JPH0774274A - Fabrication of semiconductor device - Google Patents

Fabrication of semiconductor device

Info

Publication number
JPH0774274A
JPH0774274A JP21849193A JP21849193A JPH0774274A JP H0774274 A JPH0774274 A JP H0774274A JP 21849193 A JP21849193 A JP 21849193A JP 21849193 A JP21849193 A JP 21849193A JP H0774274 A JPH0774274 A JP H0774274A
Authority
JP
Japan
Prior art keywords
film
semiconductor substrate
insulating film
gate
insulation film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP21849193A
Other languages
Japanese (ja)
Inventor
Yukio Kaneko
幸男 金子
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP21849193A priority Critical patent/JPH0774274A/en
Publication of JPH0774274A publication Critical patent/JPH0774274A/en
Pending legal-status Critical Current

Links

Landscapes

  • Element Separation (AREA)
  • Non-Volatile Memory (AREA)

Abstract

PURPOSE:To enhance the voltage of gate insulation film and to stabilize the characteristics of an element being formed using the gate insulation film by preventing the gate insulation film from thinning at the edge part of an isolation region when the gate insulation films for the isolation region and a MOS transistor are formed sequentially. CONSTITUTION:The method for fabricating a semiconductor device comprises a step for forming a first insulation film 22 and a deposition film 23 for mask sequentially on a semiconductor substrate 21, a step for anisotropically etching the deposition film, the first insulation film, and the semiconductor substrate sequentially to make a groove in the semiconductor substrate, a step for filling the groove with a second insulation film 27 up to the upper face of the semiconductor substrate, a step for subjecting the surface of the semiconductor substrate to thermal oxidation using the deposition film as a mask thus partially forming a reoxidation film 28 below the second insulation film and the deposition film, a step for removing the deposition film and the first insulation film to form a gate insulation film 30 on the element forming region of the semiconductor substrate, and a step for forming a gate electrode 31 on the gate insulation film.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、半導体装置の製造方
法、特に素子間を電気的に分離するための領域素子分離
領域の形成方法に係り、例えば積層ゲート電極構造の不
揮発性メモリセルのアレイを有する不揮発性メモリの製
造に適用される。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method of manufacturing a semiconductor device, and more particularly to a method of forming a region element isolation region for electrically isolating elements from each other, for example, an array of nonvolatile memory cells having a stacked gate electrode structure. Applied to the manufacture of non-volatile memory having.

【0002】[0002]

【従来の技術】従来の半導体装置の構造およびその製造
方法の一例について、図3(a)〜(d)を参照しなが
ら説明する。まず、図3(a)に示すように、半導体基
板11の表面上に絶縁膜12を形成し、さらに、窒化膜
13を堆積する。この後、フォトリソグラフィ工程によ
り所定のレジストパターン14を形成し、このレジスト
パターン14をマスクとして窒化膜13をエッチングす
る。
2. Description of the Related Art An example of a conventional semiconductor device structure and a method of manufacturing the same will be described with reference to FIGS. First, as shown in FIG. 3A, the insulating film 12 is formed on the surface of the semiconductor substrate 11, and the nitride film 13 is further deposited. After that, a predetermined resist pattern 14 is formed by a photolithography process, and the nitride film 13 is etched using the resist pattern 14 as a mask.

【0003】次に、前記レジストパターン14を除去し
た後、図3(b)に示すように、熱酸化を行うことによ
り素子分離用酸化膜15を形成した後、前記窒化膜13
と絶縁膜12を除去することにより、図3(c)に示す
ように、素子分離領域および素子形成予定領域が得られ
る。
Next, after removing the resist pattern 14, as shown in FIG. 3B, thermal oxidation is performed to form an element isolation oxide film 15, and then the nitride film 13 is formed.
By removing the insulating film 12 and the insulating film 12, an element isolation region and an element formation planned region are obtained as shown in FIG.

【0004】この後、図3(d)に示すように、素子形
成予定領域の基板表面上にMOSトランジスタ用のゲー
ト酸化膜16を形成する。ところで、素子分離用酸化膜
15は、その耐圧を確保するために700〜800nm
の膜厚を必要とし、この酸化膜15の形成時に長時間の
酸化を行う必要がある。
Thereafter, as shown in FIG. 3D, a gate oxide film 16 for a MOS transistor is formed on the surface of the substrate in a region where elements are to be formed. By the way, the element isolation oxide film 15 has a thickness of 700 to 800 nm in order to secure its withstand voltage.
Therefore, it is necessary to oxidize for a long time when forming the oxide film 15.

【0005】しかし、この時、図3(b)に示したよう
に、窒化膜13下への横方向の酸化も起り、素子分離領
域が広がり、微細化が困難となる。また、この時、窒化
膜13のエッジ部が盛り上がり、素子分離用酸化膜15
の形状は、図3(b)に示したように、そのエッジ部が
急峻になっている。
However, at this time, as shown in FIG. 3B, lateral oxidation under the nitride film 13 also occurs, the element isolation region expands, and miniaturization becomes difficult. At this time, the edge portion of the nitride film 13 rises and the oxide film 15 for element isolation is formed.
As shown in FIG. 3 (b), the edge portion has a sharp edge portion.

【0006】これにより、図3(d)に示したように、
素子形成予定領域の基板表面上にMOSトランジスタ用
のゲート酸化膜16を形成する際、酸化膜15のエッジ
部では酸化剤の供給が少なくなり、酸化膜15のエッジ
部においてゲート酸化膜16が薄膜化してしまう。
As a result, as shown in FIG. 3 (d),
When the gate oxide film 16 for the MOS transistor is formed on the substrate surface in the device formation region, the supply of the oxidizing agent is reduced at the edge portion of the oxide film 15, and the gate oxide film 16 is thinned at the edge portion of the oxide film 15. Will turn into.

【0007】このようにゲート酸化膜16が薄膜化する
と、ゲート酸化膜16の耐圧が劣化するという問題や、
後で上記ゲート酸化膜16上に積層ゲート電極構造を有
するEEPROM(電気的消去・再書込み可能なメモ
リ)セルを形成した場合に、このメモリセルの書き込み
/消去特性が劣化するという問題が生じる。
When the gate oxide film 16 is thinned in this way, the breakdown voltage of the gate oxide film 16 deteriorates, and
When an EEPROM (electrically erasable / rewritable memory) cell having a laminated gate electrode structure is formed on the gate oxide film 16 later, there arises a problem that the write / erase characteristics of the memory cell deteriorate.

【0008】[0008]

【発明が解決しようとする課題】上記したように従来の
半導体装置の製造方法は、素子分離領域を形成する際、
素子分離領域のエッジ部におけるゲート酸化膜の薄膜化
が生じ、ゲート酸化膜の耐圧の劣化や、ゲート酸化膜上
に積層ゲート電極構造を有するEEPROMセルを形成
した場合にセルの書き込み/消去特性が劣化すという問
題があった。
As described above, according to the conventional method of manufacturing a semiconductor device, when the element isolation region is formed,
The gate oxide film becomes thinner at the edge of the element isolation region, the breakdown voltage of the gate oxide film deteriorates, and the write / erase characteristics of the cell are improved when an EEPROM cell having a stacked gate electrode structure is formed on the gate oxide film. There was a problem of deterioration.

【0009】本発明は上記の問題点を解決すべくなされ
たもので、素子分離領域およびMOSトランジスタ用の
ゲート絶縁膜を順次形成する際、素子分離領域のエッジ
部におけるゲート絶縁膜の薄膜化を防ぎ、ゲート絶縁膜
の耐圧の向上、ゲート絶縁膜上にゲート電極が形成され
る素子の特性の安定化を図り得る半導体装置の製造方法
を提供することを目的とする。
The present invention has been made to solve the above-mentioned problems, and when the element isolation region and the gate insulating film for the MOS transistor are sequentially formed, the gate insulating film at the edge portion of the element isolation region is thinned. It is an object of the present invention to provide a method for manufacturing a semiconductor device that can prevent the breakdown voltage, improve the breakdown voltage of the gate insulating film, and stabilize the characteristics of an element in which a gate electrode is formed on the gate insulating film.

【0010】[0010]

【課題を解決するための手段】本発明の半導体装置の製
造方法は、半導体基板上に第1の絶縁膜およびマスク用
の堆積膜を順次形成する工程と、前記堆積膜と第1の絶
縁膜と半導体基板とを異方性エッチングにより順次加工
し、半導体基板に溝を形成する工程と、前記溝中に前記
半導体基板の上面まで第2の絶縁膜を埋め込む工程と、
前記堆積膜をマスクとして半導体基板表面の熱酸化を行
い、前記第2の絶縁膜上と前記堆積膜の下の一部に再酸
化膜を形成する工程と、前記堆積膜および第1の絶縁膜
を除去し、前記半導体基板表面の熱酸化を行い、素子形
成予定領域上にゲート絶縁膜を形成する工程と、前記ゲ
ート絶縁膜上にゲート電極を形成する工程とを具備する
ことを特徴とする。
A method of manufacturing a semiconductor device according to the present invention comprises a step of sequentially forming a first insulating film and a deposited film for a mask on a semiconductor substrate, the deposited film and the first insulating film. And a semiconductor substrate are sequentially processed by anisotropic etching to form a groove in the semiconductor substrate, and a step of embedding a second insulating film in the groove up to the upper surface of the semiconductor substrate.
Thermally oxidizing the surface of the semiconductor substrate by using the deposited film as a mask to form a re-oxidized film on the second insulating film and a part of the lower portion of the deposited film; and the deposited film and the first insulating film. Are removed, and the surface of the semiconductor substrate is thermally oxidized to form a gate insulating film on the device formation planned region; and a step of forming a gate electrode on the gate insulating film. .

【0011】[0011]

【作用】半導体基板の所定の領域に形成した溝中に絶縁
膜を埋め込んだ後に熱酸化を行うことにより素子分離領
域を形成するので、素子分離領域の膜厚を確保しつつ熱
酸化の量を減らすことが可能になる。これにより、素子
分離用酸化膜のエッジ部の形状が緩やかになり、後工程
で素子形成予定領域の基板表面上に形成されるMOSト
ランジスタ用のゲート絶縁膜の薄膜化を抑制することが
可能になり、ゲート絶縁膜の耐圧を向上させ、ゲート絶
縁膜上にゲート電極が形成される素子の特性を安定化す
ることが可能になる。
Since the element isolation region is formed by embedding the insulating film in the groove formed in the predetermined region of the semiconductor substrate and then performing thermal oxidation, the amount of thermal oxidation is ensured while ensuring the film thickness of the element isolation region. It becomes possible to reduce. As a result, the shape of the edge portion of the element isolation oxide film becomes gentle, and it is possible to suppress the thinning of the gate insulating film for the MOS transistor formed on the substrate surface in the element formation planned region in a later step. Therefore, it becomes possible to improve the breakdown voltage of the gate insulating film and stabilize the characteristics of the element in which the gate electrode is formed on the gate insulating film.

【0012】[0012]

【実施例】以下、図面を参照して本発明の実施例を詳細
に説明する。図1(a)〜(d)および図2(a)〜
(d)は、本発明をEEPROMの製造方法に適用した
場合の素子分離領域の形成工程における基板構造を示す
断面図である。
Embodiments of the present invention will now be described in detail with reference to the drawings. 1 (a)-(d) and 2 (a)-
FIG. 3D is a sectional view showing a substrate structure in a process of forming an element isolation region when the present invention is applied to an EEPROM manufacturing method.

【0013】まず、図1(a)に示すように、シリコン
基板21上に熱酸化膜22を例えば30nm形成し、さ
らに、減圧CVD(化学気相成長)法によりマスク用の
堆積膜、例えば窒化膜23を150nm程度堆積する。
First, as shown in FIG. 1A, a thermal oxide film 22 having a thickness of 30 nm is formed on a silicon substrate 21, and a mask deposition film, such as a nitride film, is formed by a low pressure CVD (chemical vapor deposition) method. The film 23 is deposited to a thickness of about 150 nm.

【0014】次に、図1(b)に示すように、前記窒化
膜23上にフォトリソグラフィ工程により所定のレジス
トパターン24を形成する。次に、図1(c)に示すよ
うに、前記レジストパターン24をマスクに前記窒化膜
23、熱酸化膜22、シリコン基板21を異方性エッチ
ングにより順次エッチングし、シリコン基板21に深さ
0.5μm程度の溝25を形成する。
Next, as shown in FIG. 1B, a predetermined resist pattern 24 is formed on the nitride film 23 by a photolithography process. Next, as shown in FIG. 1C, the nitride film 23, the thermal oxide film 22, and the silicon substrate 21 are sequentially etched by anisotropic etching using the resist pattern 24 as a mask, so that the silicon substrate 21 has a depth of 0. A groove 25 of about 0.5 μm is formed.

【0015】次に、前記レジストパターン24を除去し
た後、図1(d)に示すように、前記窒化膜23をマス
クにフィールドイオン注入を行い、溝25の底面直下に
反転防止層26を形成する。
Next, after removing the resist pattern 24, as shown in FIG. 1D, field ion implantation is performed using the nitride film 23 as a mask to form an inversion prevention layer 26 just below the bottom surface of the groove 25. To do.

【0016】次に、図2(a)に示すように、減圧CV
D法により絶縁膜を基板上全面に例えば500nm程度
形成し、続いて、異方性エッチングにより上記絶縁膜の
エッチングをシリコン基板21の上面まで行う。これに
より、溝25内は絶縁膜27が埋め込まれた状態にな
る。
Next, as shown in FIG. 2A, the reduced pressure CV
An insulating film is formed on the entire surface of the substrate to a thickness of, for example, about 500 nm by the D method, and then the insulating film is etched to the upper surface of the silicon substrate 21 by anisotropic etching. As a result, the inside of the groove 25 is filled with the insulating film 27.

【0017】次に、図2(b)に示すように、熱酸化に
より前記絶縁膜27上面を再酸化し、200nm程度の
再酸化膜28を形成する。この際、窒化膜23下にも酸
化が進むが、酸化膜27の膜厚が200nm程度である
ので、窒化膜23下の酸化量は少なく、酸化膜27のエ
ッジ部の形状も緩やかになる。
Next, as shown in FIG. 2B, the upper surface of the insulating film 27 is re-oxidized by thermal oxidation to form a re-oxidized film 28 of about 200 nm. At this time, although oxidation also progresses under the nitride film 23, since the thickness of the oxide film 27 is about 200 nm, the amount of oxidation under the nitride film 23 is small, and the shape of the edge portion of the oxide film 27 becomes gentle.

【0018】次に、窒化膜23と熱酸化膜22を除去し
た後、図2(c)に示すように、必要に応じて素子形成
予定領域にチャネルイオン注入を行う。つまり、後の工
程で形成されるトランジスタのチャネル領域29に閾値
制御のためのイオン注入層を形成する。
Next, after the nitride film 23 and the thermal oxide film 22 are removed, as shown in FIG. 2 (c), channel ion implantation is performed in the element formation planned region as needed. That is, an ion implantation layer for controlling the threshold value is formed in the channel region 29 of the transistor that will be formed in a later step.

【0019】その後、図2(d)に示すように、積層ゲ
ート電極構造のEEPROMセルを通常の工程により形
成する。即ち、図2(d)において、30は素子形成予
定領域の基板表面上に形成された第1ゲート酸化膜、3
1は第1ゲート酸化膜30上に形成されたポリシリコン
からなる第1ゲート電極(EEPROMセルの浮遊ゲー
ト電極)、32は第1ゲート電極31上に形成された第
2ゲート絶縁膜である。33は第2ゲート絶縁膜32上
に形成されたポリシリコンからなる第2ゲート電極(E
EPROMセルの制御ゲート電極)であり、EEPRO
Mセルアレイの同一行のセルに共通に接続されるワード
線の一部を形成している。
After that, as shown in FIG. 2D, an EEPROM cell having a laminated gate electrode structure is formed by a normal process. That is, in FIG. 2D, 30 is the first gate oxide film formed on the surface of the substrate in the device formation planned region, 3
Reference numeral 1 is a first gate electrode (floating gate electrode of an EEPROM cell) made of polysilicon formed on the first gate oxide film 30, and 32 is a second gate insulating film formed on the first gate electrode 31. 33 is a second gate electrode (E) made of polysilicon formed on the second gate insulating film 32.
Control gate electrode of the EPROM cell), and EEPRO
Part of a word line commonly connected to cells in the same row of the M cell array is formed.

【0020】なお、上記ワード線33は、その抵抗分を
小さくするために、ポリシリコン上に高融点金属または
そのシリサイド層が形成される場合もある。同様に、前
記浮遊ゲート電極31も、ポリシリコン上に高融点金属
またはそのシリサイド層が形成される場合もある。
The word line 33 may have a refractory metal or its silicide layer formed on polysilicon in order to reduce the resistance. Similarly, in the floating gate electrode 31, a refractory metal or a silicide layer thereof may be formed on polysilicon.

【0021】即ち、上記実施例のEEPROMセルの形
成方法は、シリコン基板21上に第1の絶縁膜(熱酸化
膜)22と窒化膜23を形成し、レジストパターン24
をマスクとして窒化膜23、熱酸化膜22、シリコン基
板21を順次エッチングすることにより、シリコン基板
21の所定の領域に溝25を形成するた。そして、レジ
ストパターン24を除去した後、全面に第2の絶縁膜2
7を堆積し、異方性エッチングにより第2の絶縁膜27
の上面が半導体基板の上面になるまでエッチングするこ
とにより、溝中に絶縁膜27を埋め込む。次に、窒化膜
23をマスクとして熱酸化を行い、第2の絶縁膜27表
面に再酸化膜28を形成することにより素子分離領域を
形成することを特徴とする。
That is, in the method of forming the EEPROM cell of the above embodiment, the first insulating film (thermal oxide film) 22 and the nitride film 23 are formed on the silicon substrate 21, and the resist pattern 24 is formed.
Using the mask as a mask, the nitride film 23, the thermal oxide film 22, and the silicon substrate 21 are sequentially etched to form a groove 25 in a predetermined region of the silicon substrate 21. Then, after removing the resist pattern 24, the second insulating film 2 is formed on the entire surface.
7 is deposited and the second insulating film 27 is formed by anisotropic etching.
The insulating film 27 is embedded in the groove by etching until the upper surface of the above becomes the upper surface of the semiconductor substrate. Next, thermal oxidation is performed using the nitride film 23 as a mask to form a re-oxidized film 28 on the surface of the second insulating film 27 to form an element isolation region.

【0022】このような方法によれば、素子分離用酸化
膜(27、28)の膜厚を確保しつつ熱酸化の量を減ら
すことが可能になるので、図2(b)に示したように、
素子分離用酸化膜(27、28)のエッジ部の形状が緩
やかになり、後工程で素子形成予定領域の基板表面上に
形成されるMOSトランジスタ用のゲート酸化膜30の
薄膜化を抑制することができる。従って、ゲート酸化膜
30の耐圧を向上させることが可能になり、EEPRO
Mセルの書き込み/消去特性として安定した特性が得ら
れる。
According to such a method, it is possible to reduce the amount of thermal oxidation while securing the film thickness of the oxide film for element isolation (27, 28), and therefore, as shown in FIG. 2 (b). To
The edge portion of the element isolation oxide film (27, 28) has a gradual shape to prevent the gate oxide film 30 for the MOS transistor formed on the substrate surface in the element formation planned region from being thinned in a later step. You can Therefore, it becomes possible to improve the breakdown voltage of the gate oxide film 30.
Stable write / erase characteristics of the M cell can be obtained.

【0023】[0023]

【発明の効果】上述したように本発明の半導体装置の製
造方法によれば、素子分離領域および素子形成予定領域
の基板表面上にMOSトランジスタ用のゲート絶縁膜を
順次形成する際、素子分離領域のエッジ部におけるゲー
ト絶縁膜の薄膜化を防ぎ、ゲート絶縁膜の耐圧の向上、
ゲート絶縁膜を用いて形成される素子の特性の安定化を
図ることができる。
As described above, according to the method of manufacturing a semiconductor device of the present invention, when the gate insulating film for the MOS transistor is sequentially formed on the substrate surface of the element isolation region and the element formation planned region, the element isolation region is formed. Prevents thinning of the gate insulating film at the edge of the gate, improving the breakdown voltage of the gate insulating film,
The characteristics of the element formed using the gate insulating film can be stabilized.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明をEEPROMの製造方法に適用した場
合の素子分離領域の形成工程の一部における基板構造を
示す断面図。
FIG. 1 is a cross-sectional view showing a substrate structure in a part of an element isolation region forming step when the present invention is applied to an EEPROM manufacturing method.

【図2】図1の工程に続く工程における基板構造を示す
断面図。
FIG. 2 is a cross-sectional view showing a substrate structure in a step that follows the step of FIG.

【図3】従来の素子分離領域の形成工程における基板構
造を示す断面図。
FIG. 3 is a sectional view showing a substrate structure in a conventional element isolation region forming step.

【符号の説明】 21…シリコン基板、22…熱酸化膜、23…窒化膜、
24…レジストパターン、25…半導体基板に掘られた
溝、26…素子分離領域反転防止層、27…埋め込み絶
縁膜、28…再酸化膜、29…チャネル領域、30…第
1ゲート酸化膜、31…第1ゲート電極(浮遊ゲート電
極)、32…第2ゲート絶縁膜、33…第2ゲート電極
(制御ゲート電極)。
[Explanation of reference numerals] 21 ... Silicon substrate, 22 ... Thermal oxide film, 23 ... Nitride film,
24 ... Resist pattern, 25 ... Grooves dug in semiconductor substrate, 26 ... Element isolation region inversion prevention layer, 27 ... Buried insulating film, 28 ... Reoxidation film, 29 ... Channel region, 30 ... First gate oxide film, 31 ... first gate electrode (floating gate electrode), 32 ... second gate insulating film, 33 ... second gate electrode (control gate electrode).

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 H01L 21/76 ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification code Office reference number FI technical display location H01L 21/76

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 半導体基板上に第1の絶縁膜およびマス
ク用の堆積膜を順次形成する工程と、 前記堆積膜と第1の絶縁膜と半導体基板とを異方性エッ
チングにより順次加工し、半導体基板に溝を形成する工
程と、 前記溝中に前記半導体基板の上面まで第2の絶縁膜を埋
め込む工程と、 前記堆積膜をマスクとして半導体基板表面の熱酸化を行
い、前記第2の絶縁膜上と前記堆積膜の下の一部に再酸
化膜を形成する工程と、 前記堆積膜および第1の絶縁膜を除去し、前記半導体基
板表面の熱酸化を行い、素子形成予定領域上にゲート絶
縁膜を形成する工程と、 前記ゲート絶縁膜上にゲート電極を形成する工程とを具
備したことを特徴とする半導体装置の製造方法。
1. A step of sequentially forming a first insulating film and a deposited film for a mask on a semiconductor substrate; and a step of sequentially processing the deposited film, the first insulating film and the semiconductor substrate by anisotropic etching, Forming a groove in the semiconductor substrate; embedding a second insulating film in the groove up to the upper surface of the semiconductor substrate; and thermally oxidizing the surface of the semiconductor substrate using the deposited film as a mask to form the second insulating film. Forming a re-oxidized film on the film and a part below the deposited film, removing the deposited film and the first insulating film, and thermally oxidizing the surface of the semiconductor substrate to form an element formation region A method of manufacturing a semiconductor device, comprising: a step of forming a gate insulating film; and a step of forming a gate electrode on the gate insulating film.
【請求項2】 請求項1記載の半導体装置の製造方法に
おいて、 前記ゲート電極は積層ポリシリコンゲート構造を有する
ことを特徴とする半導体装置の製造方法。
2. The method of manufacturing a semiconductor device according to claim 1, wherein the gate electrode has a laminated polysilicon gate structure.
JP21849193A 1993-09-02 1993-09-02 Fabrication of semiconductor device Pending JPH0774274A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21849193A JPH0774274A (en) 1993-09-02 1993-09-02 Fabrication of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21849193A JPH0774274A (en) 1993-09-02 1993-09-02 Fabrication of semiconductor device

Publications (1)

Publication Number Publication Date
JPH0774274A true JPH0774274A (en) 1995-03-17

Family

ID=16720767

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21849193A Pending JPH0774274A (en) 1993-09-02 1993-09-02 Fabrication of semiconductor device

Country Status (1)

Country Link
JP (1) JPH0774274A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20000073736A (en) * 1999-05-13 2000-12-05 황인길 Method of isolating semiconductor elements using trench
US6187648B1 (en) 1998-03-24 2001-02-13 Sharp Kabushiki Kaisha Method of forming a device isolation region
KR100324339B1 (en) * 2000-02-29 2002-03-13 박종섭 Fabricating method of semiconductor device
KR100549346B1 (en) * 1999-04-20 2006-02-02 주식회사 하이닉스반도체 Method of manufacturing a flash EEPROM

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6187648B1 (en) 1998-03-24 2001-02-13 Sharp Kabushiki Kaisha Method of forming a device isolation region
KR100549346B1 (en) * 1999-04-20 2006-02-02 주식회사 하이닉스반도체 Method of manufacturing a flash EEPROM
KR20000073736A (en) * 1999-05-13 2000-12-05 황인길 Method of isolating semiconductor elements using trench
KR100324339B1 (en) * 2000-02-29 2002-03-13 박종섭 Fabricating method of semiconductor device

Similar Documents

Publication Publication Date Title
KR100373285B1 (en) Nonvolatile semiconductor memory device and manufacturing method thereof
US6074914A (en) Integration method for sidewall split gate flash transistor
US7186607B2 (en) Charge-trapping memory device and method for production
US20050285219A1 (en) Nonvolatile semiconductor memory and method of fabricating the same
JPH10163348A (en) Manufcture of nonvolatile semiconductor storage device
KR100416380B1 (en) Method of forming flash memory
JP2004289132A (en) Non-volatile memory and its manufacturing method
US6784039B2 (en) Method to form self-aligned split gate flash with L-shaped wordline spacers
US7872296B2 (en) Semiconductor memory device
JPH10335497A (en) Semiconductor non-volatile storage device and its manufacture
US6362045B1 (en) Method to form non-volatile memory cells
JP2865289B2 (en) Manufacturing method of floating gate element
KR100435133B1 (en) Semiconductor device and method for fabricating the same
US6800525B2 (en) Method of manufacturing split gate flash memory device
US6410452B2 (en) Method of manufacturing semiconductor device
US6236081B1 (en) AND-type non-volatile semiconductor memory device and method of manufacturing thereof
JP2005340853A (en) Nonvolatile semiconductor memory and its manufacturing method
JP2001230330A (en) Nonvolatile semiconductor memory and its manufacturing method
JPH0774274A (en) Fabrication of semiconductor device
US7084453B2 (en) Method of forming different oxide thickness for high voltage transistor and memory cell tunnel dielectric
KR20000076914A (en) Nonvolatile semiconductor memory and manufacturing method thereof
JP3100759B2 (en) Manufacturing method of nonvolatile semiconductor memory device
US6989319B1 (en) Methods for forming nitrogen-rich regions in non-volatile semiconductor memory devices
JP2003037250A (en) Manufacturing method of semiconductor memory
KR19990007264A (en) Semiconductor memory device and manufacturing method thereof