aqueous copper sulfate solution is reduced with hydrazine in the presence of a surfactant, copper is precipitated from a water-soluble copper compound, so the particle size during precipitation varies, for example, the average particle size is 2.5 μm. It contains powder with a particle size of 0.5 μm to 8 μm.

〔本発明が解決しようとする問題点〕[Problems to be solved by the present invention]

本発明は、まず製造コストの有利性から水溶液中で銅化
合物を還元する製造方法であって、反応時間によって粒
形が影響させることなく短時間でも単分散した球状銅微
粉末が得られ、さらに粒度分布中が狭く、かつ粒度もあ
る程度自由に変えられる銅微粉末の製造方法を種り研究
した結果、酸化銅をあらかじめ一シランカップリング剤
で表面処理してヒドラジンを含む水溶液で還元すれば解
決することを見出し本発明を完成したものである。
The present invention is a production method in which a copper compound is reduced in an aqueous solution from the viewpoint of production cost advantages, and it is possible to obtain monodispersed spherical fine copper powder even in a short time without affecting the particle shape depending on the reaction time. As a result of conducting research on a method for producing fine copper powder that has a narrow particle size distribution and can change the particle size to some extent, it was found that the solution could be solved by surface-treating copper oxide with a silane coupling agent in advance and reducing it with an aqueous solution containing hydrazine. The present invention was completed by discovering that

〔問題点を解決するための手段〕[Means for solving problems]

即ち、本発明は、酸化銅粉末の表面をシランカップリン
グ剤で被覆した後、該酸化銅粉末をヒドラジンにより還
元することを特徴とする銅微粉末の製造方法である。
That is, the present invention is a method for producing fine copper powder, which comprises coating the surface of copper oxide powder with a silane coupling agent and then reducing the copper oxide powder with hydrazine.

〔作用〕[Effect]

本発明の出発原料の銅化合物は酸化銅であることが必要
であり、酸化銅としては酸化第一銅、酸化第二銅のいず
れも使用でき、はとんど同じ結果を与える。
The starting copper compound of the present invention must be copper oxide, and as the copper oxide, either cuprous oxide or cupric oxide can be used, and both give almost the same results.

酸化銅以外の硫酸銅、硝酸銅、酢酸銅などの銅塩を出発
原料とすると、球状でない銅微粉末が多く析出しよくな
い。また、水酸化銅、臭化銅を出発原料とすると銅塩を
用いたものより球状化するが、酸化銅を用いた場合より
も不規則状粉を多く含み粒度分布中も広いものとなりよ
くない。
If a copper salt other than copper oxide, such as copper sulfate, copper nitrate, or copper acetate, is used as a starting material, a large amount of non-spherical fine copper powder will precipitate, which is not good. In addition, if copper hydroxide or copper bromide are used as starting materials, they will be more spherical than those using copper salts, but they will contain more irregular powder than copper oxide, and the particle size distribution will be broader, which is not good. .

粒度分布中の狭い球状銅微粉末を製造するためには出発
原料として酸化銅を用いる必要があるが、さらに酸化銅
を用いると銅微粉末の粒度(平均粒径とも言う)もある
程度自由に変えることができる。すなわち酸化銅の粉末
の粒度と析出する銅微粉末の粒度はある程度相関性があ
り、酸化銅の粉末粒度が大きいと銅微粉末も大きくなり
、酸化銅の粉末粒度を小さくすると銅微粉末も小さくな
る。
In order to produce fine spherical copper powder with a narrow particle size distribution, it is necessary to use copper oxide as a starting material, but when copper oxide is used, the particle size (also called average particle size) of the fine copper powder can be changed to a certain degree. be able to. In other words, there is a certain correlation between the particle size of the copper oxide powder and the particle size of the precipitated copper fine powder; if the copper oxide powder particle size is large, the copper fine powder will also be large, and if the copper oxide powder particle size is small, the copper fine powder will also be small. Become.

さらに、酸化銅は他の銅化合物に比べ化合物中の銅含有
量が大であり、銅粉を析出する原料としては安価である
特徴も有する。
Furthermore, copper oxide has a higher copper content than other copper compounds, and is also characterized by being inexpensive as a raw material for depositing copper powder.

本発明では、酸化銅粉末の表面をシランカップリング剤
で被覆する工程を経るが、この工程を経ることにより、
酸化銅の粉末粒度を大きくしても粗大凝集物がなく、ま
た小さい酸化銅の粉末を用いても微細なコロイド状とな
らず、粒度の揃った銅微粉末が得られる。
In the present invention, the surface of the copper oxide powder is coated with a silane coupling agent.
Even if the particle size of copper oxide powder is increased, no coarse agglomerates are formed, and even if small copper oxide powder is used, it does not form into a fine colloid, and a fine copper powder with uniform particle size can be obtained.

本発明でのシランカップリング剤とは、有機ケイ素化合
物で化学構造式は一般式Y RS i X 3で表わさ
れるものである。ここでYは有機官能基でビニル基、ア
ミノ基などである。RはアルキルグループでXは加水分
解基でメトキシ基、エトキシ基などである。電子回路の
厚膜導体を形成する銅微粉末を製造するために用いるシ
ランカップリング剤としては化学構造上S、Ctを含ま
ないもので、水との反応が激しくないものが好ましい。
The silane coupling agent in the present invention is an organosilicon compound whose chemical structural formula is represented by the general formula Y RS i X 3. Here, Y is an organic functional group such as a vinyl group or an amino group. R is an alkyl group, and X is a hydrolyzable group such as a methoxy group or an ethoxy group. The silane coupling agent used for manufacturing fine copper powder that forms thick film conductors of electronic circuits is preferably one that does not contain S or Ct in its chemical structure and does not react violently with water.

加水分解基でクロル基を有するものは水と激しく反応し
良くない。
Hydrolyzable groups with chloro groups react violently with water and are not good.

シランカンプリング剤としては、 Vinyl−tris(β−a+ethoxyetho
xy)silane。
As a silane camping agent, Vinyl-tris (β-a+ethoxyetho
xy) silane.

7−Glycidoxypropyltrimetho
xysilane。
7-Glycidoxypropyltrimetho
xysilane.

7−Aminopropyltriethoxysil
ane。
7-Aminopropyltriethoxysil
ane.

N−β−(AI++1noeLhyl)−7−amin
opropyltrimethoxysilane。
N-β-(AI++1noeLhyl)-7-amin
opropyltrimethoxysilane.

7−Ureidopropyltriethoxysi
lane、などが適する。
7-Ureidopropyltriethoxysi
lane, etc. are suitable.

シランカップリング剤の盪は酸化銅に対して重量で0.
51vtχから効果があり、20w tχまでが適量で
あり、これ以上の添加は効果も少なく経済的でない。
The amount of silane coupling agent is 0.0% by weight relative to copper oxide.
It is effective from 51wtχ and up to 20wtχ is an appropriate amount, and adding more than this has little effect and is not economical.

酸化銅をシランカンプリング剤で被覆する方法は、酸化
銅にシランカンプリング剤を直接又はシランカンプリン
グ剤の水溶液あるいはアルコール溶液を加え、撹拌混合
あるいは粉砕すればよい。
To coat copper oxide with a silane camping agent, the silane camping agent may be directly added to the copper oxide, or an aqueous solution or an alcoholic solution of the silane camping agent may be added to the copper oxide, and the mixture may be stirred and mixed or crushed.

シランカンプリング剤を水溶液あるいはアルコール溶液
にして使用すると、酸化銅粉末の表面を早(均一に被覆
することができる。しかし水あるいはアルコール溶液中
のシランカップリング剤の濃度が少ないとシランカップ
リング剤の効果が少なくなるため、水あるいはアルコー
ル溶液にする場合、20w L%以上シランカップリン
グ剤を加えるのが好ましい。
When a silane coupling agent is used in an aqueous or alcohol solution, the surface of the copper oxide powder can be coated quickly (uniformly).However, if the concentration of the silane coupling agent in the water or alcohol solution is low, the silane coupling agent Therefore, when preparing a water or alcohol solution, it is preferable to add 20wL% or more of the silane coupling agent.

撹拌混合の場合の混合機としては、通常のミキサー、ニ
ーダなどが使用できる。粉砕しながら行う場合は、ボー
ルミル、アトライター、振動ミルなどボールを粉砕媒体
とする、粉砕機を用いると効率よく粉砕、被覆処理をす
ることができる。
As a mixer for stirring and mixing, a normal mixer, kneader, etc. can be used. When carrying out the process while pulverizing, it is possible to efficiently perform the pulverizing and coating treatment using a pulverizer such as a ball mill, attritor, or vibrating mill that uses balls as the pulverizing medium.

本発明において粉砕しながら酸化銅表面にシランカップ
リング剤の被覆を形成することは、粒度の小さい銅微粉
末を製造する場合に重要である。
In the present invention, forming a coating of a silane coupling agent on the surface of copper oxide while grinding is important when producing fine copper powder with a small particle size.

酸化銅の粉末が小さくなると均一にシランカップリング
剤の被覆を形成することが難しくなり、本発明の効果が
十分得られない場合がある。特に、小さい酸化銅の粉末
を用いて小さく銅微粉末を得ようとする場合は、大きい
酸化銅にシランカップリング剤を加え、粉砕しながら均
一に被覆処理した小さい酸化銅の粉末にしたものを用い
る方が粒度の揃った均一な球状銅微粉末が容易に得られ
るよい方法である。
When the copper oxide powder becomes small, it becomes difficult to uniformly form a coating with a silane coupling agent, and the effects of the present invention may not be sufficiently obtained. In particular, when trying to obtain small copper oxide powder using small copper oxide powder, add a silane coupling agent to large copper oxide powder and grind it to uniformly coat it into small copper oxide powder. It is a better method to easily obtain uniform spherical copper fine powder with uniform particle size.

本発明に用いる還元剤はヒドラジン及びヒドラジン水化
物が適し、塩酸ヒドラジン、硫酸ヒドラジンなどのヒド
ラジン化合物も使用できるが、洗浄に問題があり、好ま
しくない。
As the reducing agent used in the present invention, hydrazine and hydrazine hydrate are suitable, and hydrazine compounds such as hydrazine hydrochloride and hydrazine sulfate can also be used, but these are not preferred because they cause problems in cleaning.

ヒドラジン以外のの還元剤としてホルムアルデヒド、ブ
ドウ糖、次亜リン酸、水素化ホウ素ナトリウムなどがあ
るが、還元力が弱く酸化銅を金属銅に還元出来なかった
り、例え還元析出しても粒度分布の広い不規則形状の銅
粉しか得られない。
Reducing agents other than hydrazine include formaldehyde, glucose, hypophosphorous acid, and sodium borohydride, but they have weak reducing power and cannot reduce copper oxide to metallic copper, and even if reduced and precipitated, the particle size distribution is wide. Only irregularly shaped copper powder can be obtained.

還元剤としてのヒドラジンの量は水溶液の量とも関係す
るが、基本的には酸化銅の最によって決定される。酸化
銅、に対するヒドラジン量は重量で10−tχから還元
反応が認められるが50w t%以上加えた方が早く反
応が進み短時間に反応が終了する。
The amount of hydrazine as a reducing agent is related to the amount of the aqueous solution, but is basically determined by the amount of copper oxide. A reduction reaction is observed when the amount of hydrazine relative to copper oxide is 10-tχ by weight, but the reaction proceeds more quickly and is completed in a shorter time when 50 wt % or more is added.

なお、ヒドラジン量は多く加えるほど早く反応が進むが
200w t%以上加えても同じとなり経済的でない シランカップリング剤で被覆処理した酸化銅を分散、懸
濁させる水溶液の量は酸化銅がうまく撹拌できる量であ
ればよく、酸化銅容積の約50倍程度が好ましいが、撹
拌毘作を行わなかった場合には、特に限定されるもので
はない。
Note that the reaction progresses faster as the amount of hydrazine is increased, but adding more than 200wt% results in the same reaction, which is not economical.The amount of aqueous solution in which the copper oxide coated with the silane coupling agent is dispersed and suspended is determined by the amount of copper oxide that is well stirred. The amount may be as long as it can be used, preferably about 50 times the volume of copper oxide, but there is no particular limitation if stirring is not performed.

還元反応は常温でも認められるが反応速度が遅く反応が
終了するまで長時間必要なため60’C以上に加温した
方がよい。
Although the reduction reaction can be observed at room temperature, the reaction rate is slow and it takes a long time to complete the reaction, so it is better to heat it to 60'C or higher.

短時間に銅微粉末を得るためにはヒドラジン量を多くし
、60°C以上に加温する方法がよく、ごれによって得
られる銅微粉末は不規則形状になることはない。
In order to obtain fine copper powder in a short time, it is best to increase the amount of hydrazine and heat it to 60°C or higher, so that the fine copper powder obtained will not become irregular in shape due to dirt.

なお、本発明を実施するために使用する反応槽は、撹拌
装置のついたものが好ましく、反応容器は不純物溶出防
止のためガラス製が好ましいが、ステンレス製あるいは
テフロンなどでコーティングした容器でもよい。
The reaction vessel used to carry out the present invention is preferably equipped with a stirring device, and the reaction vessel is preferably made of glass to prevent elution of impurities, but may be made of stainless steel or a vessel coated with Teflon or the like.

本発明の方法における銅微粉末の還元過程を説明すれば
、シランカップリング剤で被覆処理した酸化銅を水溶液
に分散、懸濁し、撹拌しながらヒドラジンを添加し、還
元反応温度まで徐々に加温すると黒色あるいは赤褐色の
懸濁液がしだいに赤色となり、銅色に変化する。これを
放置すると下部に銅微粉末が沈降し、上部は無色透明の
液となる。沈降した銅微粉末を取り出し、アルコールあ
るいはアセトンなどの有機溶剤で洗浄し、通常の方法で
乾燥すると粒度の揃った10μ繭以下の単分散した球状
銅微粉末が得られる。
To explain the reduction process of fine copper powder in the method of the present invention, copper oxide coated with a silane coupling agent is dispersed and suspended in an aqueous solution, hydrazine is added while stirring, and the mixture is gradually heated to the reduction reaction temperature. The black or reddish-brown suspension gradually turns red and then copper. If this is left to stand, fine copper powder will settle at the bottom, and the top will turn into a colorless and transparent liquid. The precipitated fine copper powder is taken out, washed with an organic solvent such as alcohol or acetone, and dried by a conventional method to obtain a monodispersed fine spherical copper powder with a uniform particle size of 10 μm or less.

シランカップリング剤で被覆処理した酸化銅を用いると
反応速度を早くしても単分散した球状銅微粉末が得られ
ることについては十分解明されていないが、次のように
考えられる。
Although it is not fully understood that monodispersed spherical copper fine powder can be obtained by using copper oxide coated with a silane coupling agent even if the reaction rate is increased, it is thought to be as follows.

酸化銅粉末の表面に被覆したシランカップリング剤は加
水分解を受けてシラノールとなり、酸化銅表面にシロキ
サン結合を形成する。
The silane coupling agent coated on the surface of the copper oxide powder undergoes hydrolysis and becomes silanol, forming a siloxane bond on the surface of the copper oxide.

いままで単分散した球状銅微粉末を得るためには銅イオ
ン濃度を低くして、しかもゆっくり反応を行えば良いと
言われていた。つまり銅イオン濃度を高くしたり、反応
速度を速くすると一度に多くの銅の核が生成し、核同士
が成長段階で凝集し、結果的に不規則形状の銅微粉末と
なる。
Until now, it has been said that in order to obtain monodispersed spherical fine copper powder, it is sufficient to lower the copper ion concentration and conduct the reaction slowly. In other words, when the copper ion concentration is increased or the reaction rate is increased, many copper nuclei are generated at once, and the nuclei agglomerate with each other during the growth stage, resulting in irregularly shaped copper fine powder.

酸化銅表面に形成したシロキサン結合は水溶液の接近を
ある程度防止し、還元剤の存在下においても水溶液中の
銅イオン濃度を一定以上にならないように制御している
と考えられる。
It is thought that the siloxane bonds formed on the copper oxide surface prevent the aqueous solution from approaching to some extent and control the copper ion concentration in the aqueous solution so that it does not exceed a certain level even in the presence of a reducing agent.

つまり反応初期から反応終了近くまで水溶液中の銅イオ
ン濃度を制御し、−度に多くの核が生成し凝集すること
を防止していると考えられる。
In other words, it is thought that the concentration of copper ions in the aqueous solution is controlled from the beginning of the reaction to near the end of the reaction to prevent too many nuclei from forming and aggregating at the same time.

核の成長は小さいものほど速く大きくなり、大きいもの
ほど成長はゆっくりであることがら、核の生成が反応初
期から反応終了近くまで連続して続いても得られる銅微
粉末の直径は非常に均一で揃ったものとなる。
The smaller the nucleus grows, the faster it grows, and the larger the nucleus, the slower it grows, so even if the nucleus continues to be generated from the beginning of the reaction to near the end of the reaction, the diameter of the fine copper powder obtained is very uniform. It becomes complete.

シランカップリング剤は還元析出した銅の微粒子同士が
くっつきあうことを防止するのではなく、反応溶液中の
銅イオン濃度を制御して単分散した球状銅微粉末を得る
効果が有ると考えられる。
It is thought that the silane coupling agent does not prevent the reduced and precipitated fine copper particles from sticking together, but has the effect of controlling the copper ion concentration in the reaction solution to obtain monodispersed spherical copper fine powder.

〔実施例〕〔Example〕

以下に、本発明の実施例を示す。 Examples of the present invention are shown below.

実施例(1) 平均粒径lOμ県の酸化第二w450gにシランカップ
リング剤Vinyl−tris(β−methoxye
Lhoxy)stlaneを5g加え、ミキサーで10
分間撹拌混合し、しかる後に全量を500ccの水溶液
に分散、懸濁し、次いで撹拌しながらヒドラジンl水和
物を50g添加し、15分後に70°Cになるように徐
々に加温した。懸濁液を70℃、15分間保持すると反
応が終了し、銅微粉末が析出した。
Example (1) A silane coupling agent Vinyl-tris (β-methoxye
Add 5g of Lhoxy) stlane and mix with a mixer for 10
The mixture was stirred and mixed for a minute, and then the entire amount was dispersed and suspended in 500 cc of an aqueous solution. Then, 50 g of hydrazine l hydrate was added while stirring, and the mixture was gradually heated to 70° C. after 15 minutes. When the suspension was maintained at 70° C. for 15 minutes, the reaction was completed and fine copper powder was precipitated.

アスピレータでろ通抜、アセトンで洗浄し、その後20
°Cで自然乾燥した。
Filter it out with an aspirator, wash it with acetone, and then
Air dried at °C.

39gの銅微粉末が得られ、電子顕微鏡にて粉末の粒度
、粒形を見ると1μm〜1.5μmの揃った凝集のない
単分散した球状粉末であった。不純物として酸素量を測
定した結果、0.12χと非常に少なくSi量も0.0
032と極微量であった。
39 g of fine copper powder was obtained, and when the particle size and shape of the powder was observed under an electron microscope, it was found to be a monodisperse spherical powder with a uniform size of 1 μm to 1.5 μm and no agglomeration. As a result of measuring the amount of oxygen as an impurity, it was very low at 0.12χ, and the amount of Si was also 0.0
The amount was extremely small at 032.

実施例(2) 実施例(+)と同じ酸化第二銅を用い、酸化第二銅を表
面処理するシランカップリング剤のみ7−Glycid
oxypropyltrimethoxysilane
に変えた以外は実施例(1)と同様にして銅微粉末を得
た。
Example (2) Using the same cupric oxide as in Example (+), only the silane coupling agent for surface treatment of cupric oxide was 7-Glycid.
oxypropyltrimethoxysilane
Copper fine powder was obtained in the same manner as in Example (1) except that .

39gの銅微粉末が得られ、電子顕微鏡にて粉末の粒度
、粒形を見ると1μ鍋〜1.5μmの揃った凝集のない
単分散した球状粉末であり、酸素量も0.13χと非常
に少ないものであった。
39g of fine copper powder was obtained, and when the particle size and shape of the powder was observed using an electron microscope, it was a monodisperse spherical powder with a uniform size of 1μ to 1.5μm without agglomeration, and the oxygen content was also extremely high at 0.13χ. There were very few.

実施例(3) 実施例(1)と同じ酸化第二銅を用い、酸化第二銅を表
面処理するシランカップリング剤のみy−Aminop
ropyltriethoxysilaneに変えた以
外は実施例(1)と同様にして銅微粉末を得た。
Example (3) Using the same cupric oxide as in Example (1), only silane coupling agent for surface treatment of cupric oxide was used.
Fine copper powder was obtained in the same manner as in Example (1) except that ropyltriethoxysilane was used.

39、の銅微粉末が得られ、電子顕微鏡にて粉末の粒度
、粒形を見ると1.cza+−1,5μmの揃った凝集
のない単分散した球状粉末であり、酸素量も0614χ
と非常に少ないものであった。
A fine copper powder of 39 was obtained, and when the particle size and shape of the powder was observed using an electron microscope, it was found to be 1. It is a monodisperse spherical powder with a uniform size of cza+-1.5μm and no agglomeration, and the oxygen content is 0614χ
There were very few.

実施例(4) 実施例(1)と同じ酸化第二銅を用い、酸化第二銅を表
面処理するシランカップリング剤のみN−β(Amin
oethyl)−y−aminopropyltrim
ethoyxsilaneに変えた以外は実施例(1)
と同様にして銅微粉末を得た。
Example (4) Using the same cupric oxide as in Example (1), only the silane coupling agent for surface treatment of the cupric oxide was N-β (Amin
oethyl)-y-aminopropyltrim
Example (1) except that it was changed to ethoyxsilane
Copper fine powder was obtained in the same manner as above.

39gの銅微粉末が得られ、電子顕微鏡にて粉末の粒度
、粒形を見ると1μm〜1.5μmの揃った凝集のない
単分散した球状粉末であり、酸素量も0.132と非常
に少ないものであった。
39g of fine copper powder was obtained, and when the particle size and shape of the powder was observed using an electron microscope, it was a monodisperse spherical powder with a uniform size of 1 μm to 1.5 μm without agglomeration, and the amount of oxygen was very high at 0.132. It was small.

実施例(5) 実施例(])と同じ酸化第二銅を用い、酸化第二銅を表
面処理するシランカップリング剤のみ γ−Ureid
opropyltriethoxysilaneに変え
た以外は実施例(1)と同様にして銅微粉末を得た。
Example (5) Using the same cupric oxide as in Example (]), only a silane coupling agent for surface treatment of cupric oxide γ-Ureid
Copper fine powder was obtained in the same manner as in Example (1) except that opropyltriethoxysilane was used.

39gの銅微粉末が得られ、電子顕微鏡にて粉末の粒度
、粒形を見るとlμIm〜1.5μ鋼の揃った凝集のな
い単分散した球状粉末であり、酸素量も0、.14χと
非常に少ないものであった。
39 g of fine copper powder was obtained, and when the particle size and shape of the powder was observed under an electron microscope, it was a monodisperse spherical powder with uniform 1μIm to 1.5μ steel without agglomeration, and the oxygen content was 0. It was very small at 14χ.

実施例(6) 実施例(1)と同じ平均粒径10μIの酸化第二銅10
0gを用い、シランカップリング剤γ−へm1nopr
opyltriethoxysilaneを0.5g加
え、5Iφのステンレスポールを粉砕媒体としたアトラ
イターで30分間粉砕した、粉砕後の酸化第二銅の平均
粒径は5μmであった。
Example (6) Cupric oxide 10 with the same average particle size of 10 μI as Example (1)
Using 0g of silane coupling agent γ-m1nopr
0.5 g of opyltriethoxysilane was added and the mixture was pulverized for 30 minutes with an attritor using a 5Iφ stainless steel pole as a pulverizing medium.The average particle size of the cupric oxide after pulverization was 5 μm.

このように粉砕しながら表面処理した平均粒径5μmの
酸化第二銅50gを500ccの水溶液に分散、懸濁し
、次いで撹拌しながらビトラジンl永和物を50g添加
し、15分後に70°Cになるように徐々に加温した。
Disperse and suspend 50 g of cupric oxide with an average particle size of 5 μm, which has been surface-treated while being crushed in this way, in 500 cc of aqueous solution, then add 50 g of vitrazine l permanent while stirring, and after 15 minutes the temperature reaches 70°C. It was gradually warmed up.

懸濁液を70°C515分間保持すると反応が終了し、
銅微粉末が析出した。アスピレータでろ過後、アセトン
で洗浄し、その後20″Cで自然乾燥した。
The reaction was completed when the suspension was held at 70°C for 515 minutes.
Fine copper powder was precipitated. After filtration with an aspirator, it was washed with acetone and then air-dried at 20''C.

39gの銅微粉末が得られ、電子顕微鏡にて粉末の粒度
、粒形を見ると0.5μm=0.8μmの揃った凝集の
ない単分散した球状粉末であった。不純物として酸素量
を測定した結果0.19χと非常に少ないものであった
39 g of fine copper powder was obtained, and when the particle size and shape of the powder was observed under an electron microscope, it was a monodisperse spherical powder with a uniform size of 0.5 μm = 0.8 μm and no agglomeration. As a result of measuring the amount of oxygen as an impurity, it was found to be very small at 0.19χ.

実施例(7) 実施例(1)と同じ平均粒径10μmの酸化第二銅10
0 gを用い、シランカップリング剤7− Am1no
propyltriethoxysilaneを5g加
え、5mmφのステンレスポールを粉砕媒体としたアト
ライターで180分間粉砕した。粉砕後の酸化第二銅の
平均粒径は0.5μmであった。
Example (7) Cupric oxide 10 with the same average particle size of 10 μm as Example (1)
0 g of silane coupling agent 7-Am1no
5 g of propyltriethoxysilane was added and crushed for 180 minutes with an attritor using a 5 mmφ stainless steel pole as a crushing medium. The average particle size of cupric oxide after pulverization was 0.5 μm.

このように粉砕しながら表面処理した平均粒径Q、5μ
mの酸化第二銅50gを500ccの水溶液に分散、懸
濁し、次いで撹拌しながらビトラジン1水和物を50g
添加し、20分後に60°Cになるように徐々に加温し
た。懸濁液を60°C920分間保持すると反応が終了
し、銅微粉末が析出した。アスピレータでろ過後、アセ
トンで洗浄し、その後20℃で自然乾燥した。
The average particle size Q of the surface treated while being crushed in this way is 5μ.
Disperse and suspend 50 g of cupric oxide (m) in 500 cc of aqueous solution, and then add 50 g of bitrazine monohydrate while stirring.
After 20 minutes, the mixture was gradually heated to 60°C. When the suspension was maintained at 60°C for 920 minutes, the reaction was completed and fine copper powder was precipitated. After filtration with an aspirator, it was washed with acetone and then air-dried at 20°C.

37gの銅微粉末が得られ、電子顕微鏡にて粉末の粒度
、粒形を見ると0.3μm〜0.5μmの揃った凝集の
ない単分散した球状粉末であった。不純物として酸素量
を測定した結果0.192と非常に少ないものであった
37 g of fine copper powder was obtained, and when the particle size and shape of the powder was observed under an electron microscope, it was a monodisperse spherical powder with a uniform size of 0.3 μm to 0.5 μm and no agglomeration. As a result of measuring the amount of oxygen as an impurity, it was 0.192, which was very small.

実施例(8) 平均粒径10umの酸化第一・銅50gに、シランカッ
プリング剤 Vinyl−tris(β−#e tho
xye Lhoxy)silaneを5g加え、ミキサ
ーで10分間撹拌混合し、しかる後に全量500ccの
水溶液に分散、懸濁し、次いで撹拌しながらビトラジン
l永和物を50g添加し、15分後に60℃になるよう
に徐々に加温した。
Example (8) Silane coupling agent Vinyl-tris (β-#e tho
Add 5g of Vitrazine Lhoxy) silane, stir and mix with a mixer for 10 minutes, then disperse and suspend in a total amount of 500cc of aqueous solution, then add 50g of Vitrazine Lhoxylate with stirring, and heat to 60°C after 15 minutes. Warm up gradually.

懸濁液を60°C115分間保持すると反応が終了し、
銅微粉末が析出した。アスピレータでろ過後、アセトン
で洗浄し、その後20°Cで自然乾燥した。
The reaction was completed when the suspension was held at 60°C for 115 minutes.
Fine copper powder was precipitated. After filtering with an aspirator, it was washed with acetone and then air-dried at 20°C.

44gの銅微粉末が得られ、電子’;!R@鏡にて粉末
の粒度、粒形を見ると2μm〜2.5μmの揃った凝集
のない単分散した球状粉末であった。不純物として酸素
量を測定した結果0.11χと非常に少ないものであっ
た。
44g of fine copper powder was obtained, and electron';! When the particle size and shape of the powder was observed using an R@mirror, it was a monodisperse spherical powder with a uniform size of 2 μm to 2.5 μm and no agglomeration. As a result of measuring the amount of oxygen as an impurity, it was found to be very small at 0.11χ.

実施例(9) 平均粒径10μlの酸化第一銅50gに、シランカンプ
リング剤7− Am1nopropyl trieth
oxysilaneを5g加え、ミキサーで10分間撹
拌混合し、しかる後に全1i500ccの水溶液に分散
、懸濁し、次いで撹拌しながらヒドラジンl水和物を2
5g添加し、15分後に60°Cになるように徐々に加
温した。懸濁液が40°C以上になると徐りに反応が開
始し、60゛Cになると明らかに銅の析出が認められ、
30分後に反応が終了し、銅微粉末が析出した。アスピ
レータでろ過後、アセトンで洗浄し、その後20°Cで
自然乾燥した。
Example (9) Silane camping agent 7-Am1nopropyl trieth was added to 50 g of cuprous oxide having an average particle size of 10 μl.
Add 5g of oxysilane, stir and mix with a mixer for 10 minutes, then disperse and suspend in 1i500cc of aqueous solution, then add 2g of hydrazine l hydrate with stirring.
5g was added, and the mixture was gradually heated to 60°C after 15 minutes. When the suspension temperature reached 40°C or higher, the reaction gradually started, and when the temperature reached 60°C, copper precipitation was clearly observed.
After 30 minutes, the reaction was completed and fine copper powder was precipitated. After filtering with an aspirator, it was washed with acetone and then air-dried at 20°C.

44gの銅微粉末が得られ、電子顕微鏡にて粉末の粒度
、粒形を見ると4μ+a〜5μmの揃った凝集のない単
分散した球状粉末であった。不純物として酸素量を測定
した結果0.10%と非常に少ないものであった。
44 g of fine copper powder was obtained, and when the particle size and shape of the powder was observed under an electron microscope, it was a uniform, non-agglomerated, monodispersed spherical powder of 4 μm to 5 μm. The amount of oxygen as an impurity was measured and was found to be very small at 0.10%.

実施例00) 平均粒径1ODI11の酸化第二銅50gにシランカッ
プリング剤Vinyl−tris(β−methoxy
ethoxy)silane2gと水3gの混合溶液を
加え、ミキサーでIO分間撹拌混合し、しかる後に全量
を500ccの水溶液に分散、懸濁し、次いで撹拌しな
がらヒドラジンl水和物を50g添加し、15分後に7
0°Cになるように徐々に加温した。懸濁液を70°C
115分間保持すると反応が終了し、銅微粉末が析出し
た。
Example 00) Silane coupling agent Vinyl-tris (β-methoxy
Add a mixed solution of 2 g of ethoxy) silane and 3 g of water, stir and mix with a mixer for 10 minutes, then disperse and suspend the entire amount in 500 cc of aqueous solution, then add 50 g of hydrazine l hydrate with stirring, and after 15 minutes. 7
It was gradually heated to 0°C. Suspension at 70°C
After holding for 115 minutes, the reaction was completed and fine copper powder was precipitated.

アスピレータでろ過後、アセトンで洗浄し、その後20
°Cで自然乾燥した。
After filtering with an aspirator, wash with acetone, then
Air dried at °C.

39gの銅微粉末が得られ、電子顕微鏡にて粉末の粒度
、粒形を見ると1μm=1.5μmの揃った凝集のない
単分散した球状粉末であった。不純物として酸素量を測
定した結果、0,13χと非常に少ないものであった。
39 g of fine copper powder was obtained, and when the particle size and shape of the powder was observed under an electron microscope, it was a monodisperse spherical powder with a uniform size of 1 μm = 1.5 μm and no agglomeration. As a result of measuring the amount of oxygen as an impurity, it was found to be very small at 0.13χ.

実施例01) 実施例0口)と同じ酸化第二銅を用い、酸化第二銅を表
面処理するシランカップリング剤のみγ−Glycid
oxypropyltrimethoxysilane
 2gとエタノール3gの混合溶液に変えた以外は実施
例00)と同様にして銅微粉末を得た。
Example 01) Using the same cupric oxide as in Example 0), only the silane coupling agent for surface treatment of the cupric oxide was γ-Glycid.
oxypropyltrimethoxysilane
Copper fine powder was obtained in the same manner as in Example 00) except that the mixed solution was changed to 2 g and 3 g of ethanol.

39gの銅微粉末が得られ、電子顕微鏡にて粉末の粒度
、粒形を見ると1μm=1.5μmの揃った凝集のない
単分散した球状粉末であり、酸素量も0.14χと非常
に少ないものであった。
39g of fine copper powder was obtained, and when looking at the particle size and shape of the powder using an electron microscope, it was a monodisperse spherical powder with a uniform size of 1μm = 1.5μm and no agglomeration, and the oxygen content was also very large at 0.14χ. It was small.

実施例02) 実施例00)と同じ酸化第二銅を用い、酸化第二銅を表
面処理するシランカップリング剤のみ7−Aminop
ropyltriethoxysilane 2gとエ
チレングリコール3gの混合溶液に変えた以外は実施例
00)と同様にして銅微粉末を得た。
Example 02) Using the same cupric oxide as in Example 00), only a silane coupling agent for surface treatment of cupric oxide was used, 7-Aminop.
Fine copper powder was obtained in the same manner as in Example 00) except that the mixed solution was changed to 2 g of ropyltriethoxysilane and 3 g of ethylene glycol.

39gの銅微粉末が得られ、電子顕微鏡にて粉末の粒度
、粒形を見ると1μIII〜1.5μmの揃った凝集の
ない単分散した球状粉末であり、酸素量も0.15χと
非常に少ないものであった。
39g of fine copper powder was obtained, and when the particle size and shape of the powder was observed using an electron microscope, it was a monodisperse spherical powder with a uniform size of 1μIII to 1.5μm and no agglomeration, and the oxygen content was also very large at 0.15χ. It was small.

〔発明の効果〕〔Effect of the invention〕

このように本発明によれば、粒度分布中の狭い、単分散
した球状銅微粉末を短時間にしかも安価に製造すること
ができる。
As described above, according to the present invention, monodispersed spherical copper fine powder with a narrow particle size distribution can be produced in a short time and at low cost.

本発明によって得られる球状銅微粉末は、より緻密な厚
膜導体を形成する銅塗料に特に適し、また高純度である
ことから、各種触媒用としても有用なものである。
The spherical fine copper powder obtained by the present invention is particularly suitable for copper paints that form denser thick film conductors, and is highly pure, so it is also useful for various catalysts.

Claims (4)

【特許請求の範囲】[Claims] (1)酸化銅粉末の表面をシランカップリング剤で被覆
した後、該酸化銅粉末をヒドラジンにより還元すること
を特徴とする銅微粉末の製造方法。
(1) A method for producing fine copper powder, which comprises coating the surface of copper oxide powder with a silane coupling agent and then reducing the copper oxide powder with hydrazine.
(2)酸化銅粉末とシランカップリング剤又はシランカ
ップリング剤の水溶液あるいはアルコール溶液を混合機
又は粉砕機に装入し、混合又は粉砕操作を行うことによ
り酸化銅粉末の表面をシランカップリング剤で被覆する
ことを特徴とする特許請求の範囲第1項に記載の銅微粉
末の製造方法。
(2) Copper oxide powder and a silane coupling agent or an aqueous or alcoholic solution of the silane coupling agent are charged into a mixer or a pulverizer, and the surface of the copper oxide powder is coated with the silane coupling agent by mixing or pulverizing. 2. The method for producing fine copper powder according to claim 1, wherein the copper powder is coated with.
(3)シランカップリング剤で被覆された酸化銅粉末を
水中に分散した状態で、撹拌しながらヒドラジン又はヒ
ドラジン水溶液を添加することにより該酸化銅粉末を還
元することを特徴とする特許請求の範囲第1項もしくは
第2項に記載の銅微粉末の製造方法。
(3) A claim characterized in that copper oxide powder coated with a silane coupling agent is dispersed in water, and the copper oxide powder is reduced by adding hydrazine or an aqueous solution of hydrazine while stirring. A method for producing fine copper powder according to item 1 or 2.
(4)シランカップリング剤で被覆された酸化銅粉末を
水中に分散した状態で、撹拌しながらヒドラジン又はヒ
ドラジン水溶液を添加し、次いでこの混合懸濁液を加熱
することにより該酸化銅粉末を還元することを特徴とす
る特許請求の範囲第3項に記載の銅微粉末の製造方法。
(4) Add hydrazine or an aqueous hydrazine solution to the copper oxide powder coated with a silane coupling agent dispersed in water while stirring, and then reduce the copper oxide powder by heating this mixed suspension. A method for producing fine copper powder according to claim 3, characterized in that:
JP63182607A 1988-07-21 1988-07-21 Method for producing fine copper powder Expired - Fee Related JPH0774364B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63182607A JPH0774364B2 (en) 1988-07-21 1988-07-21 Method for producing fine copper powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63182607A JPH0774364B2 (en) 1988-07-21 1988-07-21 Method for producing fine copper powder

Publications (2)

Publication Number Publication Date
JPH0234708A true JPH0234708A (en) 1990-02-05
JPH0774364B2 JPH0774364B2 (en) 1995-08-09

Family

ID=16121247

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63182607A Expired - Fee Related JPH0774364B2 (en) 1988-07-21 1988-07-21 Method for producing fine copper powder

Country Status (1)

Country Link
JP (1) JPH0774364B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006019144A1 (en) * 2004-08-20 2006-02-23 Ishihara Sangyo Kaisha, Ltd. Copper microparticle and process for producing the same

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5925905A (en) * 1982-08-02 1984-02-10 Chisso Corp Production of acicular ferrous ferromagnetic metallic powder
JPS59116303A (en) * 1982-12-22 1984-07-05 Shoei Kagaku Kogyo Kk Manufacture of fine copper powder

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5925905A (en) * 1982-08-02 1984-02-10 Chisso Corp Production of acicular ferrous ferromagnetic metallic powder
JPS59116303A (en) * 1982-12-22 1984-07-05 Shoei Kagaku Kogyo Kk Manufacture of fine copper powder

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006019144A1 (en) * 2004-08-20 2006-02-23 Ishihara Sangyo Kaisha, Ltd. Copper microparticle and process for producing the same
US7828872B2 (en) 2004-08-20 2010-11-09 Ishihara Sangyo Kaisha, Ltd. Copper microparticle and process for producing the same
JP2012052240A (en) * 2004-08-20 2012-03-15 Ishihara Sangyo Kaisha Ltd Copper microparticle and process for producing the same
JP2012052241A (en) * 2004-08-20 2012-03-15 Ishihara Sangyo Kaisha Ltd Copper microparticle and process for producing the same
EP2452767A1 (en) * 2004-08-20 2012-05-16 Ishihara Sangyo Kaisha, Ltd. Copper microparticle and process for producing the same
JP2012162807A (en) * 2004-08-20 2012-08-30 Ishihara Sangyo Kaisha Ltd Copper microparticle and method for producing the same
JP5164379B2 (en) * 2004-08-20 2013-03-21 石原産業株式会社 Copper fine particles and method for producing the same

Also Published As

Publication number Publication date
JPH0774364B2 (en) 1995-08-09

Similar Documents

Publication Publication Date Title
US6183658B1 (en) Process for preparing agglomerate-free nanoscalar iron oxide particles with a hydrolysis resistant coating
CN103223488B (en) Preparation method for silver-coated silicon dioxide composite microsphere particles
JPH1072210A (en) Coated sio2 particles
JP2002537219A (en) Nanoparticulate and redispersible zinc oxide gel
CN101273101A (en) Method for preparing surface-modified, nanoparticulate metaloxides, metal hydroxides and/or metal oxyhydroxides
JP2508847B2 (en) Method for producing silver-coated glass flakes with SiO2 coating
JPS59116303A (en) Manufacture of fine copper powder
JPH01320219A (en) Magnesium hydroxide coated with silica and its production
JP4113045B2 (en) White powder and method for producing the same
KR20130034693A (en) Preparation method of hollow silica nano powder with high purity and low reflection coating membrane comprising the powder
JPH0920903A (en) Production of monodisperse gold grain powder
JP2004203638A (en) Peanut-like twin colloidal silica particle, and production method therefor
CN108822738B (en) Colored glaze chemical polishing solution
JPH0234708A (en) Manufacture of copper fine powder
JPH0587445B2 (en)
JPH01290706A (en) Production of fine copper powder
JPS62241827A (en) Production of ferromagnetic fine powder for magnetic recording
JP3273375B2 (en) Method for producing composite particles
JP5657280B2 (en) Coated magnetite particles and method for producing the same
JPH0428031B2 (en)
US3846118A (en) Process for making small particles
CN109434130A (en) A kind of preparation method of spherical nano silver powder
JPH01259108A (en) Manufacture of copper super fine powder
JP2844012B2 (en) Conductive fine powder and method for producing the same
JP3407385B2 (en) Method for producing composite particles and hollow particles

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees