JPH0773900A - Maintenance method for stationary type nickel-hydrogen storage battery - Google Patents

Maintenance method for stationary type nickel-hydrogen storage battery

Info

Publication number
JPH0773900A
JPH0773900A JP5246464A JP24646493A JPH0773900A JP H0773900 A JPH0773900 A JP H0773900A JP 5246464 A JP5246464 A JP 5246464A JP 24646493 A JP24646493 A JP 24646493A JP H0773900 A JPH0773900 A JP H0773900A
Authority
JP
Japan
Prior art keywords
maintenance
capacity
operating pressure
valve
battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP5246464A
Other languages
Japanese (ja)
Other versions
JP3349215B2 (en
Inventor
Mikiaki Tadokoro
幹朗 田所
Koji Nishio
晃治 西尾
Toshihiko Saito
俊彦 斎藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP24646493A priority Critical patent/JP3349215B2/en
Publication of JPH0773900A publication Critical patent/JPH0773900A/en
Application granted granted Critical
Publication of JP3349215B2 publication Critical patent/JP3349215B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)

Abstract

PURPOSE:To mitigate a drop of a capacity after maintenance and lengthen an interval of maintenance by setting an operating pressure of a valve for use in maintenance lower than an operating pressure of a safety valve during an electric charging/discharging cycle for the purpose of overcharging. CONSTITUTION:An operating pressure for use in maintenance is set lower than an operating pressure of a conventional valve, i.e., an operating pressure (3atm or higher) of a safety valve, more preferably set to 1.5-2.5atm, followed by overcharging (releasing overcharging). Although a battery capacity of the positive electrode, which is reduced after maintenance by the electric overcharging, is recovered from M2 to M1, an extra capacity S is generated in the negative electrode at the time of electric charging after maintenance. Consequently, electric charging is principally dependent on the positive electrode until hydrogen is completely stored in the extra capacity S. As a result, it is possible to mitigate a drop of the capacity after maintenance and lengthen an interval of maintenance.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、充放電サイクルの繰り
返しにより電池容量が低下した据置型ニッケル−水素蓄
電池の容量回復のためのメンテナンス方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a maintenance method for recovering the capacity of a stationary nickel-hydrogen storage battery whose battery capacity has decreased due to repeated charge / discharge cycles.

【0002】[0002]

【従来の技術及び発明が解決しようとする課題】ガスメ
ーター等の各種計測機器の電源などに用いられている据
置型ニッケル−水素蓄電池の充電末期には、正極から酸
素ガスが発生する。発生した酸素ガスが負極の水素との
反応で全て消費されれば、電池内部の圧力(内圧)は上
昇せず、また正負両極の容量バランスが崩れることはな
い。
2. Description of the Related Art Oxygen gas is generated from the positive electrode at the end of charging of a stationary nickel-hydrogen storage battery used as a power source for various measuring instruments such as gas meters. If the generated oxygen gas is completely consumed by the reaction with the hydrogen of the negative electrode, the internal pressure of the battery (internal pressure) does not rise and the capacity balance between the positive and negative electrodes is not disturbed.

【0003】しかしながら、充電時に発生した酸素ガス
の一部はセパレータなどの易酸化性部材の酸化に消費さ
れるため、負極に水素が残留する。その結果、充放電サ
イクルを繰り返すうちに負極に水素が次第に蓄積し、や
がて充電が負極支配となり、電池容量が低下する。この
ため、電池容量がある程度低下した時点でこれを元に回
復させるために、定期的にメンテナンスを行うことが必
要となる。
However, since a part of the oxygen gas generated during charging is consumed for the oxidation of the easily oxidizable member such as the separator, hydrogen remains in the negative electrode. As a result, hydrogen is gradually accumulated in the negative electrode during repeated charge / discharge cycles, and eventually the charge becomes dominant in the negative electrode, resulting in a decrease in battery capacity. Therefore, it is necessary to perform regular maintenance in order to recover the battery capacity when it has decreased to some extent.

【0004】従来、このメンテナンスとして、充放電サ
イクル時の電池内圧の上昇を防止するために電槽上面に
設けられた作動圧3気圧以上の安全弁から、水素吸蔵合
金内に蓄積した水素を水素ガスとして電池系外へ放出さ
せながら過充電(開放過充電)することが行われてい
る。
Conventionally, for this maintenance, hydrogen accumulated in the hydrogen storage alloy is transferred to a hydrogen gas from a safety valve with an operating pressure of 3 atm or more provided on the upper surface of the battery case in order to prevent the internal pressure of the battery from rising during charge / discharge cycles. As a result, overcharging (open overcharging) is performed while discharging the battery.

【0005】図5は、この従来方法の説明図であり、図
5(A)はメンテナンス前の正負両極の容量図、図5
(B)はメンテナンス後の正負両極の容量図である。充
放電サイクルの繰り返しにより負極に水素が蓄積するた
め、図5(A)に示すように、充放電サイクル初期にM
1あった電池容量はメンテナンス前にはM2に低下す
る。
FIG. 5 is an explanatory view of this conventional method. FIG. 5 (A) is a capacity diagram of both positive and negative electrodes before maintenance, and FIG.
(B) is a capacity diagram of the positive and negative electrodes after maintenance. Since hydrogen accumulates in the negative electrode due to repeated charge / discharge cycles, as shown in FIG.
The battery capacity, which was 1, decreases to M2 before maintenance.

【0006】メンテナンスは、負極に蓄積した水素を電
池系外へ放出して、低下した電池容量M2をM1に回復
させるために行う操作であるが、過充電時に水素ガスの
みならず、酸素ガスをも多量に電池系外へ放出すると、
電解液不足を招き、サイクル寿命の短縮をもたらす。こ
のため、酸素ガスを多量に電池系外に放出しない程度に
過充電する必要がある。それゆえ、従来方法において
は、現実には、酸素ガスが激しく正極から発生し出す前
に過充電を打ち切る必要がある。図5(B)に示すメン
テナンス後の正負両極の充電深度が、等高に描かれてい
るのはこの理由による。なお、図5(A)及び(B)中
のハッチングを施した部分a、bは、それぞれ水素が蓄
積している部分である。
The maintenance is an operation for releasing hydrogen accumulated in the negative electrode to the outside of the battery system to recover the lowered battery capacity M2 to M1, but not only hydrogen gas but also oxygen gas is overcharged. If a large amount is released outside the battery system,
This leads to a shortage of electrolyte and shortens the cycle life. Therefore, it is necessary to overcharge the battery so that a large amount of oxygen gas is not released to the outside of the battery system. Therefore, in the conventional method, in reality, it is necessary to terminate the overcharge before the oxygen gas is intensely generated from the positive electrode. It is for this reason that the charge depths of the positive and negative electrodes after the maintenance shown in FIG. Note that hatched portions a and b in FIGS. 5A and 5B are portions where hydrogen is accumulated.

【0007】しかしながら、上記従来方法には、メンテ
ナンス後の充放電サイクルにおいて電池容量が短サイク
ル裡に低下するという問題の他、サイクル寿命が短いと
いう問題があった。このため、より優れたメンテナンス
方法の開発が要望されていた。
However, the above-mentioned conventional method has a problem that the battery capacity is reduced in a short cycle during the charge / discharge cycle after maintenance and that the cycle life is short. Therefore, there has been a demand for the development of a better maintenance method.

【0008】本発明は、かかる要望に応えるべくなされ
たものであって、その目的とするところは、メンテナン
ス時に電池系内に発生する水素ガスを電池系外へ放出す
るために用いる弁の作動圧を改良することにより、上述
した問題の無い新規且つ有用なメンテナンス方法を提供
するにある。
The present invention has been made in order to meet such a demand, and an object thereof is to provide an operating pressure of a valve used for releasing hydrogen gas generated in the battery system during maintenance to the outside of the battery system. It is to provide a new and useful maintenance method that does not have the above-mentioned problems.

【0009】[0009]

【課題を解決するための手段】上記目的を達成するため
の本発明に係る据置型ニッケル−水素蓄電池のメンテナ
ンス方法(以下、「本発明方法」と称する。)は、3気
圧よりも低い作動圧で開弁する弁から電池系内に発生す
る水素ガスを電池系外へ放出させながら過充電する方法
である。
The method for maintaining a stationary nickel-metal hydride storage battery according to the present invention (hereinafter, referred to as the "method of the present invention") according to the present invention for achieving the above-mentioned object is an operating pressure lower than 3 atm. This is a method of overcharging while releasing the hydrogen gas generated in the battery system from the valve that opens in step 1 to outside the battery system.

【0010】上記弁は、充放電サイクル時の電池内圧の
異常上昇防止のための安全弁とは別に設けられたもので
あってもよく、また安全弁の充放電サイクル時の作動圧
(3気圧以上)をメンテナンス用として3気圧より低く
調整したものであってもよい。
The above-mentioned valve may be provided separately from the safety valve for preventing an abnormal rise in the internal pressure of the battery during the charge / discharge cycle, and the operating pressure of the safety valve during the charge / discharge cycle (3 atm or more). May be adjusted to be lower than 3 atm for maintenance.

【0011】本発明方法における上記弁の好適な作動圧
は1.5〜2.5気圧である。作動圧のあまり低い弁を
用いると、放出すべき水素ガスの他に酸素ガスも電池系
外へ放出されるため、結果的に電解液不足が生じて、サ
イクル寿命の短縮を招く。一方、作動圧のあまり高い弁
を用いると、電池内部の平衡水素圧が高くなるため、メ
ンテナンスにおける過充電時に多量の水素が負極に吸蔵
され易くなる。その結果、蓄積した水素の負極からの抜
き取りが不充分となり、容量回復の割合が低下するとと
もに、サイクル寿命が短くなる。
The preferred operating pressure of the valve in the method of the present invention is 1.5 to 2.5 atmospheres. If a valve with a too low operating pressure is used, oxygen gas is released to the outside of the battery system in addition to the hydrogen gas to be released, resulting in a shortage of the electrolytic solution, resulting in a shortened cycle life. On the other hand, when a valve having an excessively high operating pressure is used, the equilibrium hydrogen pressure inside the battery becomes high, so that a large amount of hydrogen is likely to be absorbed in the negative electrode during overcharge during maintenance. As a result, the accumulated hydrogen is insufficiently extracted from the negative electrode, the rate of capacity recovery is reduced, and the cycle life is shortened.

【0012】[0012]

【作用】本発明方法においては、メンテナンスに使用す
る弁の作動圧を充放電サイクル時の安全弁の作動圧(3
気圧以上)よりも低くして過充電するため、充放電サイ
クル時の安全弁をそのまま用いて過充電していた従来方
法に比べて、過充電時の水素の吸蔵量が少なくなる。そ
の結果、負極に蓄積せる水素が多量に水素ガスとして電
池系外へ放出されることとなり、メンテナンス後の充放
電サイクルにおける電池容量の低下が緩やかになる。以
下に本発明方法の原理を説明する。
In the method of the present invention, the operating pressure of the valve used for maintenance is set to the operating pressure of the safety valve (3
Since it is overcharged at a pressure lower than the atmospheric pressure), the amount of hydrogen stored during overcharge is smaller than that in the conventional method in which the safety valve is used as it is during charge / discharge cycles. As a result, a large amount of hydrogen accumulated in the negative electrode is released to the outside of the battery system as hydrogen gas, and the decrease in the battery capacity in the charge / discharge cycle after maintenance becomes gradual. The principle of the method of the present invention will be described below.

【0013】メンテナンスは負極に蓄積せる水素を電池
系外へ水素ガスとして放出する操作であるから、過充電
時の負極の水素吸蔵量が少なくなる条件、すなわち電池
内部の平衡水素圧を低くして過充電することが好ましい
筈である。
Since maintenance is an operation of releasing hydrogen accumulated in the negative electrode as hydrogen gas to the outside of the battery system, a condition under which the amount of hydrogen stored in the negative electrode during overcharge is reduced, that is, the equilibrium hydrogen pressure inside the battery is lowered. It should be preferable to overcharge.

【0014】かかる知見に基づき開発されたのが本発明
方法である。すなわち、本発明方法は、メンテナンスに
用いる弁の作動圧を、従来方法の弁の作動圧、すなわち
安全弁の作動圧(3気圧以上)よりも低くして過充電
(開放過充電)することにより、メンテナンス後の放電
後に負極に残留する水素(蓄積水素)の量が、従来方法
に比し少なくなるようにしたものである。
The method of the present invention was developed on the basis of such findings. That is, according to the method of the present invention, the operating pressure of the valve used for maintenance is set lower than the operating pressure of the valve of the conventional method, that is, the operating pressure of the safety valve (3 atm or more) to perform overcharge (open overcharge). The amount of hydrogen (accumulated hydrogen) remaining in the negative electrode after discharge after maintenance is made smaller than that in the conventional method.

【0015】図1は、本発明方法の説明図であり、図1
(A)はメンテナンス前の正負両極の容量図、図1
(B)はメンテナンス後の正負両極の容量図である。図
1(B)に示すように、低下した電池容量M2がメンテ
ナンス後にM1に回復する点は、従来方法による場合と
略同様であるが、本発明方法では、メンテナンス後の充
電時に余分の容量Sが負極に生じるため、従来方法に比
し、負極の充電深度を浅くすることができる。
FIG. 1 is an explanatory view of the method of the present invention.
(A) is a capacity diagram of both positive and negative electrodes before maintenance, Fig. 1
(B) is a capacity diagram of the positive and negative electrodes after maintenance. As shown in FIG. 1B, the point that the lowered battery capacity M2 is restored to M1 after maintenance is almost the same as in the case of the conventional method, but in the method of the present invention, the extra capacity S at the time of charging after maintenance is Is generated in the negative electrode, the charging depth of the negative electrode can be made shallower than in the conventional method.

【0016】このため、この余分の容量Sに水素が完全
に蓄積されるまでは、充電は正極支配でなされることと
なり、その間は殆ど容量低下しない。余分の容量Sに水
素が完全に蓄積された後は、同時支配の充電となり、や
がて負極支配の充電に移行するので容量低下するが、殆
ど容量低下しない期間が存在するので、従来方法に比べ
て、メンテナンス後の容量低下が緩やかとなり、メンテ
ナンス間隔を長くすることが可能となる。
Therefore, until the hydrogen is completely accumulated in the extra capacity S, the charging is performed under the control of the positive electrode, and the capacity hardly decreases during that time. After the hydrogen is completely accumulated in the extra capacity S, the charging is controlled at the same time, and then the charging is controlled by the negative electrode, so that the capacity is reduced, but there is a period in which the capacity is hardly reduced. As a result, the capacity decrease after maintenance becomes gentle, and the maintenance interval can be lengthened.

【0017】また、従来方法では、各メンテナンスにお
いて高々正負両極の充電深度が等高になる程度までしか
蓄積水素を放出させることができないことに起因して、
メンテナンスを繰り返すうちにメンテナンスによっても
放出させることができない多量の水素が次第に蓄積す
る。このため、従来方法には、蓄電池のサイクル寿命が
短いという問題がある。
Further, in the conventional method, the accumulated hydrogen can be released only to such an extent that the charge depths of the positive and negative electrodes are at the same height in each maintenance.
As the maintenance is repeated, a large amount of hydrogen that cannot be released even by the maintenance gradually accumulates. Therefore, the conventional method has a problem that the cycle life of the storage battery is short.

【0018】これに対して、本発明方法では、弁の作動
圧を過度に低圧にならない程度に設定して、酸素ガスを
殆ど放出させずに水素ガスのみを放出させることによ
り、電解液不足に因るサイクル寿命の短縮を招かずにメ
ンテナンスを行うことができる。
On the other hand, in the method of the present invention, the operating pressure of the valve is set so as not to be excessively low, and only hydrogen gas is released with almost no release of oxygen gas. Maintenance can be performed without causing a reduction in cycle life.

【0019】図2は、本発明方法及び従来方法による各
メンテナンスを行った後の、電池容量の充放電サイクル
の進行に伴う変化の様子を、縦軸に電池容量(Ah)
を、また横軸にサイクル数(回)をとって模式的に示し
たグラフである。図中のLはメンテナンスを行った時点
である。
FIG. 2 shows, on the vertical axis, the state of changes in the battery capacity with the progress of the charging / discharging cycle after each maintenance by the method of the present invention and the conventional method.
And the number of cycles (times) on the horizontal axis. L in the figure is the time when maintenance is performed.

【0020】図2に示すように、本発明方法によるメン
テナンスを行った後の充放電サイクル(実線で示す)
においては、先に述べた余分の容量Sに水素が蓄積され
て満杯になるまでは、充電が正極支配で行われるため電
池容量は殆ど低下しない。これに対して、従来方法によ
るメンテナンスを行った後の充放電サイクル(破線で
示す)においては、メンテナンス後に負極に余分の容量
Sが存在しないため、その後の充電がメンテナンス直後
の同時支配から速やかに負極支配に移行する。それゆ
え、電池容量が速く低下する。
As shown in FIG. 2, the charge / discharge cycle after the maintenance by the method of the present invention (shown by the solid line).
In the above, since the charging is performed under the control of the positive electrode until hydrogen is accumulated in the extra capacity S described above and becomes full, the battery capacity hardly decreases. On the other hand, in the charge / discharge cycle (indicated by the broken line) after performing the maintenance by the conventional method, since there is no extra capacity S in the negative electrode after the maintenance, the subsequent charging is promptly performed from the simultaneous control immediately after the maintenance. Transition to negative electrode control. Therefore, the battery capacity decreases rapidly.

【0021】[0021]

【実施例】以下、本発明を実施例に基づいてさらに詳細
に説明するが、本発明は下記実施例により何ら限定され
るものではなく、その要旨を変更しない範囲において適
宜変更して実施することが可能なものである。
EXAMPLES The present invention will be described in more detail based on the following examples, but the invention is not intended to be limited by the examples described below, and various modifications may be made without departing from the scope of the invention. Is possible.

【0022】〔メンテナンス前後の電池内圧及び電池容
量〕図3に外観を示す角型の単電池A1〜A8、及び、
メンテナンス用の弁を有しないことを除いては単電池A
1〜A8と同様の構造の単電池B(図示せず)を作製し
た(定格容量:100Ah)。図示の単電池A1〜A8
には、電槽31の上面に、正極端子32、負極端子3
3、安全弁34及びメンテナンス用の弁35が設けられ
ている。安全弁34の作動圧はいずれも3気圧であり、
また単電池A1〜A8のメンテナンス用の各弁の作動圧
は表1に示すとおりである。
[Battery Internal Pressure and Battery Capacity Before and After Maintenance] Square-shaped cells A1 to A8 whose appearance is shown in FIG. 3, and
Single cell A, except that it does not have a maintenance valve
A unit cell B (not shown) having the same structure as 1 to A8 was produced (rated capacity: 100 Ah). Illustrated cells A1 to A8
The positive electrode terminal 32 and the negative electrode terminal 3 on the upper surface of the battery case 31.
3, a safety valve 34 and a maintenance valve 35 are provided. The operating pressure of each safety valve 34 is 3 atm,
The operating pressure of each valve for maintenance of the unit cells A1 to A8 is as shown in Table 1.

【0023】[0023]

【表1】 [Table 1]

【0024】これらの単電池について、1Cで1時間充
電した後、1Cで放電終止電圧1Vまで放電する工程を
1サイクルとする充放電サイクル試験を行い、1000
サイクル経過後に充電容量150Ahで過充電してメン
テナンスを行った。なお、充放電サイクル時にはメンテ
ナンス用の弁35は作動しないようにした。これらのメ
ンテナンスのうち、単電池A1〜A8のメンテナンスは
本発明方法に相当し、また安全弁34をメンテナンス用
の弁として代用する単電池Bのメンテナンスは従来方法
に相当する。メンテナンス前後の電池容量及び内圧を先
の表1に示す。なお、メンテナンス前後の内圧は、0.
1Cで内圧が3気圧に達するまで充電し、さらに1時間
放置した後の内圧である。また、メンテナンス前後の電
池容量(Ah)は、0.1Cで充電終止圧力3気圧まで
充電した後、0.1Cで放電終止電圧1Vまで放電した
ときの電池容量である。
A charging / discharging cycle test was carried out on each of these unit cells, in which one cycle includes a process of charging at 1C for 1 hour and then discharging at 1C to a discharge end voltage of 1V.
After the cycle, maintenance was performed by overcharging with a charge capacity of 150 Ah. Note that the maintenance valve 35 was not operated during the charge / discharge cycle. Among these maintenances, the maintenance of the cells A1 to A8 corresponds to the method of the present invention, and the maintenance of the cell B which substitutes the safety valve 34 as a valve for maintenance corresponds to the conventional method. Table 1 shows the battery capacity and internal pressure before and after maintenance. The internal pressure before and after maintenance was 0.
It is the internal pressure after charging at 1 C until the internal pressure reaches 3 atm and left for 1 hour. Further, the battery capacity (Ah) before and after the maintenance is the battery capacity when the battery is charged at 0.1 C to a charge end pressure of 3 atm and then discharged at 0.1 C to a discharge end voltage of 1 V.

【0025】表1に示すように、本発明方法によりメン
テナンスを行った単電池A1〜A8は、従来の方法によ
りメンテナンスを行った単電池Bに比し、メンテナンス
後の内圧が低く、また容量回復の割合が大きい。
As shown in Table 1, the unit cells A1 to A8 maintained by the method of the present invention have a lower internal pressure after the maintenance and the capacity recovery compared to the unit cells B maintained by the conventional method. Is large.

【0026】内圧が低いのは、水素の蓄積量が少ないた
めメンテナンス後の充電末期に発生する水素ガスが少な
いからである。また、容量回復の割合が大きいのは、次
の理由による。すなわち、従来方法によるメンテナンス
後においては正負両極の充電深度が等高である。このた
め、充電末期になると正極からは酸素ガスが、負極から
は水素ガスが発生する。その結果、内圧が3気圧に達す
るまでの時間が短くなり、満充電されなくなる。これに
対して、本発明方法では、充電末期になると正極から同
様に酸素ガスが発生するが、余分な容量Sが存在するた
め、負極からの水素ガスの発生量は少ない。その結果、
安全弁34の作動圧たる3気圧に達するまでの時間が長
く、より多くの充電がなされたのである。
The internal pressure is low because the amount of hydrogen accumulated is small and the amount of hydrogen gas generated at the end of charging after maintenance is small. The reason for the large capacity recovery rate is as follows. That is, the depths of charge of the positive and negative electrodes are uniform after the maintenance by the conventional method. Therefore, at the end of charging, oxygen gas is generated from the positive electrode and hydrogen gas is generated from the negative electrode. As a result, the time required for the internal pressure to reach 3 atmospheres is shortened, and full charge cannot be achieved. On the other hand, in the method of the present invention, oxygen gas is similarly generated from the positive electrode at the end of charging, but since there is an extra capacity S, the amount of hydrogen gas generated from the negative electrode is small. as a result,
It takes a long time to reach the operating pressure of the safety valve 34, which is 3 atm, and more charging is performed.

【0027】〔サイクル寿命〕単電池A1〜A8及び単
電池Bについて、先と同じ条件のサイクル試験を行い、
300サイクルおきに充電容量150Ahで過充電する
メンテナンスを繰り返し行って、サイクル寿命を調べ
た。比較のために、単電池Bについては、メンテナンス
を全く行わない場合のサイクル寿命についても調べた。
[Cycle Life] With respect to the unit cells A1 to A8 and the unit cell B, a cycle test was conducted under the same conditions as above,
The cycle life was examined by repeating the maintenance of overcharging with a charge capacity of 150 Ah every 300 cycles. For comparison, the cell B was also examined for cycle life when no maintenance was performed.

【0028】サイクル寿命は、50サイクルおきに0.
1Cで充電終止圧力3気圧まで充電した後、0.1Cで
放電終止電圧1Vまで放電して、電池容量を測定し、電
池容量が初期容量の50%に低下した時点までの総サイ
クル数で評価した。結果を表2に示す。
The cycle life is 0.50 every 50 cycles.
After charging up to 3 atm at the end-of-charge pressure at 1 C, discharge to 0.1 V at the end-of-discharge voltage, measure the battery capacity, and evaluate the total number of cycles until the battery capacity drops to 50% of the initial capacity. did. The results are shown in Table 2.

【0029】[0029]

【表2】 [Table 2]

【0030】表2に示すように、本発明方法によりメン
テナンスを行った単電池A1〜A8は、従来方法により
メンテナンスを行った単電池Bに比し、サイクル寿命が
総じて長い。
As shown in Table 2, the unit cells A1 to A8 maintained by the method of the present invention generally have a longer cycle life than the unit cell B maintained by the conventional method.

【0031】これは、各メンテナンスにおいて蓄積水素
の放出が比較的良好になされたため、メンテナンスによ
っても放出させることができない水素の蓄積速度が遅く
なったからである。
This is because the accumulated hydrogen was released relatively favorably in each maintenance, and the accumulation rate of hydrogen, which could not be released even by the maintenance, became slow.

【0032】なお、弁35の作動圧が低い単電池A1及
びA2のサイクル寿命が短いのは、酸素ガスの放出によ
る電解液不足によるものであり、また弁35の作動圧が
単電池Bのメンテナンス用の弁(安全弁)34の作動圧
に近い単電池A8のサイクル寿命が短いのは、上述した
単電池Bのサイクル寿命が短い理由と同理由によるもの
である。表2に示す結果より、弁35の作動圧は1.5
〜2.5気圧とすることが好ましいことが分かる。
The short cycle life of the cells A1 and A2 having a low operating pressure of the valve 35 is due to the lack of electrolyte due to the release of oxygen gas, and the operating pressure of the valve 35 is the maintenance of the cell B. The short cycle life of the unit cell A8 close to the operating pressure of the valve (safety valve) 34 is due to the same reason as the short cycle life of the unit cell B described above. From the results shown in Table 2, the operating pressure of the valve 35 is 1.5
It can be seen that it is preferable to set the pressure to 2.5 atm.

【0033】上記実施例では、充放電サイクル時の電池
内圧の異常上昇防止のための安全弁とは別にメンテナン
ス用の弁を設ける方法を例に挙げて説明したが、安全弁
の作動圧を3気圧より低く調整したものを使用した場合
にも同様の優れた効果が得られる。
In the above embodiment, the method of providing the maintenance valve separately from the safety valve for preventing the abnormal rise of the internal pressure of the battery during the charge / discharge cycle has been described as an example. The same excellent effect can be obtained when a low-adjusted one is used.

【0034】また、実施例では本発明方法を単電池の容
量回復方法に適用する場合を例に挙げて説明したが、本
発明方法は複数対の正極及び負極が直列に接続されてな
る集合電池の容量回復方法にも同様に適用し得るもので
ある。図4は、この集合電池の一例を示し、図示の集合
電池Gには、電槽41の上面に、正極端子42、負極端
子43、安全弁44及びメンテナンス用の弁45が設け
られている。電槽41の内部には、直列接続された複数
対の正極及び負極(図示せず)が収納されている。
In the embodiments, the case where the method of the present invention is applied to the capacity recovery method of a single battery has been described as an example, but the method of the present invention is an assembled battery in which a plurality of pairs of positive and negative electrodes are connected in series. The capacity recovery method can also be applied in the same manner. FIG. 4 shows an example of this assembled battery. In the illustrated assembled battery G, a positive electrode terminal 42, a negative electrode terminal 43, a safety valve 44, and a maintenance valve 45 are provided on the upper surface of a battery case 41. Inside the battery case 41, a plurality of pairs of positive electrodes and negative electrodes (not shown) connected in series are housed.

【0035】[0035]

【発明の効果】本発明方法によれば、メンテナンス後に
おける容量低下が緩やかであり、メンテナンス間隔を長
くすることが可能である。また、メンテナンスに用いる
弁の作動圧を酸素ガスを殆ど放出しない程度に設定する
ことにより、電解液不足に因るサイクル寿命の短縮を招
くことなくメンテナンスを行うことができる。
According to the method of the present invention, the decrease in capacity after maintenance is gentle and the maintenance interval can be lengthened. Further, by setting the operating pressure of the valve used for maintenance to a level at which oxygen gas is hardly released, it is possible to perform maintenance without shortening the cycle life due to insufficient electrolyte.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明方法の説明図であり、(A)はメンテナ
ンス前の正負両極の容量図、(B)はメンテナンス後の
正負両極の容量図である。
FIG. 1 is an explanatory diagram of a method of the present invention, (A) is a capacity diagram of positive and negative electrodes before maintenance, and (B) is a capacity diagram of positive and negative electrodes after maintenance.

【図2】本発明方法及び従来方法による各メンテナンス
を行った後の充放電サイクルにおける電池容量の変化の
様子を示したグラフである。
FIG. 2 is a graph showing how the battery capacity changes during a charge / discharge cycle after performing each maintenance according to the method of the present invention and the conventional method.

【図3】実施例で作製した単電池の斜視図である。FIG. 3 is a perspective view of a unit cell manufactured in an example.

【図4】集合電池の斜視図である。FIG. 4 is a perspective view of an assembled battery.

【図5】従来方法の説明図であり、(A)はメンテナン
ス前の正負両極の容量図、(B)はメンテナンス後の正
負両極の容量図である。
5A and 5B are explanatory views of a conventional method, in which FIG. 5A is a capacity diagram of positive and negative electrodes before maintenance, and FIG. 5B is a capacity diagram of positive and negative electrodes after maintenance.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】3気圧よりも低い作動圧で開弁する弁から
電池系内に発生する水素ガスを電池系外へ放出させなが
ら過充電することを特徴とする据置型ニッケル−水素蓄
電池のメンテナンス方法。
1. Maintenance of a stationary nickel-hydrogen storage battery, characterized in that hydrogen gas generated in a battery system is released from a valve that opens at an operating pressure lower than 3 atmospheres to overcharge while releasing the hydrogen gas to the outside of the battery system. Method.
【請求項2】前記弁が、充放電サイクル時の電池内圧の
異常上昇防止のための安全弁とは別に設けられたもので
ある請求項1記載の据置型ニッケル−水素蓄電池のメン
テナンス方法。
2. The maintenance method for a stationary nickel-hydrogen storage battery according to claim 1, wherein the valve is provided separately from a safety valve for preventing an abnormal rise in battery internal pressure during charge / discharge cycles.
【請求項3】前記弁が、充放電サイクル時の作動圧が3
気圧以上の安全弁の作動圧を3気圧より低く調整したも
のである請求項1記載の据置型ニッケル−水素蓄電池の
メンテナンス方法。
3. The valve has an operating pressure of 3 during a charge / discharge cycle.
The method for maintenance of a stationary nickel-hydrogen storage battery according to claim 1, wherein the operating pressure of the safety valve at atmospheric pressure or higher is adjusted to be lower than 3 atmospheric pressure.
【請求項4】前記弁の作動圧が1.5〜2.5気圧であ
る請求項1〜3のいずれかに記載の据置型ニッケル−水
素蓄電池のメンテナンス方法。
4. The method for maintaining a stationary nickel-hydrogen storage battery according to claim 1, wherein the operating pressure of the valve is 1.5 to 2.5 atmospheric pressure.
JP24646493A 1993-09-06 1993-09-06 Maintenance method for stationary nickel-hydrogen storage batteries Expired - Fee Related JP3349215B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24646493A JP3349215B2 (en) 1993-09-06 1993-09-06 Maintenance method for stationary nickel-hydrogen storage batteries

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24646493A JP3349215B2 (en) 1993-09-06 1993-09-06 Maintenance method for stationary nickel-hydrogen storage batteries

Publications (2)

Publication Number Publication Date
JPH0773900A true JPH0773900A (en) 1995-03-17
JP3349215B2 JP3349215B2 (en) 2002-11-20

Family

ID=17148815

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24646493A Expired - Fee Related JP3349215B2 (en) 1993-09-06 1993-09-06 Maintenance method for stationary nickel-hydrogen storage batteries

Country Status (1)

Country Link
JP (1) JP3349215B2 (en)

Also Published As

Publication number Publication date
JP3349215B2 (en) 2002-11-20

Similar Documents

Publication Publication Date Title
KR101897859B1 (en) Detection method of Li plating, method and apparatus for charging secondary battery and secondary battery system using the same
JP5925755B2 (en) Battery module adjustment method and battery module adjustment apparatus
JP2002313412A (en) Method of activating secondary battery
Pavlov et al. Nickel-zinc batteries with long cycle life
JPH0773900A (en) Maintenance method for stationary type nickel-hydrogen storage battery
JP3383210B2 (en) Open industrial storage battery with maintenance-free alkaline electrolyte
JP3349217B2 (en) Maintenance method for stationary nickel-hydrogen storage batteries
JP4068268B2 (en) Lead-acid battery charging method
JP2003036891A (en) Charge method and discharge method for nonaqueous electrolyte secondary battery and apparatus for the same
JP6613969B2 (en) Secondary battery system
JP2004200129A (en) Device and method for controlling discharge of lead storage battery
JP3216180B2 (en) Method for recovering capacity of nickel-cadmium battery
JP2001126771A (en) Charging method of sealed lead-acid battery
JP2006156022A (en) Charging method of control valve type lead acid storage battery
JP2861665B2 (en) Maintenance and inspection method and capacity recovery method for nickel-cadmium batteries
JP3057737B2 (en) Sealed alkaline storage battery
JP3648761B2 (en) How to charge sealed lead-acid batteries
JP2001160422A (en) Charging control method of lead storage battery
JPH08329989A (en) Method for charging sealed lead-acid battery
JP2003223935A (en) Charging method of control valve lead storage battery
JP2001157376A (en) Method of charging sealed lead accumulator
JP2002165378A (en) Charging system of control valve type lead-acid battery
JP2002042899A (en) Charging system for control valve type lead-acid battery
JP2000268852A (en) Active method for sealed nickel-hydrogen secondary battery
JP2008234854A (en) Battery pack

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070913

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080913

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees